Análisis Matemático II

Tema 1: Ejercicios resueltos

1. Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{R}_0^+ \to \mathbb{R}$ la función definida por

$$f_n(x) = \frac{\log(1 + nx)}{1 + nx} \quad \forall x \in \mathbb{R}_0^+$$

Fijado un $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de la sucesión $\{f_n\}$ en el intervalo $[0, \rho]$, y en la semirrecta $[\rho, +\infty[$.

Solución

Por la escala de infinitos, sabemos que $\lim_{t \to +\infty} \frac{\log t}{t} = 0$. Por tanto, para $x \in \mathbb{R}^+$, de $\{1 + n x\} \to +\infty$ deducimos que $\{f_n(x)\} \to 0$. Como $f_n(0) = 0$ para todo $n \in \mathbb{N}$, concluimos que $\{f_n\}$ converge puntualmente a cero en \mathbb{R}^+ .

Observamos también que $f_n(x) \geq 0$ para cualesquiera $x \in \mathbb{R}_0^+$ y $n \in \mathbb{N}$, y pasamos ya a estudiar la convergencia uniforme.

Para cada $n \in \mathbb{N}$, la función f_n es derivable en \mathbb{R}_0^+ con

$$f'_n(x) = \frac{n - n \log(1 + n x)}{(1 + n x)^2} \quad \forall x \in \mathbb{R}_0^+$$

Por tanto, para $x \in \mathbb{R}_0^+$ se tiene que $f_n'(x) = 0$ si, y sólo si, x = (e-1)/n. De hecho, para x < (e-1)/n se tiene que $f_n'(x) > 0$, mientras que $f_n'(x) < 0$ para x > (e-1)/n. Deducimos que f_n es creciente en el intervalo [0, (e-1)/n] y decreciente en la semirrecta $[(e-1)/n, +\infty[$.

Fijado $\rho \in \mathbb{R}^+$, tomamos $m \in \mathbb{N}$ con $(e-1)/m < \rho$. Entonces, para $n \geq m$ se tiene también $(e-1)/n < \rho$, luego $[\rho, +\infty[\subset [(e-1)/n, +\infty[$, con lo que f_n es decreciente en la semirrecta $[\rho, +\infty[$. Por tanto, para $n \geq m$ se tiene que

$$|f_n(x)| = f_n(x) \le f_n(\rho) \quad \forall x \in [\rho, +\infty[$$

En vista de la convergencia puntual, sabemos que $\{f_n(\rho)\}\to 0$, luego de la desigualdad anterior se deduce que $\{f_n\}$ converge uniformemente en la semirrecta $[\rho, +\infty[$.

Por otra parte, observamos que $f_n((e-1)/n) = 1$ para todo $n \in \mathbb{N}$. Definimos entonces $x_n = (e-1)/n$ para $n \geq m$ y, por ejemplo, $x_n = 0$ para n < m, obteniendo una sucesión $\{x_n\}$ de puntos del intervalo $[0, \rho]$ que verifica $f_n(x_n) = 1$ para $n \geq m$. Por tanto, la sucesión $\{f_n(x_n)\}$ no converge a cero, luego $\{f_n\}$ no converge uniformemente en $[0, \rho]$.

2. Probar que la sucesión $\{g_n\}$ converge uniformemente en \mathbb{R} , siendo

$$g_n(x) = \sqrt[n]{1 + x^{2n}} \qquad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Solución

Para $n \in \mathbb{N}$ y $x \in \mathbb{R}$ con $|x| \leq 1$ se tiene que $1 \leq 1 + x^{2n} \leq 2$, de donde obtenemos $1 \leq g_n(x) \leq \sqrt[n]{2}$. Como $\left\{\sqrt[n]{2}\right\} \to 1$, deducimos que $\left\{g_n(x)\right\} \to 1$.

Por otra parte, para $x \in \mathbb{R}$ con |x| > 1, observamos que

$$g_n(x) = x^2 \sqrt[n]{\frac{1}{x^{2n}} + 1} \qquad \forall n \in \mathbb{N}$$

y como $\{1/x^{2n}\} \to 0$, deducimos que $\{g_n(x)\} \to x^2$.

