UGR DMA

Menu:

Enlaces:

-JCR
-Biblio UGR
-Mathscinet
-Scopus
-Orcid
-ResearcherID
-ISI know
-ResearchGate
-MathDoc
-SICA


-No Erdös
-Índice H
-Otros FI
-Vida-media

-Medalla Fields
-1 Millón
-Premios
-SEMA
-RSME

Actualizado
22-03-2022

Publicaciones (en orden cronológico inverso)

  1. J. Nieto, O. Vásquez, Wellposedness of a DNA replication model based on a nucleation-growth process, Comm. Pure Appl. Anal. (aceptado 2022).
  2. G. Corbin, A. Klar, C. Surulescu, C. Engwer, M. Wenske, J. Nieto, J. Soler, Modeling glioma invasion with anisotropy-and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic PDEs with multiple taxis, Math. Mod. Meth. Appl. Sci. 31(1), (2021), 177--222.
  3. J. Calvo, J. Nieto, M. Zagour, Kinetic Model for Vehicular Traffic with Continuum Velocity and Mean Field Interactions, Symmetry 11(9), (2019), 1093.
  4. D. Knopoff, J. Nieto, L. Urrutia, Numerical Simulation of a Multiscale Cell Motility Model Based on the Kinetic Theory of Active Particles, Symmetry 11(8), (2019), 1003.
  5. A.M. Delgado, J. Nieto, About the mathematical modeling of the interaction between human behaviors and socio-economics, (comment on "Modeling Human Behavior in Economics and Social Science, by M. Dolfin et al.), Phys. Life Rev. 22-23, (2017), 48--49.
  6. A.M. Delgado, J. Nieto, A.M. Robles, O. Sánchez, Métodos numéricos básicos con Octave , Ed. Avicam, Granada, (2016).
  7. J. Calvo, J. Nieto, Some aspects on kinetic modeling of evacuation dynamics, (comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management", by N. Bellomo et al.) Phys. Life Rev., 18, (2016), 42--43.
  8. A. Bellouquid, J. Nieto, L. Urrutia, About the kinetic description of fractional diffusion equations modeling chemotaxis, Math. Mod. Meth. Appl. Sci. 26(2), (2016), 249--268. D.O.I.
  9. J. Nieto, The (kinetic) theory of active particles applied to learning dynamics (comment on "Collective Learning Modeling Based on the Kinetic Theory of Active Particles", by D. Burini et al.), Phys. Life Rev. 16, (2016), 152--153.
  10. J. Nieto, L. Urrutia, A multiscale modeling of cell mobility: from kinetic to hydrodynamics, J. Math. Anal. Appl. 433(2), (2016), 1055--1071.
    (y corrigendum en J. Math. Anal. Appl. 435(1), (2016), page 1014).
  11. J. Nieto, The Kinetic Theory of Active Particles as a biological systems approach (comment on "On the Interplay between mathematics and biology: hallmarks toward a new systems biology", by N. Bellomo et al.), Phys. Life Rev. 12, (2015), 81--82.
  12. A. Bellouquid, J. Nieto, L. Urrutia, Global existence and asymptotic stability near equilibrium for the relativistic BGK model, Nonlinear Anal. 114, (2015), 87--104.
  13. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, On the multiscale modeling of vehicular traffic: from kinetic to hydrodynamics, Discrete Contin. Dyn. Syst. Ser. B 19(7), (2014), 1869--1888.
    1
  14. J. Calvo, J. Nieto, J. Soler, M.O. Vásquez, On a dispersive model for the unzipping of double-stranded DNA molecules, Math. Mod. and Meth. in Appl. Sci. 24(3), (2014), 495--511.
  15. A. Bellouquid, J. Calvo, J. Nieto, J. Soler, Hyperbolic vs parabolic asymptotics in kinetic theory towards fluid dynamic models, SIAM J. Appl. Math. 73(4), (2013), 1327--1346.
  16. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Modeling chemotaxis from L2-closure moments in kinetic theory of active particles, Discrete Contin. Dyn. Syst. Ser. B 18(4), (2013), 847--863.
  17. A. Bellouquid, J. Calvo, J. Nieto, J. Soler, On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics, J. Stat. Phys., 149(2), (2012), 284--316.
  18. P. Guerrero, J.L. López, J. Montejo-Gámez, J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation, J. Nonlinear Sci. 22(5), (2012), 631--663.
