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Teoŕıa Cuántica de Campos

aplicada a la F́ısica de Part́ıculas

Roberto Pittau (Coordinador)

Francisco del Águila Giménez
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Introducción

En el curso de Teoŕıa Cuántica de Campos se introducen conceptos f́ısicos y matemáticos
complejos, como Integrales Funcionales, Funciones de Green, Diagramas y Reglas de
Feynman, el Grupo de Renormalización o Libertad Asintótica.

Por otro lado, estos mismos conceptos están en la base de la asignatura de F́ısica de
Part́ıculas y su profunda comprensión es imprescindible para entender los fenómenos
f́ısicos que se estudian en el curso correspondiente.

Para los estudiantes de uno u otro curso resulta muy útil ver como el formalismo de
la Teoŕıa Cuántica de Campos tiene una aplicación inmediata en el marco de la F́ısica
de Part́ıculas. En concreto, es útil que el alumnado aprenda a utilizar los conceptos
complejos de la Teoŕıa Cuántica de Campos en casos muy prácticos, es decir, a través
del uso de herramientas pensadas para solucionar problemas concretos en F́ısica de
Part́ıculas.

En este sentido, la F́ısica de Part́ıculas es un lugar natural para que los estudiantes
utilicen lo que van aprendiendo en el curso de Teoŕıa Cuántica de Campos.

Entonces, el primer objetivo de este Proyecto de Innovación docente es construir un
puente entre los dos cursos, para que cada asignatura pueda sacar el máximo provecho
de lo que se estudia en la otra, en el marco de una sinergia común.

Se pretende alcanzar este primer objetivo a través de una serie de problemas y de
actividades prácticas que tienen como finalidad el aprendizaje de la utilización de los
conceptos básicos y de los programas y herramientas informáticas por parte de los
estudiantes de las dos asignaturas. Con ellas podrán efectuar experimentos virtuales,
es decir simulaciones de procesos f́ısicos que obedecen a las leyes estudiadas en el
curso de F́ısica de Part́ıculas y al formalismo matemático de la Teoŕıa Cuántica de
Campos.

También se pretende que aprendan, en el mismo ciclo de prácticas, los fundamentos
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básicos de las técnicas de simulación numérica empleadas por los códigos que van
utilizando.

Por otro lado, es útil que los estudiantes vean como todo lo que van aprendiendo en las
dos asignaturas se relaciona directamente con temas de investigación de vanguardia
en el experimento más grande y sofisticado construido por el hombre, es decir el Large
Hadron Collider (LHC), que se acaba de inaugurar en el CERN en Ginebra, Suiza.

El segundo objetivo de este Proyecto es, además, sacar provecho del momento histórico
particular que se vive en el campo de la F́ısica de Part́ıculas, para poner a los es-
tudiantes en contacto directo con las actividades más avanzadas en el campo de la
investigación teórica y experimental relacionadas con las dos asignaturas.

En efecto, estamos profundamente convencidos de que un est́ımulo tan grande como
el seguimiento de los desarrollos a que dé lugar el LHC como pretendemos con este
segundo objetivo del proyecto, pueda motivar y facilitar en gran medida el proceso
de aprendizaje de conceptos complejos que, sin esta comparación con la realidad,
tendŕıan tan sólo el mero valor de fórmulas escritas en los libros.

Este segundo objetivo se alcanzará a través de una serie de conferencias y ponencias
de expertos que pongan la Teoŕıa Cuántica de Campos y la F́ısica de Part́ıculas en el
marco de la investigación básica contemporánea.

En resumen, el presente Proyecto de Innovación docente pretende alcanzar dos obje-
tivos distintos:

1) Aplicación inmediata de los conceptos básicos de la Teoŕıa Cuántica de Campos
a la F́ısica de Part́ıculas, a través de problemas prácticos utilizando también
herramientas y programas de simulación.

2) Ejemplificar lo aprendido en las asignaturas de Teoŕıa Cuántica de Campos y de
F́ısica de Part́ıculas en el contexto de un proyecto de investigación de vanguardia
como el LHC y otros experimentos actuales de f́ısica de part́ıculas.

Los dos Objetivos se han alcanzado a través de la preparación de los problemas
prácticos que aqúı presentamos. 1 En algunos de ellos se introduce el alumnado al
uso de algunas de las herramientas más utilizadas en la simulación de problemas en
f́ısica de part́ıculas [1, 2], explicando también los fundamentos básicos de las técnicas
empleadas por los programas.

1Los problemas con ∗ tienen que ser solucionados por los alumnos, utilizando lo aprendido.
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Además, cada año académico se organizará un ciclo de ponencias, a nivel básico, de
expertos nacionales e internacionales en la f́ısica de LHC (John Ellis y Roger Bailey
en 2009).

Para el desarrollo de todas las actividades previstas en este Proyecto, se propone que
los estudiantes utilicen 1.5 de los créditos de prácticas del curso de Teoŕıa Cuántica
de Campos y 1 crédito de prácticas del curso de F́ısica de Part́ıculas, por un total de
25 horas (en su formulación actual, el curso de Teoŕıa Cuántica de Campos tiene 5
créditos de Teoŕıa y 2.5 de prácticas, mientras el de F́ısica de Part́ıculas 4 créditos de
Teoŕıa y 2 de Prácticas).

Las 25 horas serán aśı repartidas entre las varias actividades del proyecto:

a) Prácticas para familiarizar el alumnado con los programas y los algoritmos que
tienen que utilizar: 6h

b) Trabajo individual o en grupo para solucionar problemas sencillos, utilizando
los conceptos explicados: 16h

c) Asistencia a las ponencias de los expertos en de F́ısica del LHC: 3h.

Finalmente, el material que aqúı se presenta está en Inglés. En efecto, también el
idioma se puede considerar, en el fondo, como una herramienta que el alumnado tiene
que aprender y utilizar, especialmente en el ámbito cientifico.



6



Contents

1 Classical fields 15

1.1 Problem∗: The principle of least action . . . . . . . . . . . . . . . . . 16

1.2 Problem: Adding a four-divergence to L . . . . . . . . . . . . . . . . 16

1.3 Problem: The Klein-Gordon and Dirac equations . . . . . . . . . . . 17

1.4 Problem∗: The conjugate Dirac equation . . . . . . . . . . . . . . . . 18

2 Kinematics and special relativity 19

2.1 Problem: Momentum and speed of a particle . . . . . . . . . . . . . 19

2.2 Problem: Energy-momentum conservation . . . . . . . . . . . . . . . 20

2.3 Problem: Compton Scattering with e− at rest . . . . . . . . . . . . . 21

2.4 Problem: Mandelstam variables . . . . . . . . . . . . . . . . . . . . . 23

2.5 Problem: Compton Scattering with e− not at rest . . . . . . . . . . . 25

2.6 Problem∗: The Lorentz transformations . . . . . . . . . . . . . . . . 26

3 Trace theorems and γ matrices 27

3.1 Traces of γ matrices in 4 dimensions . . . . . . . . . . . . . . . . . . 27

3.2 Identities in 4 dimensions and other useful relations . . . . . . . . . . 28

3.3 Problem∗: Gamma Matrices . . . . . . . . . . . . . . . . . . . . . . . 28

7



8 CONTENTS

3.4 Problem∗: An explicit representation for the γ matrices . . . . . . . . 28

3.5 Problem∗: Complex conjugation of the γ matrices . . . . . . . . . . . 29

4 Feynman rules 31

4.1 Problem: The scalar and fermion propagators . . . . . . . . . . . . . 32

4.2 Problem∗: Interactions involving scalars . . . . . . . . . . . . . . . . 33

4.3 Tree-level electroweak interactions between two massless fermions . . 33

4.4 Problem: The gauge boson propagators . . . . . . . . . . . . . . . . 34

4.5 Problem∗: The fermion-fermion-boson vertices . . . . . . . . . . . . . 36

4.6 Problem: The QCD Feynman rules . . . . . . . . . . . . . . . . . . . 37

5 Conservation laws and symmetries 39
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Chapter 1

Classical fields

In point mechanics, Physics is described by dinamical variables

qα(t) (1.1)

depending on the time t, whose equations of motions are fully determined once one
knows the Lagrangian L(qα, q̇α) of the system

d

dt

∂L
∂q̇α
− ∂L
∂qα

= 0. (1.2)

In local field theory, at each point x = (x0, ~x) of the four-dimensional spacetime one
associates one or more dynamical variables Φi(x) called fields obeying the equivalent
of the Lagrange equations in (1.2)

∂µ
∂L

∂(∂µΦi)
− ∂L
∂Φi

= 0, (1.3)

where L(Φi, ∂µΦi) is the Lagrange density (often simply called Lagrangian) describing
the field theory. Therefore, the formal transition between point mechanics and local
field theory is

qα(t)→ Φi(x). (1.4)

The action S is defined as the integral of L over all the four-dimensional space

S =

∫

d4xL(Φi, ∂µΦi). (1.5)

15



16 CHAPTER 1. CLASSICAL FIELDS

1.1 Problem∗: The principle of least action

Arrive at (1.3) by requiring δS = 0.

1.2 Problem: Adding a four-divergence to L

Prove explicitly that

L′ = L+∆L, (1.6)

where ∆L = ∂βG
β({Φk}) is a four-divergence of an arbitrary function of the fields, is

also a solution of (1.3).

Solution

Inserting L′ in the l.h.s. of (1.3) gives

F ≡ ∂µ
∂∆L
∂(∂µΦi)

− ∂∆L
∂Φi

. (1.7)

Hence, we have to show that F = 0. By rewriting

∆L =
∂Gβ

∂Φj

(∂βΦj), (1.8)

one computes

∂∆L
∂(∂µΦi)

=
∂Gµ

∂Φi

. (1.9)

Inserting this in (1.7) and interchanging the order of the derivatives gives F = 0.
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1.3 Problem: The Klein-Gordon and Dirac equa-

tions

Show that the Lagrangians

L1 =
1

2
(∂µΦ)(∂

µΦ)− 1

2
m2Φ2,

L2 = (∂µφ
∗)(∂µφ)−m2φ∗φ,

L3 = Ψ̄(i/∂ −m)Ψ with Ψ̄ = Ψ†γ0, (1.10)

give the Klein-Gordon, the complex Klein-Gordon and the Dirac equation, respec-
tively.