En resumen, la sucesión $\{g_n\}$ converge puntualmente en \mathbb{R} a la función $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = \max\{1, x^2\}$ para todo $x \in \mathbb{R}$. Además, observamos claramente que $g_n(x) \geq g(x)$ para cualesquiera $x \in \mathbb{R}$ y $n \in \mathbb{N}$.

Para la convergencia uniforme, fijado $n \in \mathbb{N}$, usaremos la función $\varphi_n : \mathbb{R}^+ \to \mathbb{R}$ dada por $\varphi_n(t) = t^{1/n}$ para todo $t \in \mathbb{R}^+$, que es derivable con

$$\varphi'_n(t) = \frac{1}{n t^{(n-1)/n}} \quad \forall t \in \mathbb{R}^+$$

Para $x \in \mathbb{R}$ con $|x| \leq 1$, aplicamos a φ_n el teorema del valor medio, en el intervalo $[1, 1 + x^{2n}]$, obteniendo que existe $t \in \mathbb{R}$, con $1 \leq t \leq 1 + x^{2n}$ tal que

$$g_n(x) - g(x) = \sqrt[n]{1 + x^{2n}} - 1 = \varphi_n(1 + x^{2n}) - \varphi_n(1) = \frac{x^{2n}}{n t^{(n-1)/n}}$$

Como $x^{2n} \leq 1$ y $t \geq 1$, deducimos que

$$g_n(x) - g(x) \le 1/n \qquad \forall x \in [-1, 1]$$

Por otra parte, para $x \in \mathbb{R}$ con |x| > 1, usamos el intervalo $[x^{2n}, 1 + x^{2n}]$, obteniendo $s \in \mathbb{R}$ con $x^{2n} < s < 1 + x^{2n}$ tal que

$$g_n(x) - g(x) = \sqrt[n]{1 + x^{2n}} - x^2 = \varphi_n(1 + x^{2n}) - \varphi_n(x^{2n}) = \frac{1}{n \cdot s^{(n-1)/n}}$$

De nuevo tenemos $s \geq 1$ y deducimos que

$$g_n(x) - g(x) \le 1/n \qquad \forall x \in \mathbb{R} \setminus [-1, 1]$$

En resumen, hemos probado que

$$|g_n(x) - g(x)| = g_n(x) - g(x) \le 1/n$$
 $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}$

de donde se deduce que $\{g_n\}$ converge a g uniformemente en \mathbb{R} .

3. Sea $\{h_n\}$ la sucesión de funciones de \mathbb{R}^2 en \mathbb{R} definida por:

$$h_n(x,y) = \frac{xy}{n^2 + x^2 + y^2} \qquad \forall (x,y) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}$$

Probar que $\{h_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R}^2 , pero no converge uniformemente en \mathbb{R}^2 .

Solución

Fijado $(x,y) \in \mathbb{R}^2$, es claro que $\{h_n(x,y)\} \to 0$, luego $\{h_n\}$ converge a cero puntualmente en \mathbb{R}^2 .

Si A es un subconjunto acotado de \mathbb{R}^2 , existe una constante $M \in \mathbb{R}^+$ verificando que máx $\big\{\,|\,x\,|\,,\,|\,y\,|\,\big\}\,\leq\,M$ para todo $(x,y)\in A$. Tenemos entonces que

$$|h_n(x,y)| = \frac{|xy|}{n^2 + x^2 + y^2} \le \frac{M^2}{n^2} \quad \forall (x,y) \in A, \ \forall n \in \mathbb{N}$$

Como $\{M^2/n^2\} \to 0$, deducimos que $\{h_n\}$ converge a cero, uniformemente en A.

Tomando $x_n = y_n = n$ para todo $n \in \mathbb{N}$, obtenemos una sucesión $\{(x_n, y_n)\}$ de puntos de \mathbb{R}^2 , tal que $h_n(x_n, y_n) = 1/3$ para todo $n \in \mathbb{N}$. Como $\{h_n(x_n, y_n)\}$ no converge a cero, deducimos que $\{h_n\}$ no converge uniformemente en \mathbb{R}^2 .