  19. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives, Math. Mod. and Meth. in Appl. Sci. 22(1), (2012), 1130001 (37 pages)
    2
  20. T. Goudon, J. Nieto, O. Sánchez, J. Soler, Vanishing viscosity regimes and non--standard shock relations for semiconductor superlattices models, SIAM J. Appl. Math. 71(1), (2011), 180--199.
  21. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Mod. and Meth. in Appl. Sci., no. 20 (7), (2010), 1179--1207.
    3
  22. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Complexity and mathematical tools toward the modelling of multicellular growing systems, Math. Comput. Modelling, 51, (2010), 441--451.
  23. P. Guerrero J.L. López, J. Nieto, Global H¹ solvability of the 3D logarithmic--Schrödinger equation, Nonlinear Anal. Real World Appl. 11, (2010), 79--87.
  24. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Multicellular biological growing systems: hyperbolic limits towards macroscopic description, Math. Mod. and Meth. in Appl. Sci. Vol. 17, Suppl. (2007), 1675--1692.
  25. J.L. López, J. Nieto, Global solutions of the mean-field, very high temperature Caldeira-Leggett master equation, Quart. Appl. Math. 64(1), (2006), 189--199.
  26. T. Goudon, J. Nieto, F. Poupaud, J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations 213, (2005), 418--442.
  27. J.P. Chehab, A. Cohen, D. Jennequin, J. Nieto, C. Roland, J. Roche, An adaptative particle-in-cell method for the simulation on intense beams using multi-resolution analysis, IRMA Lectures in Mathematics and Theoretical Physics Vol. 7: "Numerical Methods for Hyperbolic and Kinetic Problems", (2005), 29--42.
  28. J.A. Cañizo, J.L. López, J. Nieto, Global L¹ theory and regularity for the 3D nonlinear Wigner-Poisson-Fokker-Planck system, J. Differential Equations 198, (2004), 356--373.
  29. J. Nieto, Hidrodynamical limit for a drift-diffusion system modeling large-populations dynamics, J. Math. Anal. Appl. 291, (2004), 716--726.
  30. J. Nieto, F. Poupaud, J. Soler, About uniqueness of weak solutions to first order quasi-linear equations, Math. Mod. and Meth. in Appl. Sci. 12(11), (2002), 1599--1605.
  31. Progress in Industrial Mathematics at ECMI 2000, Mathematics in Industry, VOL. 1, Springer (2002); (Capítulo) J. Nieto, P. Bechouche, E. Ruiz-Arriola, J. Soler, On a Variational Approach to the Time Evolution of the Mean Field Polaron, pp. 358--364.
  32. J. Nieto, A generalized mean field approach to the polaron, Math. Mod. and Meth. in Appl. Sci.11(9), (2001), 1597--1607.
  33. J. Nieto, F. Poupaud, J. Soler, High-Field Limit for the Vlasov-Poisson-Fokker-Planck System, Archive Rat. Mech. Anal. 158(1), (2001), 29--59.
  34. P. Bechouche, J. Nieto, E. Ruiz-Arriola, J. Soler, On the time evolution of the mean-field polaron, J. Math. Phys. 41(7), (2000), 4293--4312.

Citas externas y autocitas

Cuando un trabajo es citado en otro artículo en el que interviene al menos uno de los autores del artículo original, se considera una autocita. Cuando ninguno de los autores que citan coincide con ninguno de los autores del trabajo citado, se considera una cita externa. Los trabajos listados aquí arriba tienen, al menos, 256 autocitas y 542 citas externas, sumando un total de 798 citas.


Índice h

Es otra medida del impacto científico de las publicaciones de un autor que combina el volumen productivo y su impacto. Si una autor posee un índice h, indica que tiene al menos h publicaciones con al menos h citas.
Mi índice h es 13.


1.2.3. Desde Mayo/Junio de 2020, estos artículos muy citados recibieron suficientes citas para incluirse en el 1% de los mejores artículos del campo académico de Mathematics en función de un umbral de artículos muy citados para el campo y el año de publicación.
Datos de Essential Science IndicatorsSM