Orthogonality in the Hyperbolic Plane

Domingo Gámez¹ domingo@ugr.es

Miguel Pasadas¹ mpasadas@ugr.es

Rafael Pérez¹ rperez@ugr.es

Ceferino Ruiz² ruiz@ugr.es

¹Department of Applied Mathematics, University of Granada, 18071 Granada ²Department of Geometry and Topology, University of Granada, 18071 Granada

1 INTRODUCTION

Constructions which involve the orthogonality are necessary for the resolution of many problems of the plane hyperbolic geometry, such as the construction of the circumference, the horocycles, the hypercycles[4], translations according to a line, Saccheri[6] and Lambert[5] quadrilaterals and others, in the two models of Poincar for the hyperbolic plane: the half(plane § 2 and the unit dies 2 20. unit disc 9 2 [3].

These constructions can be classied in three types[2]:

- 1.- Determination of the orthogonal line to another one given through a point of it.
- 2.- Determination of the unique orthogonal line to a pair of ultraparallel lines.
- 3.- Determination of the orthogonal line to another one given through an outer point

ORTHOGONAL LINE TO ANOTHER ONE GIVEN THROUGH A POINT OF IT

Given a line II determine the orthogonal line to Inthrough a point ⊌ belonging to II

2.1 DETERMINATION IN H²

Let * be the angle determined by the tangent euclidean line to ∏at the point ₩ with the euclidean line \(\sigma = 0\). We can consider two cases.

2.2 DETERMINATION IN D²

Let 8 be as point in II By the Cayley transformation $_{1}$ we construct the line $\underline{\mathbf{T}}=_{1}^{\mathbf{T}}$ $\underline{\mathbf{T}}$ and the point $_{1}^{\mathbf{F}}=_{1}^{\mathbf{T}}$ $\underline{\mathbf{T}}$ $\underline{\mathbf{T}}$ and

Let • be the angle determined by the euclidean tangent line to $\mathfrak T$ at the point $\mathscr E$ with the euclidean line № 0.

We can consider two cases:

ORTHOGONAL LINE TO A PAIR OF ULTRAPARALLEL LINES

Given two ultraparallel lines IIand O, determine the unique orthogonal line to both.

3.1 DETERMINATION IN H²

From the euclidean point of view exist four possibilities of relative position for these two ultraparallel lines. From this, we can obtain the following situations:

3.2 DETERMINATION IN D^2

Let IIand O two ultraparallel lines in § 2. By the Cayley transformation $\mathcal{A}_{\mathbb{P}}$ we construct the lines $\mathbb{P} = \mathcal{A}_{\mathbb{P}}^{1}(\mathbb{I})$ and $\mathbb{Q} = \mathcal{A}_{\mathbb{P}}^{1}(\mathbb{Q})$ in \mathbb{P}^{2} .

Now, in $\mbox{\it P}^{2}$, we construct the unique orthogonal line to \square and \square . Applying \bowtie we obtain the corresponding orthogonal line in \lozenge^2 .

We can obtain the following situations:

ORTHOGONAL LINE TO ANOTHER ONE GIVEN THRUOGH AN OUTER POINT

Given a line ∏and an outer point of it ∅, determine the orthogonal line to IIthrough &

3.1 DETERMINATION IN H2

Let $\mbox{\ \ }$ be the refection of the point $\mbox{\ \ \ }$ respect to the line II The sought orthogonal line is the line through $\mbox{\ \ \ \ }$ and $\mbox{\ \ \ \ \ }$.

3.2 DETERMINATION IN D²

Let Π and $\mathscr E$ a line and an outer point in $\mathscr E^2$, respectively. By the Cayley transformation $\mathscr H$ we construct the line $\mathscr H$ $\mathscr H$ [(Π) and $\mathscr F$ = $\mathscr H$ [($\mathscr E$) in $\mathscr F$ 2.

Now, in $\ensuremath{\,^{\circ}}\xspace^2$, we construct the orthogonal line to Ithrough \mathscr{E} . Applying $\mathscr{A}_{\mathbb{R}}$ we obtain the corresponding orthogonal line in \P^2 .

REMARK

We refer the reader to [3], which presents an electronic tool named Hyperbol (1) whose computational support is Mathematica software. This tool consists of modules that allow us to draw di®erent hyperbolic constructions in Poincare's models for the hyperbolic plane, usually denoted by H 2 and D 2 . Such constructions include reections, rotations, translations, glide re° ections, and the orbits of a point. These isometries and geometric loci act on the hyperbolic plane; and if a euclidean element appears in some representation of this plane, we shall note it in an explicit way

available at http://www.ugr.es/local/ruiz/software.htm

REFERENCES

- H.S.M. Coxeter, Fundamentos de geomet B. Limusa-Wiley, S.A. Mikico, 1971.
 D. Gilmez, Construcciones en Geomet B. Hiperbilica y Teselaciones mediante Grupos NEC Poligonales. Algoritmos de Automatización, PhD Thesis, Granada, 2001.
- [3] D. G¶mez, M. Pasadas, R. P¶rez, C. Ruiz, Hyperbolic Plane Tesselations. Proc-cedings of the VI Journees Zaragoza-Pau de Mathematiques Appliquees et Statis-tique, pp. 257-264, Jaca, Spain, 1999.
- [4] D. G¶mez, M. Pasadas, P¶fez, C. Ruiz, Orbits in the Hyperbolic Plane Proceedings of the VII Journes Zaragoza-Pau de Mathematiques Appliques et Statistique, Jaca, Spain, 2001.
- [5] D. G¶mez, M. Pasadas, R. P¶rez, C. Ruiz, The Lambert quadrilateral and tes-selations in the hyperbolic plane. Int. M ath. J., Vol. 2, pp. 777-795, 2002.
- [6] D. G¶mez, M. Pasadas, R. P¶rez, C. Ruiz, The Saccheri Quadrilateral, Translations and Tesselations in the Hyperbolic Plane (Submitted).