Solution

One computes

∂L1

∂(∂µΦ)
= ∂µΦ,

∂L1

∂Φ
= −m2Φ, (1.11)

so that (1.3) gives (∂µ∂
µ +m2)Φ = 0. Similarly

∂L2

∂(∂µφ)
= ∂µφ∗,

∂L2

∂φ
= −m2φ∗,

∂L2

∂(∂µφ∗)
= ∂µφ,

∂L2

∂φ∗ = −m2φ (1.12)

give the two equations (∂µ∂
µ + m2)φ∗ = (∂µ∂

µ + m2)φ = 0. Finally, by using the
fact that four-divergences do not change the Physics content of the Lagrangian, one
rewrites

L3 = −iγµ(∂µΨ̄)Ψ−mΨ̄Ψ, (1.13)

so that

∂L3

∂(∂µΨ̄)
= −iγµΨ,

∂L3

∂Ψ̄
= −mΨ (1.14)

which gives (i/∂ −m)Ψ = 0.
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1.4 Problem∗: The conjugate Dirac equation

Show that taking the partial derivatives of L3 in (1.10) with respect to ∂µΨ and Ψ
one arrives at the conjugate transpose of the Dirac equation.

[Hint: use the result of problem 3.5.]



Chapter 2

Kinematics and special relativity

In Particle Physics and Quantum Field Theory, a fundamental role is played by special
relativity, in the sense that it provides a common framework for both disciplines.
In this chapter we recall the basic needed notions with the help of a few practical
problems.

2.1 Problem: Momentum and speed of a particle

An electron has a total energy Etot = 5Equiet. Calculate its momentum and its speed.

Solution

One has

Etot =
√

p2 +m2,

Equiet =m = 0.5 MeV,
√

p2 +m2 = 5m⇒ p2 +m2 = 25m2,

p2 = 24m2 ⇒ p =
√
24m← momentum. (2.1)

Furthermore

p = βEtot ⇒ β ≡ v

c
=

p

Etot

=
p

5m
=

√
24m

5m
=

2
√
6

5
∼ 0.98, (2.2)

19



20 CHAPTER 2. KINEMATICS AND SPECIAL RELATIVITY

so that the speed of the electron is 98% of the speed of light.

2.2 Problem: Energy-momentum conservation

Why the process e− → e−γ doesn’t occur?

Solution

We write the process as follows

e−(pi)→ e−(pf) + γ(k).

Then, in the system where the initial state electron has zero speed, one has the
following kinematics

pi = (m,~0)

pf = (Ef , ~pf)

k = (k0, ~k), (2.3)

together with the on-shell constraints:

m2 = E2
f − |~pf |2

0 = k20 − ~k2. (2.4)

From momentum conservation it should then happen

~0 = ~pf + ~k ⇒ |~pf | = |~k| = k0. (2.5)

Now we can calculate the total energy in the final state by putting together all the
previous results

Ef + k0 =
√

|~pf |2 +m2 + |~pf | > m. (2.6)

On the other hand, by directly equating the energy components in (2.3), it should
also be Ef + k0 = m, in contradiction with (2.6). As a consequence, the process
e− → e−γ cannot occur because one cannot simultaneously satisfy energy-momentum
conservation and on-shell constraints.
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2.3 Problem: Compton Scattering with e− at rest

Show that in the Compton scattering, namely in the collision of γ against e− at rest

∆λ =
2h

me

sin2 θ

2
.

(Use a system with c=1)

Solution

The process can be written as follows

γ(p) + e−(q)→ γ(p1) + e−(q1)

x

y

e−
p

p1

θ

ϕ

The kinematics is given by







pµ = (Ep, p, 0, 0)

qµ = (Eq, 0, 0, 0)

pµ1 = (E
′
p, p1cosθ, p1sinθ, 0)

qµ1 = (E
′
q, q1cosϕ, q1sinϕ, 0)

.

From energy-momentum conservation one obtains
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Ep + Eq = E ′
p + E ′

q

p = p1cosθ + q1cosϕ

p1sinθ = −q1sinϕ

. (2.7)

By eliminating ϕ from the last two equations one obtains







q21cosϕ
2 = (p− p1cosθ)2

q21sinϕ
2 = p21sin

2θ
⇒ (2.8)

q21 = p2 + p21cos
2θ − 2pp1cosθ + p21sin

2θ ⇒ (2.9)

q21 = p2 + p21 − 2pp1cosθ. (2.10)

On the other hand, from the first of eqs. (2.7) one obtains (m ≡ me)

p+m = p1 +
√

q21 +m2 ⇒

p− p1 +m =
√

q21 +m2 ⇒
q21 +m2 = p2 + p21 +m2 − 2pp1 + 2pm− 2mp1, (2.11)

then

q21 = p2 + p21 − 2pp1 + 2pm− 2mp1. (2.12)

Equating eqs. (2.10) and (2.12) gives

−2pp1cosθ = −2pp1 − 2m(p1 − p)⇒
pp1(1− cosθ) = m(p− p1)⇒

2pp1sin
2 θ

2
= m(p− p1). (2.13)

By remembering that

p =
h

λ
and p1 =

h

λ′
(2.14)
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one obtains

2h2
1

λλ′
sin2 θ

2
= mh(

1

λ
− 1

λ′
) = mh

λ′ − λ
λλ′

= mh
∆λ

λλ′
, (2.15)

from which the desired result follows

∆λ =
2h

m
sin2 θ

2
. (2.16)

2.4 Problem: Mandelstam variables

Given a 2→ 2 process
pA + pB → pC + pD,

the Mandelstam variables are defined as

s = (pA + pB)
2,

t = (pA − pC)2,
u = (pA − pD)2. (2.17)

a) Show that s+ t+ u =
∑

im
2
i ;

b) Express the total energy of the collision in the center-of-mass frame;

c) Compute the energy of particle A in the Laboratory system, where particle B
is at rest;

d) Express the energy of particle A in the center-of-mass frame.

Solution

a) From the definition of the Mandelstam variables one computes

s = (pA + pB)
2 = m2

A +m2
B + 2pA · pB,

t = (pA − pC)2 = m2
A +m2

C − 2pA · pC ,
u = (pA − pD)2 = m2

A +m2
D − 2pA · pD.

Therefore

s+ t + u = 3m2
A +m2

B +m2
C +m2

D − 2pA · (pD + pC − pB). (2.18)
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By using in the previous equation energy-momentum conservation, namely pD+
pC − pB = pA, one immediately obtains the desired results

s+ t+ u = m2
A +m2

B +m2
C +m2

D. (2.19)

b) By definition of center-of-mass frame

~pA + ~pB = 0⇒ s = (EA + EB,~0)
2 = (ET ,~0)

2.

Thus, s = E2
T ⇒ ET =

√
s.

c) If B is at rest

pµB = (mB,~0)⇒ pA · pB = EAmB ⇒ s = m2
A +m2

B + 2EAmB.

Therefore, EA =
s−m2

A −m2
B

2mB

.

d) In the center-of-mass frame ~pA + ~pB = 0⇒ ~pA = −~pB ⇒ |~pA| = |~pB| = |~p| = p.
Thus

m2
A = E2

A − p2
m2

B = E2
B − p2

⇒
{
EA =

√

m2
A + p2

EB =
√

m2
B + p2.

On the other hand

s = (EA + EB,~0)
2 = (EA + EB)

2 = m2
A +m2

B + 2p2 + 2
√

(m2
A + p2)(m2

B + p2)⇒

s−m2
A −m2

B − 2p2

2
=
√

(m2
A + p2)(m2

B + p2).

Therefore

1

4
[s2 +m4

A +m4
B + 4p4 − 2sm2

A − 2sm2
B − 4sp2 + 2m2

Am
2
B + 4m2

Ap
2 + 4m2

Bp
2]

= m2
Am

2
B + p4 +m2

Ap
2 +m2

Bp
2

⇒ s2 +m4
A +m4

B − 2sm2
A − 2sm2

B − 4sp2 − 2m2
Am

2
B = 0

⇒ p =
1

2
√
s
λ

1
2 (s,m2

A, m
2
B).

This gives

EA =

{

m2
A +

1

4s
[s2 +m4

A +m4
B − 2sm2

A − 2sm2
B − 2m2

Am
2
B]

} 1
2

=
1

2
√
s
{4sm2

A + s2 +m4
A +m4

B − 2sm2
A − 2sm2

B − 2m2
Am

2
B}

1
2

=
1

2
√
s
(s+m2

A −m2
B).
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2.5 Problem: Compton Scattering with e− not at

rest

Show that, in the case where initial electron is moving with momentum q along x,
the formula reads

∆λ =
2λ(p+ q)

Eq − q
sin2 θ

2
.

