NEC Polygonal groups and tesselations

Domingo Gámez
domingo@ugr.es
Miguel Pasadas
mpasadas@ugr.es
Rafael Pérez
rperez@ugr.es
Ceferino Ruiz
ruiz@ugr.es

Department of Mathematics, University of Granada, 18071 Granada

NECS GROUPS AND FUNDAMENTAL REGIONS

Let X bethe hyperbolic plane with the topology induced by the hyperbolic metric. The model we shall use is the open disc unit of Poincar $\$ D^{2}$. Let $;$ be a subgroup of the group of hyperbolic isometries of $X, I \operatorname{so}(X)$. The action of $;$ on X is the natural application © : $\ddagger £ X i!X$, given by $\left(\left(^{\circ} ; z\right)={ }^{\circ}(z)\right.$. For each $z 2 X$ we denote the set $£=f^{\circ}(z):{ }^{\circ} 2 i g$ as the orbit of z by the action of i upon X. The action of a subgroup on X gives rise to the following relationship: $8 z ; w 2 \times$; z v w, $9^{\circ} 2 i: w={ }^{\circ}(z)$.

This relationship v is an equivalence relation on X, whose equivalence classes are the orbits of the elements of X by the action of i. The quotient set $X=v$ will be designated as $; n X$ and is called the orbit space.

De ${ }^{-}$nition 1 Let i be a subgroup of I so(X). Euclidean Crystallographic Group, if it is discrete (with compact open topology) and the or bit space is compact.

If i is an NEC group, then its rotations have multiple integer angles of $21 / 4=$ n, with n 2 N , and they do not contain limit rotations that is, rotations whose center lies on the in ${ }^{-}$nity line.
The fundament al regions comprise the smallest tile that allow us to tessellate by means of the action of an NEC group. For this purpose we establish the following de- nition.

```
De-nition 2([3]) Let F 1/2 X be closed and i an
NEC group. F is said to be a fundamental re-
gion for i if:
i) for each z 2 X there exists * 2
    i so that }\mp@subsup{}{}{\circ}(z)2\textrm{F
ii) if z 2 F is such that *}(z)2 
    with }\mp@subsup{}{}{\circ}\in1\mathrm{ , then }z;\mp@subsup{}{}{\circ}(z)\mathrm{ are in
    boundary of F
iii) F=Closure(int(F)):
```

It is important to point out that this de ${ }^{-}$nition s an improvement upon those used in [10] and [12], in the sense that we eliminate the cases of pathological regions having isolated points that correspond with other points of the fundamental region under consideration.

TESSELATIONS OF THE HYPERBOLIC PLANE

De-nition 3Let i be a NEC group. A ; \{tesseIlation of the hyper bolic plane X, with the fundamental region F is a set of regions $f F_{i} g_{i 2}$ such $_{S}{ }^{\text {that: }}$
ii) $\operatorname{int}\left(F_{i}\right) \backslash \operatorname{int}\left(F_{j}\right)=$? for $i \in j$
iii) $8 \mathrm{i} 21 ; 9^{\circ} 2 \mathrm{i}: \mathrm{F}_{\mathrm{i}}={ }^{\circ}(\mathrm{F})$.

In the study of subgroups of NEC groups, as well as int he tessellations of X, the following proposition is important:

[^0]> Theorem $1([10])$ Let $;$ be an NEC group. Then, there exists a convex polygon F that constitutes a fundamental region for i.

Theorem 2 Let F be a convex polygon of k sides and interior angles $1 / 4=n_{i}$, with $n_{i} 2 N ; n_{i}=2$, for each $i=1 ; 2 ;: . . ; k$, with vertices P_{i} and sides determined by the segments $P_{i}{ }_{1} P_{i}$ where $P_{0}=$ P_{k}, satisfying ${ }_{i=1}^{k} 1 / 4=n_{i}<\left(\begin{array}{ll}k & 2\end{array}\right) \frac{1 / 4}{4}$. Let $3 / 4$ be the re ${ }^{\circ}$ ection on the line containing the segment $P_{i j}{ }_{1} P_{i}$ for each $i=1 ; 2 ;: .: ; k$. Then the group i generated by the re ections $3 / 4 ; 3 / 2 ; \ldots: ; 3 / k$ (polygonal group) is an NEC group.
In addition, the family $f^{\circ}(F):{ }^{\circ} 2$ ig constitutes a i -tessellation of X

Example 4 We use the Saccheri quadrilateral that is obtained from the union of the Lambert quadrilateral, of the above example, and its re ection with respect to the line that contains the segment of length R. This Saccheri quadrilateral is subjacent in the work of Escher in the Cirkellimiet IV (Circle limit IV), known as Angels and Devils, as it is the union of three consecutive triangles, which contain the - gures appearing in this creation.

TESSELLATIONS IN DE POINCARÉ HALF-PLANE

All the mathematical tools that we have described for D^{2} can be transcribed in the model of the Poincar half-plane denoted by H^{2}. Both models are geometrically equivalent and the interested reader cam - nd this equivalence in [3]. TheHyper bol package, mentioned above, also features drawing tools to work on the half-plane. Their usefulness is evident when we regard some of the works by M.C. Escher based upon this model. Two examples follows:

CONCLUSIONS

We refer the reader to [3], which presents an electronic tool named Hyper bol (${ }^{1}$) whose computational support is M athematica software. This tool consists of modules that allow us to draw di®erent hyperbolic constructions in Poincare's models for the hyperbolic plane, usually denoted by H^{2} and D^{2}. Such constructions include re-- ections, rotations, translations, glide re ${ }^{\circ}$ ections, and the orbits of a point. These isometries and geometric loci act on the hyperbolic plane; and if a euclidean element appears in some representation of this plane, we shall note it in an explicit way.

[^0]: Proposition 1 ([11]) Let $;$ by an NE \in group and i^{0} a subgroup of i with the index $p\left(i: i^{0}=p\right)$. Let Fi^{i} by a fundamental region for i . Then i^{0} has a fundamental region Fi^{i} resulting from the union of p congruent replicas of Fi^{i} and besides $j \mathrm{i} j \phi=\mathrm{j} \mathrm{i}^{0} \mathrm{j}$

 Polygonal groups are those that are generated by re ections in the sides of a polygon. Certain hyperbolic polygons give rise to NEC groups, and the hyperbolic plane is tessellated with them.

 Lemma 1 ([1]) Let $®_{1} ; ®_{2} ; \ldots ; \oplus_{k}$ be real numbers with 0 . $\mathbb{Q}_{\mathrm{i}}<1 / 4$ for each $\mathrm{i}=1 ; 2 ; \ldots ; k$. Then, there exists a convex hyperbolic polyggn F with angles $\mathbb{®}_{1} ; \mathbb{®}_{2} ; \cdots ; \mathbb{®}_{k}$ if, and only if, ${ }_{i=1}^{k} ®_{i}<$ (k ; 2$)^{1 / 4}$