Solution

γ(p) + e−(q)→ γ(p1) + e−(q1)







Ep + Eq = E ′
p + E ′

q

p+ q = p1cosθ + q1cosϕ

p1sinθ = −q1sinϕ

⇒







q1cosϕ = p + q − p1cosθ

q1sinϕ = −p1sinθ
⇒

q21 = p2 + q2 + p21 + 2pq − 2pp1cosθ − 2qp1cosθ. (2.20)

On the other hand, from energy conservation one obtains

p+
√

m2 + q2 = p1 +
√

m2 + q1 ⇒
(p− p1) + Eq =

√

m2 + q2 ⇒
p2 + p21 − 2pp1 + q2 +m2 + 2Eq(p− p1) = m2 + q21. (2.21)

Therefore

q21 = p2 + p21 − 2pp1 + 2Eq(p− p1) + q2. (2.22)

Equating eqs. (2.20) and (2.22) gives

p2 + q2 + p21 + 2pq − 2pp1cosθ − 2qp1cosθ = p2 + q2 + p21 − 2pp1 + 2Eq(p− p1)⇒
pq − (p+ q)p1cosθ = Eq(p− p1)− pp1 ⇒

pp1 + pq − (p+ q)p1cosθ = Eq(p− p1). (2.23)
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By adding and subtracting the quantity qp1 in the l.h.s. of the previous equation,
one obtains the desired result

p1(p+ q)(1− cosθ) + q(p− p1)−Eq(p− p1) = 0⇒

2p1(p+ q)sin2 θ

2
= (p− p1)(Eq − q)⇒

(p− p1) =
2p1(p+ q)sin2 θ

2
Eq − q

⇒

h(
λ′ − λ
λλ′

) =
2h

λ′
(p+ q)

Eq − q
sin2 θ

2
⇒

∆λ = 2λ
p+ q

Eq − q
sin2 θ

2
. (2.24)

2.6 Problem∗: The Lorentz transformations

Write down the Lorentz transformations between two inertial frames moving with rel-
ative speed v along the z axis. How a generic 4-vectors pµ in one frame is transformed
in the other frame? If p2 ≡ s > 0, show that is it always possible to find a frame in
which

p = (
√
s, 0, 0, 0). (2.25)

Write down explicitly the corresponding Lorentz transformation.



Chapter 3

Trace theorems and γ matrices

When dealing with fermions some properties of the gamma matrices are necessary.
We review them here and present a few problems on the subject.

3.1 Traces of γ matrices in 4 dimensions

1. Tr {I} = 4.

2. Tr {γ5} = 0, where γ5 = iγ0γ1γ2γ3.

3. A trace of an odd number of γ′s vanishes.

4. Tr {/a/b} = 4(a · b).

5. Tr {γ5/a/b} = 0.

6. Tr {/a/b/c/d} = 4 [(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)].

7. Tr {γµγνγλγσγ5} = 4iǫµνλσ = −4iǫµνλσ ,
where ǫµνλσ = 1 when (µ, ν, λ, σ) is an even permutation of (0, 1, 2, 3), −1 for
an odd permutation, 0 otherwise.

8. ǫµνρσǫ
µν
αβ = −2 (gραgσβ − gρβgσα) .

27
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3.2 Identities in 4 dimensions and other useful re-

lations

1. γµγ
µ = 4.

2. γµ/aγ
µ = −2/a.

3. γµ/a/bγ
µ = 4a · b.

4. γµ/a/b/cγ
µ = −2/c/b/a.

5. γµ/a1/a2 . . . /a2n−1γ
µ = −2(/a2n−1 . . . /a2/a1).

3.3 Problem∗: Gamma Matrices

With the help of the fundamental anticommutation relation

{γµγν} = 2 gµν (3.1)

prove all the identities in the previous sections.

3.4 Problem∗: An explicit representation for the γ

matrices

By using the properties of the Pauli matrices, prove that a possible explicit represen-
tation of the γ matrices is given by

γ0 =

(
0 1
1 0

)

, γi =

(
0 σi

−σi 0

)

, γ5 = iγ0γ1γ2γ3, (3.2)

where

1 =

(
1 0
0 1

)

. (3.3)
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3.5 Problem∗: Complex conjugation of the γ ma-

trices

By using the explicit representation in (3.2) show that

γ0(γµ)†γ0 = γµ. (3.4)
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Chapter 4

Feynman rules

In this Chapter we derive the Feynman rules needed to perform the calculations
presented in the following sections.

A Lagrangian L involving complex fields {φ∗
i1
, φ∗

i2
, . . .}, {φim , φim+1, . . .} and real fields

{Φin , . . .}

L = αi1i2...({∂µiℓ})φ
∗
i1
(x) · · ·φim(x) · · ·Φin(x) · · · (4.1)

produces a vertex in the momentum-space defined as [3]

. . .
...

..
..

i1, k1

i2, k2

im, km

in, kn
= i

∑

{1...m−1}

∑

{m...n−1}

∑

{n...}
(−1)P α̃i1i2...({−ikµiℓ}).

The indices of the fields stand for any kind of index, such as Lorentz, spin and isospin,
and α̃i1i2...({−ikµiℓ}) is the Fourier transform of αi1i2...({∂µiℓ}). The momenta kj are
incoming and each of the derivatives in the set {∂µiℓ}, acting on the ithℓ field, is replaced
by −i times the momentum of the field. The sums are over the permutations of the
indicated indices and (−1)P is only relevant if several fermion fields occur: each
fermion(antifermion) is taken to anticommute with any other fermion(antifermion).
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The quadratic part of L defines a 2-point vertex. The propagator is defined to be
minus the inverse of such a 2-point vertex.

4.1 Problem: The scalar and fermion propagators

Derive the propagators P1, P2 and P3 from the three Lagrangians in (1.10).

Solution

The 2-point vertex one reads from L1 is

k −k
• =

i

2

[
(−ikµ)(ikµ) + (ikµ)(−ikµ)−m2 −m2

]
= i(k2 −m2) = V1.

Therefore

P1 = −
1

V1
=

i

k2 −m2
. (4.2)

The 2-point vertex produced by L2 is

−k k

• = i
[
− i(−kµ)(−ikµ)−m2

]
= i(k2 −m2) = V2.

Thus

P2 = −
1

V2
=

i

k2 −m2
. (4.3)

Finally, rewriting L3 in components gives

L3 = Ψ̄i1(i/∂ −m)i1imΨim , (4.4)

so that 1

1 Note that Ψ̄i1 is used instead of Ψ†
i1
. However, this still produces the correct result if Ψ† is

replaced by Ψ̄ also in the interaction vertices [3].
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−k k

Ψ̄i1 Ψim• = i(/k −m)i1im = (V3)i1im.

and

P3 = −(V3)−1 =
i

/k −m. (4.5)

Note that k is the momentum in the direction of the fermion arrow.

4.2 Problem∗: Interactions involving scalars

Show that the interaction Lagrangian

LINT = − g

n1!n1!n2!
(φ∗(x)φ(x))n1Φ(x)n2 (4.6)

gives the interaction vertex VINT = −ig.

4.3 Tree-level electroweak interactions between two

massless fermions

The part of the Standard Model Lagrangian needed to study electroweak interactions
between two massless fermions at the tree-level is as follows

L̃SM = LQED

INT + LEW

INT + LYM,A + L(2)

YM,Z + L(2)

YM,W + LGF,A + L(2)

GF,Z + L(2)

GF,W

+
∑

f

f̄j(i/∂)fj +M2
WW

+αW−
α +

M2
Z

2
ZαZα. (4.7)

As a matter of notation, the tilde on LSM indicates that only the relevant terms are
included. Furthermore, the superscript (2) means that only the terms quadratic in the
massive gauge boson fields are considered. The last three mass terms in the second
line are assumed to be generated by the Higgs mechanism. The interaction terms
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read

LQED

INT = −eAα

∑

f

Qf f̄jγ
αfj , e ≡ gsθ,

LEW

INT = − g

2cθ
Zα

∑

f

f̄jγ
α(vf + afγ5)fj −

g

2
√
2
W+

α

∑

f

2I3f + 1

2
f̄jγ

α(1− γ5)f ′
j

− g

2
√
2
W−

α

∑

f

1− 2I3f
2

f̄jγ
α(1− γ5)f ′

j. (4.8)

The photon and the massive gauge boson fields are denoted by Aα, Zα and W±
α ,

respectively. The spinor associated with a fermion f with color j is denoted by fj,
with the convention that j = 1 ÷ 3 for quarks and j = 1 for leptons. The sum runs
over all fermions and f ′ is the isospin partner of f in the limit of diagonal CKM
quark-mixing matrix. The vector and axial couplings are

vf = I3f − 2s2θQf , af = −I3f , (4.9)

where I3f is the third isospin component, Qf the electric charge and sθ (cθ) is the
sine (cosine) of the weak mixing angle defined by the relation

M2
Z =

M2
W

c2θ
. (4.10)

The Yang-Mills parts are

LYM,A = −1
4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ),

L(2)

YM,Z = −
1

4
(∂µZν − ∂νZµ)(∂

µZν − ∂νZµ),

L(2)

YM,W = −1
2
(∂µW

+
ν − ∂νW+

µ )(∂µW−ν − ∂νW−µ). (4.11)

Finally, the gauge fixing terms read

LGF,A = −1
2
(∂µAµ)

2,

L(2)

GF,Z
= −1

2
(∂µZµ)

2,

L(2)

GF,W
= −(∂µW+

µ )(∂νW−
ν ). (4.12)

4.4 Problem: The gauge boson propagators

Derive from L̃SM the propagators of the A, W and Z bosons.



4.4. PROBLEM: THE GAUGE BOSON PROPAGATORS 35

Solution

We start with the photon. LYM,A is the gauge invariant kinetic term of the A field. It
can be rewritten as

LYM,A = −1
2

[
(∂αAν)(∂

αAµ)gνµ − (∂µAν)(∂
νAµ)

]
, (4.13)

which gives the 2-point vertex

p −p

Aν Aµ

• = −i(p2gνµ − pνpµ) = (VYM,A)
ν
µ.

The matrix (VYM,A)
ν
µ has 0 as an eigenvalue, pµ(VYM,A)

ν
µ = pν(VYM,A)

ν
µ = 0. Hence,

it does not have an inverse. 2 This is why one needs to introduce in L̃SM the gauge
fixing term LGF,A, which gives an additional 2-point vertex

(VGF,A)
ν

µ = −ipνpµ. (4.14)

Adding the two contributions gives the matrix

(VA)
ν

µ = (VYM,A)
ν

µ + (VGF,A)
ν

µ = −ip2gνµ, (4.15)

whose inverse is igµρ/p2. Thus, the photon propagator reads

= −igµν
1

p2
.

A
µ ν

p

In an analogous way, adding also the mass terms in the second line of (4.7), one
derives the W and Z propagators 3

= −igµν
1

p2 −M2
W

,
W

µ ν

p (4.16)

= −igµν
1

p2 −M2
Z

.
Z

µ ν

p (4.17)
2Prove explicitly that one cannot find two constants C1,2 such that (VYM,A)

ν

µ (C1g
µρ + C2p

µpρ) =
gνρ.

3In this case a ghost contribution has to be included as well, that is omitted in (4.7) because it
does not contribute at the tree-level.
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4.5 Problem∗: The fermion-fermion-boson vertices

Derive from L̃SM all possible interaction vertices between gauge bosons and fermions.

Solution

As stated in footnote 1, one can replace Ψ† by Ψ̄ in the vertices. This gives

Aµ

= −igsθQfγµδjk,

f, k

f̄ , j

Wµ

= −ig 1

2
√
2
γµ(1− γ5)δjk,

f ′, k

f̄ , j

Zµ

=
−ig
2cθ

γµ(vf + afγ5)δjk,

f, k

f̄ , j

where j and k are color indices.
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4.6 Problem: The QCD Feynman rules

Derive the full set of QCD Feynman rules from the QCD Lagrangian

LQCD = LINV + LGF + LGhost, (4.18)

where the various pieces read as follows

LINV = −1
4
F a
µνF

µνa + Ψ̄j

(
i /Djk −mδjk

)
Ψk (4.19)

with

F a
µν = ∂µG

a
ν − ∂νGa

µ + gcabcGb
νG

c
µ and Dµ = ∂µ + igtaGa

µ, (4.20)

LGF = −1
2
(∂µG

µa)(∂νG
νa), (4.21)

LGhost = −η̄a∂2ηa − gcabc η̄a∂µ
(
Gµcηb

)
. (4.22)

In the previous formulas our conventions on the color indices are as follows

a, b, c, d, e = 1, 2, . . . , 8 and j, k = 1, 2, 3. (4.23)

The matrices tajk are defined in section 13.2 and cabc = fabc are the SU(3) structure
constants.

Solution

Using the definition of vertices and propagators gives

b
p

a = i
δab
p2

,

b ap

c
µ

= gcabcpµ ,
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p

k j = i
1

/p−mδkj ,
µ

a b

ν
p

= − ig
µν

p2
δab ,

k j

a, α

= − igγαtajk ,

p(a)

a, α

p(c)

c, γ p(b) b, β

= gcabc
{
gαβ(p

(b) − p(a))γ + gβγ(p
(c) − p(b))α

+ gγα(p
(a) − p(c))β

}
,

c, γ

e, ǫ

b, β d, δ = − ig2
{
cabccade(gβδgγǫ − gβǫgγδ)

+ cabdcaec(gβǫgδγ − gβγgδǫ)
+ cabecacd(gβγgǫδ − gβδgǫγ)

}
.



Chapter 5

Conservation laws and symmetries

Whenever it exists a global symmetry, namely an invariance under a transformation
that does not depend on the space time, it exists a current and a conserved quantity,
that can be determined by using the Nöther’s theorem. Local symmetries, i.e. invari-
ance under transformations that depend on the coordinates, determine, instead, the
dynamic of the interactions [4], as we will discuss in chapter 11.
One can look for symmetries by looking at the Lagrangian L of the Theory at hand.
The Lagrangian L is therefore the fundamental quantity one has to know to study
Particle Physics, meaning that any symmetry and conservation law

is completely determined by the form of the Lagrangian.

In this chapter, we demonstrate the Nöther’s theorem and propose a few practical
problems on this subject.

5.1 The Nöther’s theorem

Consider a transformation

T:

{
x →T x̄ = x+ δx

Φi(x) →
T

Φ̄i(x̄) = Φi(x) + δΦi

(5.1)

and a Lagrangian L invariant in form under T

L(Φi, ∂µΦi) →
T L′(Φ̄i, ∂µΦ̄i) = L(Φ̄i, ∂µΦ̄i). (5.2)
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The Nöther’s theorem states that if the action is unchanged before and after applying
the transformatio T, namely if

∫

R̄

d4x̄L(Φ̄i, ∂µΦ̄i)−
∫

R

d4xL(Φi, ∂µΦi) = 0, (5.3)

where R →T R̄, there is a conserved corrent.

We work at the first order in all δs, hence we can replace in the first term of (5.3)

d4x̄ = d4x (1 + ∂µ(δx
µ))

L(Φ̄i, ∂µΦ̄i) = L(Φi, ∂µΦi) +
∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
δ(∂µΦi), (5.4)

giving

∫

R

d4x

{

L∂µ(δxµ) +
∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
δ(∂µΦi)

}

= 0. (5.5)

Next we introduce the variation of Φi at a fixed point x

δ∗Φi = Φ̄i(x)− Φi(x). (5.6)

Therefore

δΦi = Φ̄i(x̄)− Φi(x) = Φ̄i(x̄)− Φ̄i(x) + δ∗Φi. (5.7)

This gives at the first order

δΦi = (∂µΦi)δx
µ + δ∗Φi

δ(∂νΦi) = ∂µ(∂νΦi)δx
µ + ∂ν(δ∗Φi). (5.8)

Putting (5.8) in (5.5) results in

∫

R

d4x

{

L∂µ(δxµ) +
∂L
∂Φi

(

(∂µΦi)δx
µ + δ∗Φi

)

+
∂L

∂(∂νΦi)

(

∂µ(∂νΦi)δx
µ + ∂ν(δ∗Φi)

)}

= 0. (5.9)

But

∂L
∂Φi

∂µΦi +
∂L

∂(∂νΦi)
∂µ(∂νΦi) = ∂µL, (5.10)
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and the Lagrange equations applied to the third term in (5.9) give

∂L
∂Φi

= ∂ν
∂L

∂(∂νΦi)
. (5.11)

This allows one to rewrite (5.9) as follows
∫

R

d4x ∂µ

{

Lδxµ + ∂L
∂(∂µΦi)

δ∗Φi

}

= 0, (5.12)

and since R is generic, it exists a conserved current

∂µ(δJ
µ) = 0, δJµ = −Lδxµ − ∂L

∂(∂µΦi)
δ∗Φi. (5.13)

5.2 Exact symmetries

Exact symmetries are fundamental symmetries of the theory at hand, that are never
broken at all orders in perturbation theory, such as Charge conservation and Lepton
number conservation in Quantum Electrodynamics.

5.3 Problem: Charge conservation

Given the complex Klein-Gordon Lagrangian, describing a self-interacting scalar par-
ticle

L = ∂µφ∗∂µφ−m2φ∗φ− λ

4
(φ∗φ)2 (5.14)

a) Show that L is invariant under the global transformation

φ(x)→ eiθφ(x), θ ǫR constant ∀ x. (5.15)

b) Show that this symmetry gives rise to the following conserved current

Jµ = iφ∗(∂µφ)− i(∂µφ∗)φ (5.16)

by explicitly checking that
∂µJ

µ = 0. (5.17)

c) Show that the quantity

Q0 ≡
∫

d3xJ0 (5.18)

does not depend on the time.
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Solution

a) We know that under a phase transformation T, the field φ and φ∗ transform as

φ(x) →T eiθφ(x) ⇒ φ∗(x) →T e−iθφ(x)∗. (5.19)

One then obtains, for the product of the two

φ∗φ →T φ∗ eiθe−iθ

︸ ︷︷ ︸

1

φ = φ∗φ.

Analogously, given the fact that θ does not depend on x, the derivatives of the
fields transform as follows

∂µφ →T eiθ∂µφ and ∂µφ
∗ →T e−iθ∂µφ

∗, (5.20)

so that, for the product of two derivatives one has

(∂µφ
∗)(∂µφ) →T (∂µφ

∗)(∂µφ).

Therefore, all three terms in (5.14) remains unchanged under the transformation
of (5.15). Therefore the full L is invariant.

b) We use the Nöther’s theorem, that states that the explicit form of the infinites-
imal current δJµ is given by

δJµ = −Lδxµ −
∑

i

∂L
∂(∂µφi)

∂∗ϕi

under the following infinitesimal transformation laws

xµ → x̄µ = xµ + δxµ

φi(x)→ φ̄i(x̄) = φi(x) + δϕi

where
δ∗ϕi ≡ φ̄i(x)− ϕi(x)

is the change in form of the field.

In our case δxµ = 0, because we are dealing with an internal symmetry, and

φ(x)→ φ̄(x̄) = φ̄(x) = (1 + iδθ)ϕ(x)

=⇒ δ∗ϕ = iδθϕ and δ∗ϕ
∗ = −iδθϕ∗.
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By using the previous theorem we find

δJµ = − ∂L
∂(∂µφ)

δ∗ϕ−
∂L

∂(∂µφ∗)
δ∗ϕ

∗,

but
∂L

∂(∂µφ)
= ∂µφ∗ and

∂L
∂(∂µφ∗)

= ∂µφ,

so that the infinitesimal current reads

δJµ = −∂µφ∗(iδθϕ) + ∂µφ(iδθϕ∗)

= δθ{i(∂µφ)ϕ∗ − i(∂µφ∗)ϕ}
and, since the only infinitesimal parameter in the previous equation is δθ, the
finite conserved current is

Jµ = iφ∗(∂µφ)− iφ(∂µφ∗).

We now explicitly check that Jµ is a conserved current, namely ∂µJ
µ = 0.

Consider

∂µJ
µ = i{(∂µφ∗)(∂µφ) + φ∗∂2φ− (∂µφ)(∂

µφ∗)− φ∂2φ∗} = i{φ∗∂2φ− φ∂2φ∗}.
To show that this is zero one must use the equations of the motion







∂L
∂ϕ
− ∂µ

∂L
∂(∂µφ)

= 0

∂L
∂ϕ∗ − ∂µ

∂L
∂(∂µφ∗)

= 0

⇒







−m2φ∗ − λ

2
(φ∗)2φ− ∂µ∂µφ∗ = 0

−m2ϕ− λ

2
(φ)2φ∗ − ∂µ∂µϕ = 0

Inserting this equation in ∂µJ
µ gives the desired result

∂µJ
µ = i

{

φ∗
[

−m2ϕ− λ

2
(φ)2ϕ∗

]

− φ
[

−m2φ∗ − λ

2
(φ∗)2φ

]}

= 0.

c) From the previous equation, one obtains the desired result by applying the
Gauss theorem

∂µJ
µ = 0 ⇒ ∂0J

0 + ∇̄ · J̄ = 0 ⇒
∫

V
∂0J

0d3x = −
∫

V
d3x∇̄ · J̄ ⇒

∂0
∫

V
J0d3x = −

∫

Σ
J̄ · n̄ dΣ Σ→∞−−−→ 0

where Σ is the surface of the volume V .
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5.4 Problem: Charge and Lepton number conser-

vation in QED

Show that the QED interactions

LQED
INT

= Ψ̄e(i/∂ −me)Ψe + Ψ̄µ(i/∂ −mµ)Ψµ + Ψ̄τ (i/∂ −mτ )Ψτ

−eAαΨ̄eγ
αΨe − eAαΨ̄µγ

αΨµ − eAαΨ̄τγ
αΨτ

(5.21)

conserve charge and the lepton numbers.

Solution

• The charge is conserved because LQED
INT is invariant under the global Uc(1) trans-

formation:

Ψj −→ eiθcΨj j = e, µ, τ θc ǫ R.

• In addition, each family is separately invariant under another global ULj
(1)

transformation, with j = e, µ, τ .

Ψj −→ eiθLjΨj .

Therefore there exist three conserved quantities Lj , that can be identified with
the three lepton numbers.

5.5 Problem: Conservation laws and Feynman Di-

agrams

By using the QED Feynman rules, show, diagrammatically, that the charge is con-
served by the Lagrangian

L = Ψ̄e(i/∂ −m)Ψe − eAµΨ̄eγ
µΨe −

1

4
FµνF

µν .



5.5. PROBLEM: CONSERVATION LAWS AND FEYNMAN DIAGRAMS 45

Solution

The Vertices and Propagators of the Theory, namely the Feynman rules, are as follows

Start with an incoming electron:

Whatever happens in the blob, the above Feynman rules tells us that the arrow must
exit either in the initial or in the final state. Namely one of the following 2 situation
should be verified

Arrow exiting in initial state: Arrow exiting in final state:

In both cases ∆Qe ≡ Qfinal −Qinitial = 0, namely the charge must be conserved.

An explicit example of blob is

Then the, initial state electron must either exit in the initial or final state as follows

(a) (b)
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The 2 Feynman diagrams contributing, at the tree-level, to case (a) are

+

Note, however, that our reasoning based of Feynman diagrams hold at all orders
(namely at all loops). For this reason, some authors think that

there is more truth in Feynman diagrams than in Quantum Field Theory.

5.6 Approximated symmetries

Approximated symmetries are symmetries that are broken by weaker interactions
like for example “strangeness” in QCD, broken by the weak interactions through the
vertex

u , c , t

d , s , b

W

5.7 Problem: a process with ∆s = 1

Write, at the tree-level, a process with variation of strangeness ∆s = 1, by assuming
a diagonal CKM matrix.

Solution

A possible process is
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u

d

c

s

W

5.8 Problem: a process with ∆s = 2

By assuming a non diagonal CKM matrix, write the diagrams contributing to the
process with ∆s = 2 sd̄→ ds̄.

Solution

There are two contributing Feynman diagrams

s

d

d

s

W

W

i j

s

d

d

s

i

j

W W

where i, j = u, c, t.

As a last remark, note that, once again, is the form of the L, namely the graphical
Feynman rules, that determine everything.

5.9 Problem∗: Coupled electrons and muons

Given a theory described by a Lagrangian containing electronic (Ψe) and muonic (Ψµ)
fields coupled as follows

L = Ψ̄e(i/∂ −me)Ψe + Ψ̄µ(i/∂ −mµ)Ψµ − eAαΨ̄eγ
αΨµ − eAαΨ̄µγ

αΨe

• Is the charge conserved is such a theory?

• Are the lepton numbers Lµ and Le conserved?
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Chapter 6

Green’s functions and S matrix

In this chapter we define Green’s functions in terms of Feynman rules. The scattering
matrix S is also introduced and its connection with the Green’s functions discussed.

6.1 Green’s functions

For the sake of definiteness, we consider a Lagrangian containing neutral and charged
fields, which may also carry additional indices 1 ≤ a ≤ Na and 1 ≤ b ≤ Nb

L =
1

2
(∂µΦa)(∂

µΦa)−
M2

2
ΦaΦa + (∂µφ

∗
b)(∂

µφb)−m2φ∗
bφb + LINT(Φ, φ, φ

∗). (6.1)

The interaction Lagrangian LINT is assumed to be polynomial. 1 To define the Green’s
functions we introduce a source for each field

L → L−Ka(x)Φa(x)− J∗
b (x)φb(x)− Jb(x)φ∗

b(x). (6.2)

This generates the following extra Feynman rules

p
⊗ = −iKa(p),

p
⊗ = −iJ∗

b (p),
p

⊗ = −iJb(p),

where sources are denoted by the symbol ⊗, and Ka(p), J
∗
b (p) and Jb(p) are the

Fourier transforms of Ka(x), J
∗
b (x) and Jb(x), respectively.

1An explicit example with Na = Nb = 1 is given in (4.6).

49



50 CHAPTER 6. GREEN’S FUNCTIONS AND S MATRIX

Diagrams are constructed by connecting vertices and sources by means of propagators.
In addition

• there is an integral

∫
d4qℓ
(2π)4

over the unbounded four-momentum qℓ in each

loop ℓ of the diagram;

• there is a minus sign for each closed fermion loop;

• diagrams related by the exchange of two fermion lines have a relative minus
sign;

• energy-momentum conservation is assumed at each interaction vertex;

• any diagram is provided with a combinatorial factor.

As for the latter rule, the combinatorial factor is always 1 for tree-level diagrams. In
the one-loop case one has to multiply by 1/2 diagrams in which a particle starts and
ends at the same vertex. Diagrams where two identical particles connect two vertices
need to be multiplied by 1/2 as well. For two loops and more see e.g. [4].

The sum of all possible diagrams connecting n sources is of the form

p1⊗
a1

⊗
a2

pℓ⊗
bℓ

⊗
bℓ+1

⊗
bn−1

pn ⊗
bn

= inKa1(−p1)..J∗
bℓ
(−pℓ)..Jbn(−pn)Ga1...bn(p1, .., pℓ, .., pn),

(6.3)

where all momenta flow from the sources into the diagrams. The function Ga1...bn

is the n-point connected Green’s function for the given configuration of the external
lines.

Green’s functions which cannot be separated into two pieces by cutting an internal
propagator are dubbed one-particle irreducible (1PI).
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6.2 Problem: Perturbative Green’s functions I

Assuming the Lagrangian

L =
1

2
∂µΦ(x)∂

µΦ(x)− M2

2
Φ2(x)− g

4!
Φ4(x)−K(x)Φ(x), (6.4)

write down, up to the second perturbative order in g, the connected two-point Green’s
function for the following configuration

p
⊗ ⊗ .

Solution

The Feynman rules are as follows

p
=

i

p2 −M2
, = −ig,

p
⊗ = −iK(p).

At the lowest order one has

p
⊗ ⊗ = K(p)K(−p) −i

p2 −M2
= i2K(p)K(−p) i

p2 −M2
,

so that the perturbative expansion of the Green’s function at the 0th order in g reads

G(0)(p,−p) = i

p2 −M2
, (6.5)

which coincides with the propagator.

The only diagram contributing at the next perturbative order is

−p p

q

⊗ ⊗ = i2K(p)K(−p) −g
2(p2 −M2)2

∫

R

d4q

(2π)4
1

q2 −M2 + iǫ
,
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which gives

G(1)(p,−p) = − g

2(p2 −M2)2

∫

R

d4q

(2π)4
1

q2 −M2 + iǫ
. (6.6)

A few remarks are in order. The 1/2 is a combinatorial factor. The notation
∫

R

means that a UV regulator must be used to compute the integral. Finally, the +iǫ
prescription defines the causal Feynman propagator.

6.3 Problem: Perturbative Green’s functions II

Assuming the Lagrangian

L = ∂µφ
∗(x)∂µφ(x)−m2φ∗(x)φ(x)− g

2!2!
(φ∗(x)φ(x))2 − J∗(x)φ(x)− J(x)φ∗(x),

(6.7)

write down, up to the second perturbative order in g, the connected 1PI four-point
Green’s function for the following configuration

p1⊗

p2⊗ p4 ⊗ .

p3 ⊗

Solution

The Feynman rules one reads from (6.7) are

p
=

i

p2 −m2
, = −ig,

p
⊗ = −iJ∗(p),

p
⊗ = −iJ(p).

At the first order in g, one links the four-particle vertex directly to the sources. This
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gives

G(0)(p1, p2, p3, p4) = −ig
1

(p21 −m2)(p22 −m2)(p23 −m2)(p24 −m2)
. (6.8)

To obtain the 1PI G(2)(p1, p2, p3, p4), we first write down all possible four-point 1PI
one-loop diagrams. They are

⊗
k4

⊗
k2

⊗
k3

⊗
k1

q

D1(k1, k2, k3, k4) = ,

⊗
k4

⊗
k2

⊗
k3

⊗
k1

q

D2(k1, k2, k3, k4) = ,

where the momenta kj flow out from the sources. One computes

D1(k1, k2, k3, k4) = i4J(−k1)J∗(−k2)J∗(−k3)J(−k4)
g2F (k1, k2)
∏

j(k
2
j −m2)

,

D2(k1, k2, k3, k4) = i4J(−k1)J(−k2)J∗(−k3)J∗(−k4)
g2F (k1, k2)
∏

j(k
2
j −m2)

1

2
,

F (k1, k2) =

∫

R

d4q

(2π)4
1

(q2 −m2 + iǫ)
(
(q + k1 + k2)2 −m2 + iǫ

) , (6.9)

where the 1/2 in D2 is a combinatorial factor. Therefore

G(2)(p1, p2, p3, p4) =
g2

∏

j(p
2
j −m2)

(
1

2
F (p1, p2) + F (p1, p3) + F (p1, p4)

)

. (6.10)

6.4 The S matrix

We work in the interaction picture, where operators evolve according to the free
theory and the evolution of the states is dictated by the interaction.

Consider an initial-state particle configuration

|Φi>≡ |Φi(t = −∞)> . (6.11)
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We assume that the interaction affects the states during a finite amount of time, so
that |Φi>, being evaluated at t = −∞, is an asymptotically free state made of non-
interacting particles. The time evolution of |Φi> to a state |Ψ(t)> is controlled by
the time-evolution operator U

|Ψ(t)>= U(−∞, t)|Φi> . (6.12)

The S matrix elements are defined as the t → ∞ limit of projections of |Ψ(t)> on
non-interacting, asymptotically free final states

|Φf >≡ |Φf(t = +∞)> . (6.13)

Thus

Sfi ≡ lim
t→+∞

<Φf |Ψ(t)>=<Φf |U(−∞,∞)|Φi>, (6.14)

which gives

S = U(−∞,∞). (6.15)

Therefore, the probability of an asymptotically free initial state |Φi> to evolve to an
asymptotically free final states |Φf > is

Pfi = |Sfi|2 = | <Φf |S|Φi> |2. (6.16)

The S matrix elements are obtained from the connected Green’s functions in two
steps

• The momenta of the external lines are put on-shell;

• The sources are normalized in such a way that they emit or absorb one particle.

For example, if in (6.3) particles 1÷ ℓ are incoming and particles (ℓ+1)÷n outgoing,
one has

< bℓ+1kℓ+1,.., bnkn|S|a1p1,.., bℓpℓ >= lim
p21=M2

KN
a1
(−p1)(p21 −M2) . . .

. . . lim
p2
ℓ
=m2

JN∗
bℓ

(−pℓ)(p2ℓ −m2) lim
k2
ℓ+1=m2

JN∗
bℓ+1

(kℓ+1)(k
2
ℓ+1 −m2) · · ·

. . . lim
k2n=m2

JN
bn
(kn)(k

2
n −m2)Ga1...bn(p1, ..pℓ,−kℓ+1, ..,−kn), (6.17)
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with kj = −pj for j = (ℓ+ 1)÷ n, so that the momenta of the outgoing particles are
taken to be flowing out. Diagrams contributing to the S matrix are denoted without
drawing external sources, putting incoming particles to the left and outgoing particles
to the right. For instance, in the case at hand,

p1

pℓ kℓ+1

kn

.

Equation (6.17) is called the LSZ reduction formula. The propagator of each external
line is amputated by multiplying by its inverse, and the normalized sources KN , JN

and JN∗ are defined below.

In the general case of the transition from Ni initial state particles with momenta and
indices {pi, ai}, to Nf final state particles {kf , bf} one has

< {kf , bf}|S|{pi, ai} > =

Nf∏

f=1

lim
kf=m2

f

(k2f −m2
f )S

N
bf
(kf)

Ni∏

i=1

lim
pi=m2

i

(p2i −m2
i )S

N
ai
(−pi)

×G{bf}{ai}({−kf}, {pi}), (6.18)

where the normalizes sources SN correspond to any type of field and the energy flows
from left to right, namely p0i > 0 and k0f > 0.

As for the correct normalization of the sources, it is obtained by considering diagrams
connecting two sources. The tree-level two-point contributions corresponding to the
interchange of real and complex fields are

p
⊗ ⊗
a a

=
i

p2 −M2
KN

a (p)KN
a (−p) i2 ∀ a = 1÷Na,

p
⊗ ⊗
b b

=
i

p2 −m2
JN∗
b (p)JN

b (−p) i2 ∀ b = 1÷Nb.

They represent the probability density of emission and absorption of one particle if

KN
a (p)KN

a (−p) = JN∗
b (p)JN

b (−p) = 1 (a and b not summed), (6.19)
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which gives

KN
a (p) = KN

a (−p) = JN∗
b (p) = JN

b (−p) = 1 ∀ a, b. (6.20)

In the case of fermions f and antifermions f̄ in a state of spin s one computes, at the
tree-level,

p
⊗ ⊗ =

i

p2 −m2
f

Ψ̄N
f (p, s)(/p+mf )Ψ

N
f (−p, s) i2,

p
⊗ ⊗ =

i

p2 −m2
f

Ψ̄N
f̄
(−p, s)(−/p+mf )Ψ

N
f̄
(p, s) i2.

Hence, the normalization conditions are

Ψ̄N
f (p, s)(/p+mf )Ψ

N
f (−p, s) = Ψ̄N

f̄
(−p, s)(−/p+mf )Ψ

N
f̄
(p, s) = 1. (6.21)

In terms of the solutions of the Dirac equation

(/p−mf )u
s(p) = 0, (/p+mf )v

s(p) = 0,

ūs(p)ur(p) = 2mfδ
rs, v̄s(p)vr(p) = −2mfδ

rs,

∑

s u
s(p)ūs(p) = /p+mf ,

∑

s v
s(p)v̄s(p) = /p−mf ,

(6.22)

one finds that (6.21) is fulfilled by taking

Ψ̄N
f (p, s) =

1

2mf

ūs(p), ΨN
f (−p, s) =

1

2mf

us(p), (6.23)

and 2

Ψ̄N
f̄ (−p, s) = −

1

2mf

v̄s(p), ΨN
f̄ (p, s) =

1

2mf

vs(p). (6.24)

For (real or complex) vector fields with mass MV , properly normalized tree-level
sources are

ǫµ(p, s) with s = 1, 2, 3, pµǫ
µ(p, s) = 0, and ǫ∗µ(p, r)ǫµ(p, s) = −δrs. (6.25)

2The minus sign associated to the incoming anti-particle in the first of (6.24) is a phase common
to all diagrams contributing to a given process. Nevertheless, it is deeply connected to the minus
sign to be given to fermion loops, and is relevant in the proof of the unitarity of the S matrix [3].
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They obey the completeness relation

3∑

s=1

ǫ∗µ(p, s)ǫν(p, s) = −gµν + pµpν

M2
V

. (6.26)

Massless vectors only have 2 spin components. Their sources are as in (6.25), but
with s = 1, 2. Furthermore, the completeness relation reads

2∑

s=1

ǫ∗µ(p, s)ǫν(p, s) = −gµν + pµp̄ν + p̄µpν

p · p̄ , (6.27)

where pµ = (E, ~p) and p̄µ = (E,−~p).

In summary, the S matrix is constructed from the Green’s functions by amputating
the external propagators and by multiplying by properly normalized sources. The
sources to be used at the tree-level in the case of scalars, spinors and vectors are
listed in Equations (6.20), (6.22), (6.25)-(6.27).

6.5 Problem: Unitarity of the S matrix

Show that requiring the sum of the transition probabilities from |Φi> to any possible
|Φf > to be 1 implies that the S matrix is unitary.

Solution

Equation (6.16) gives

1 =
∑

f

Pfi =
∑

f

<Φi|S†|Φf ><Φf |S|Φi>=<Φi|S†S|Φi>, (6.28)

where we have used the completeness of the final states |Φf >. Therefore S†S = 1 if
the state |Φi> is normalized to 1.
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6.6 Problem: Wave function renormalization

Take a scalar particle and suppose that higher order corrections modify its propagator
as follows

1

p2 −M2
→ 1

Z2

1

p2 −M2
. (6.29)

Derive the properly normalized sources to be used in the LSZ reduction formula.

Solution

The new normalization condition is

1

Z2
KN(p)KN(−p) = 1, (6.30)

which gives

KN(p) = KN(−p) = Z. (6.31)



Chapter 7

Green’s functions and path
integrals

According to the Feynman’s path-integral formulation, n-point Green’s functions in
the position-space can be defined as products of n fields averaged over all possible field
configurations weighted by the exponential of i times the action. Here we illustrate
the perturbative approach to Quantum Field Theory from this point of view, taking
the Lagrangian in (6.4) as a case study.

7.1 The path-integral definition of the Green’s func-

tions

Imagine a discretized world made of only N space-time points xµa , with a = 1, . . . , N .
The action corresponding to (6.4) is now

S = S0 + SINT, (7.1)

with

S0 =
1

2

N∑

a,b=1

Φ(xa)WabΦ(xb)−
N∑

a=1

K(xa)Φ(xa), SINT = − g
4!

N∑

a=1

Φ4(xa), (7.2)

and where Wab = Wba is the discretized variant of the quadratic part of the La-
grangian, where derivatives are replaced by differences. Green’s functions involving
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n space-time points are defined as follows

G(x1, . . . , xn) =

∫
DΦΦ(x1) . . .Φ(xn) e

iS

∫
DΦ eiS

∣
∣
∣
∣
K=0

, (7.3)

where we use the notation DΦ ≡
∏N

i=1 dΦ(xi).
1

Dubbing G̃(p1, . . . , pn) the Fourier transform of (7.3)

G̃(p1, . . . , pn) =

∫
{

n∏

j=1

d4xje
−ixj ·pj

}

G(x1, . . . , xn), (7.4)

the Green’s functions G(p1, . . . , pn) normalized as in (6.3) are given by

G̃(p1, . . . , pn) = G(p1, . . . , pn) (2π)
4δ4

(
n∑

i=1

pi

)

. (7.5)

7.2 Free fields

First we solve the free case, in which SINT = 0. For ease of notation, we define
Φa ≡ Φ(xa), Ka ≡ K(xa) and understand summation over repeated indices. That
yields

S0 =
1

2
ΦaWabΦb −KaΦa. (7.6)

The product of fields in (7.3) can be replaced by derivatives over sources ∂j ≡ ∂
∂Kj

,
giving

G0(x1, . . . , xn) =

(
∏n

j=1 i∂j

) ∫
DΦ eiS0

∣
∣
∣
K=0∫

DΦ eiS0

∣
∣
K=0

. (7.7)

Thus, one needs to single out the source dependence of

Z0(K) ≡
∫

DΦ eiS0 . (7.8)

1The continuum limits of the numerator and denominator in (7.3) (if they exist) are examples of
path integrals.
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This is achieved by introducing the inverse of Wab, namely a ∆ab such that

∆abWbc = Wab∆bc = δac. (7.9)

Changing variables in (7.8)

Φa = Φ′
a +∆abKb, DΦ = DΦ′, (7.10)

gives

Z0(K) = Z0(0) exp

{

− i
2
Ka∆abKb

}

, (7.11)

so that

G0(x1, . . . , xn) =

(
n∏

j=1

i∂j

)

exp

{

− i
2
Ka∆abKb

}∣
∣
∣
∣
K=0

. (7.12)

Equation (7.12) allows one to express any possible Green’s functions of the free theory
in terms of the ∆ab.

7.3 The free propagator

Using ∂jKℓ = δjℓ in (7.12) one easily derives the free 2-point Green’s function

G0(x1, x2) = i∆12. (7.13)

Now we go back to the physical continuum space-time. In this case

Wab →W = −∂2 −M2,

∆12 → ∆(x− y), (7.14)

where ∆(x− y) is the inverse of W, as in (7.9)

−(∂2 +M2)∆(x− y) = δ4(x− y). (7.15)

To solve (7.15), we introduce the Fourier transform ∆̃(p2) of ∆(x− y)

∆(x− y) = 1

(2π)4

∫

d4p ∆̃(p2)e−ip·(x−y). (7.16)
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Inserting this in (7.15) gives

∆̃(p2) =
1

p2 −M2
, (7.17)

so that the Fourier transform of i∆(x − y) is nothing but the propagator in the
momentum-space. To fix the prescription to go around the two poles p0 = ±

√

~p2 +M2

in the p0 integral of (7.16), we go back to (7.7) and replace

iS0 → iS0 −
1

2
ǫΦaΦa, with ǫ→ 0+. (7.18)

This change makes the integrals in (7.7) well defined also when Φa →∞, and can be
achieved by changing M2 → M2 − iǫ. In summary, the causal Feynman propagator
reads

i∆(x− y) = 1

(2π)4

∫

d4p
i

p2 −M2 + iǫ
e−ip·(x−y). (7.19)

Very often, the change M2 →M2 − iǫ is understood.

Finally, we compute the Fourier transform of (7.13):

G̃0(p1, p2) =

∫

d4x1d
4x2e

−ip1·x1e−ip2·x2 G0(x1, x2)

=
1

(2π)4

∫

d4x1d
4x2d

4p e−ip1·x1e−ip2·x2e−ip·x1eip·x2
i

p2 −M2 + iǫ

=
1

(2π)4

∫

d4p
i

p2 −M2 + iǫ

∫

d4x1e
−i(p1+p)·x1

∫

d4x2e
−i(p2−p)·x2

= (2π)4
∫

d4p
i

p2 −M2
δ4(p1 + p)δ4(p2 − p)

= (2π)4
i

p21 −M2
δ4(p1 + p2). (7.20)

Thus,

G0(p1,−p1) =
i

p21 −M2 + iǫ
, (7.21)

in agreement with (6.5).
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7.4 Interacting fields

We rewrite in (7.3)

eiS = eiS0 exp

{

−i g
4!

∑

v

Φ4
v

}

, (7.22)

and replace fields by derivatives over sources. This gives

G(x1, . . . , xn) =

(
∏n

j=1 i∂j

)

exp
{
−i g

4!

∑

v(i∂v)
4
}
Z0(K)

∣
∣
∣
K=0

exp
{
−i g

4!

∑

v(i∂v)
4
}
Z0(K)

∣
∣
K=0

=

(
∏n

j=1 i∂j

)

exp
{
−i g

4!

∑

v(i∂v)
4
}
exp

{
− i

2
Ka∆abKb

}
∣
∣
∣
K=0

exp
{
−i g

4!

∑

v(i∂v)
4
}
exp

{
− i

2
Ka∆abKb

}∣
∣
K=0

. (7.23)

Expanding (7.23) in powers of the coupling constant g generates all the perturbative
Green’s functions of the interacting theory.

The generalization of the described technique to Lagrangians depending on many
fields with arbitrary polynomial interactions is straightforward.

7.5 Problem: Perturbative Green’s functions III

Use the path integral approach to rederive the two-point Green’s function in (6.6).

Solution

We rewrite G(x1, x2) = N(x1, x2)/D, where N(x1, x2) is the numerator of (7.23) with
n = 2. Expanding N(x1, x2) to the first order in g produces six derivatives. Therefore,
a result different from zero is generated only by the fourth term in the expansion of
exp

{
− i

2
Ka∆abKb

}

N(x1, x2) = (i∂2)(i∂1)

(

−i g
4!

∑

v

(i∂v)
4

)

1

3!

(−i
2

)3

∆a1a2∆a3a4∆a5a6

6∏

k=1

Kak

= − g

1152

∑

v

∂4v∂2∂1

6∏

k=1

Kak ∆a1a2∆a3a4∆a5a6 . (7.24)
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Acting with the derivatives on the sources produces 6! terms. However, due to the
summations over indices, only two possible contributions may arise, proportional to
∆1v∆v2∆vv or ∆12∆vv∆vv, respectively. Thus

N(x1, x2) = −
g

1152

∑

v

(N1∆1v∆v2∆vv +N2∆12∆vv∆vv) , (7.25)

with N1 +N2 = 6!. To determine N1,2, we first compute

∂2∂1

6∏

k=1

Kak ∆a1a2∆a3a4∆a5a6 = 6 ∂2

5∏

k=1

Kak ∆1a1∆a2a3∆a4a5

= 6
4∏

k=1

Kak (∆12∆a1a2∆a3a4 + 4∆1a1∆a22∆a3a4) . (7.26)

Acting now with ∂4v on the r.h.s. of (7.26) generates 4! contributions from each of the
two terms, with all summation indices replaced by v

∂4v 6
4∏

k=1

Kak (∆12∆a1a2∆a3a4 + 4∆1a1∆a22∆a3a4) =

(6 · 4!)∆12∆vv∆vv + (6 · 4 · 4!)∆1v∆v2∆vv. (7.27)

Therefore N1 = 576 and N2 = 144, which gives

N(x1, x2) = −g
∑

v

(
1

2
∆1v∆v2∆vv +

1

8
∆12∆vv∆vv

)

. (7.28)

The first term is the connected Green’s function of (6.6) in the (discretized) position-
space. As for the second term, it corresponds to the vacuum bubble contribution

⊗ ⊗

and it is canceled by the denominator D of (7.23) expanded at order g. 2

2This is a general feature. At each perturbative order, vacuum bubbles generated by the numerator
are canceled by the denominator. We leave to the reader to verify this explicitly for the case at hand.
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Finally, we go back to the continuum and rewrite the first term of (7.28) as

Nc(x1, x2) = −
g

2

∫

d4y∆(x1 − y)∆(y − x2)∆(y − y), (7.29)

with ∆(x− y) given in (7.19).

The Fourier transform of (7.29) reads

G̃c(p1, p2) = G(1)(p1, p2) (2π)
4δ4 (p1 + p2) , (7.30)

with G(1)(p1,−p1) in (6.6).

7.6 Problem∗: Perturbative Green’s functions IV

Use the path integral approach to rederive the two-point Green’s functions in (6.8)
and (6.10).
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Chapter 8

Cross sections and decay rates

Cross sections (σ) and decay rates (Γ) are fundamental measurable quantities that
provide the link between the underlying Quantum Field Theory and the experimental
data measurable in Particle Physics experiments. In this chapter, we recall the basic
formulas and give examples on how to compute, analytically, the phase space integrals
appearing in the definition of σ and Γ. Since, in practical cases, it is not always
possible to perform the phase space integration analytically, one has to rely, in general,
on Monte Carlo methods. For this reason, at the end of the chapter, we also propose
a few practical problems on the latter subject.

8.1 The definition of phase space

For a generic process with n particle in the final state, the total n-body phase space
integrals is defined by

Φn =

∫

dφn =

∫

d4p1 · · · d4pn δ+(p21 −m2
1) · · · δ+(p2n −m2

n) δ
4(Qinit −

∑

i

pi), (8.1)

with

δ+(p
2 −m2) ≡ δ(p2 −m2)θ(p0). (8.2)
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8.2 The definition of Cross section

Given a generic 2→ n process

q1 + q2 → p1 + p2 + · · ·+ pn, with q2i =M2
i and p2i = m2

i , (8.3)

the total cross section is defined as

σ =
(2π)4−3n

4 [(q1 · q2)2 −M2
1M

2
2 ]

1
2

∫

dφn |M̄|2, (8.4)

where |M̄|2 is the S matrix element squared summed over the final state polarizations
and averaged over the initial state ones.

8.3 The definition of Decay Rate

Given a generic 1→ n decay

Q→ p1 + p2 + · · ·+ pn, with Q2 =M2 and p2i = m2
i , (8.5)

the total decay rate is defined as

Γ =
(2π)4−3n

2M

∫

dφn |M̄|2, (8.6)

and it is linked to the mean lifetime τ of the decaying particle by the relation

τ =
1

Γ
. (8.7)

8.4 Problem: The massless 2-body phase space

Given a process

p1 + p2 → p3 + p4, with p23 = p24 = 0,

show that

Φ2 =

∫

dφ2 =
1

8

∫

dΩ3 =
1

8
4π =

π

2
, (8.8)

where dΩ3 is the solid angle of particle 3.
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Solution

In the center-of-mass frame one has

~p1 + ~p2 = 0, so that P ≡ (p1 + p2) = (
√
s, 0, 0, 0). (8.9)

Therefore
∫

dφ2 =

∫

d4p3d
4p4δ+(p

2
3)δ+(p

2
4)δ

4(P − p3 − p4)

=

∫

d4p3δ(p
2
3)θ(E3)δ((P − p3)2)θ(

√
s−E3). (8.10)

Now, by calling q3 ≡| ~p3 | we have
∫

dφ2 =

∫

dE3

∫

dΩ3

∫

dq3q
2
3δ(E

2
3 − q23)θ(E3)δ(s− 2

√
sE3)θ(

√
s− E3). (8.11)

But

θ(E3)δ(E
2
3 − q23) =

1

2q3
δ(E3 − q3), (8.12)

because θ(E3) selects the positive solution. Then
∫

dφ2 =

∫

dΩ3

∫

dq3
q23
2q3

δ(s− 2
√
sq3)

︸ ︷︷ ︸

1
2
√

s
δ(q3−

√
s

2
)

θ(
√
s− q3)

=

∫

dΩ3
q23
2q3

1

2
√
s

∣
∣
∣
∣
q3=

√
s

2

=
1

8

∫

dΩ3 =
π

2
. (8.13)

From the previous result, one can immediately write down the following explicit
parametrization for the momenta:

p1 =

(√
s

2
,

√
s

2
, 0, 0

)

p2 =

(√
s

2
,−
√
s

2
, 0, 0

)

p3 =

(√
s

2
,

√
s

2
cosθ3,

√
s

2
sinθ3cosϕ3,

√
s

2
sinθ3sinϕ3

)

p3 =

(√
s

2
,−
√
s

2
cosθ3,−

√
s

2
sinθ3cosϕ3,−

√
s

2
sinθ3sinϕ3

)

.
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The massless n-body phase space

The massless case is simple enough that a general formula can be derived

Φn =

∫

dφn =

(
π
2

)(n−1)
s(n−2)

(n− 1)!(n− 2)!
. (8.14)

8.5 Problem: The massive 2-body phase space

Compute Φ2 =
∫
dφ2 when p23 = m2

3 and p24 = m2
4.

Solution

Let P ≡ (p1 + p2) = (
√
s, 0, 0, 0) and q3 ≡ |~p3|. Then

∫

dφ2 =

∫

d4p3δ
(
p23 −m2

3

)
θ(E3)δ((p− p3)2 −m2

4) θ(
√
s− E3)

=

∫

dE3

∫

dΩ3

∫

dq3q
2
3δ(E

2
3 − q23 −m2

3)θ(E3)δ(s+m2
3 − 2

√
sE3 −m2

4)

×θ(
√
s− E3). (8.15)

Since

θ(E3)δ(E
2
3 − (q23 +m2

3)) =
1

2
√

q23 +m2
3

δ(E3 −
√

q23 +m2
3) (8.16)

one obtains

∫

dφ2 =

∫

dΩ3

∫

dq3
q23

2
√

q23 +m2
3

δ(s+m2
3 − 2

√
s
√

q23 +m2
3 −m2

4)θ(
√
s− E3).

(8.17)

But

δ(s+m2
3 − 2

√
s
√

q23 +m2
3 −m2

4) =

√

q23 +m2
3

2
√
sq3

δ(q3 − q03), (8.18)
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where q03 is the value of q3 that nullifies the argument of the delta function. Therefore

∫

dφ2 =

∫

dΩ3

∫

dq3
q23

2
√

q23 +m2
3

1

2
√
sq3

√

q23 +m2
3δ(q3 − q03)

=

∫

dΩ3

∫

dq3
q03
4
√
s
δ(q3 − q03) =

q03
4
√
s

∫

dΩ3. (8.19)

Now, one has just to compute q03,

1

4s
(s+m2

3 −m2
4)

2 = (q03)
2 +m2

3 ⇒
1

4s

[
−4sm2

3 + s2 +m4
3 +m4

4 + 2sm2
3 − 2sm2

4 − 2m2
3m

2
4

]
= (q03)

2. (8.20)

Thus

1

4s
λ(s,m2

3, m
2
4) = (q03)

2, (8.21)

where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén function. Then

q03 =
1

2
√
s
λ

1
2 (s,m2

3, m
2
4), (8.22)

so that

∫

dφ2 =
λ

1
2 (s,m2

3, m
2
4)

8s

∫

dΩ3. (8.23)

8.6 Problem: The massless 3-body phase space

For a process

p1 → p2 + p3 + p4, with p21 = m2 and p22 = p23 = p24 = 0, (8.24)

show that

∫

dφ3 = π2

∫ m
2

0

dE2

∫ m
2

m
2
−E2

dE3. (8.25)
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Solution

∫

dφ3 =

∫

d4p2d
4p3d

4p4 δ+(p
2
2)δ+(p

2
3)δ+(p

2
4) δ

4(p1 − p2 − p3 − p4)

=

∫

d3p2d
3p3

1

4E2E3
δ
[
(p1 − p2 − p3)2

]

=

∫

dΩ2dΩ3dE2dE3
E2E3

4
δ(m2 − 2(p1 · p2)− 2(p1 · p3) + 2(p2 · p3)),

where we understand E4 > 0. Now we choose a convenient reference frame where the
spatial components of the momenta p2, p3, p4 lie in the (x,y) plane with p2 along x,

p1 = (m, 0, 0, 0)

p2 = E2(1, 1, 0, 0)

p3 = E3(1, c3, s3, 0)

p4 = E4(1, c4, s4, 0). (8.26)

Therefore we have

δ(m2 − 2(p1 · p2)− 2(p1 · p3) + 2(p2 · p3)) = δ(m2 − 2mE2 − 2mE3 + 2E2E3(1− c3))

=
1

2E2E3
δ

(

c3 −
2E2E3 − 2m(E2 + E3) +m2

2E2E3

)

, (8.27)

so that

∫

dφ3 = (4π)(2π)

1∫

−1

dc3dE2dE3
E2E3

4

1

2E2E3
δ(c3 − . . . ) = π2

∫

dE2dE3. (8.28)

The integration boundaries for E2 and E3 can be determined by observing that −1 <
c3 < 1

c3 < 1 ⇒ E2 + E3 >
m

2
,

−1 < c3 ⇒ (2E2 −m)(2E3 −m) > 0. (8.29)

Thus one has

E2 + E3 >
m

2
, E2 <

m

2
, E3 <

m

2
. (8.30)

Note that the second solution of (8.29), namely E2,3 >
m

2
, is discarded because the

condition E4 > 0 implies m− E2 − E3 > 0 ⇒ E2 + E3 < m. Therefore, we have to
remain inside the dashed part of the following figure
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m
2

E2

m
2

E3

from which the desired result follows

∫

dφ3 = π2

m
2∫

0

dE2

m
2∫

m
2
−E2

dE3. (8.31)

8.7 Monte Carlo Numerical Integration

In this section we recall the basic principles of the Monte Carlo numerical integration.
Given a one dimensional integral over a function f(x),

I =

∫ b

a

dx f(x), (8.32)

one can always change variables and put the integration domain in the interval [0, 1],

I =

∫ 1

0

dρ g(ρ). (8.33)

Then, I can be estimated by taking N values of ρ (which we dub ρ(i), with i = 1÷N)
randomly in [0, 1],

I ≃ 1

N

N∑

i=1

g(ρ(i)) ≡< g >, (8.34)
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where the symbol ≃ means that equality is reached in the N → ∞ limit. The error
∆I of this estimate is given by the formula

∆I =

√

< g2 > − < g >2

N
. (8.35)

Therefore, the Monte Carlo estimate of I is

I ≃< g > ±∆I. (8.36)

A nice property of the Monte Carlo method is that it does not depend on the di-
mensionality of the function g, in the sense that it can be immediately translated to
functions of n variables g(~ρ) := g(ρ1, · · · , ρn). Given

J =

∫ 1

0

dρ1 · · ·
∫ 1

0

dρn g(~ρ), (8.37)

a Monte Carlo estimate is given by the formula

J ≃ 1

N

N∑

i=1

g(~ρ (i)) ≡< g > (8.38)

where ~ρ (i) are randomly taken values in the hypercube [0, 1]n. The error is again
given by

∆J =

√

< g2 > − < g >2

N
. (8.39)

8.8 Problem∗: Numerical integration of a 5-body

phase space

Compute numerically with RAMBO the massless phase space integral
∫

cut
dΦ5 using

the following input values in the center-of-mass frame:

1.
√
s = 200 GeV,

2. Ei > 10 GeV (i = 1÷ 5),

3. |cosθi| ≤ 0.9 (i = 1÷ 5).

A version of RAMBO and an example of FORTRAN program implementing it can
be found in

www.ugr.es/local/pittau/particulas1.f.



Chapter 9

Problems at the tree-level

In this chapter we compute a few processes at the lowest order in the perturbation
theory, namely at the tree-level. The steps needed to produce physical predictions
can be summarized as follows:

1. Calculation of the amplitude squared

(a) draw the Feynman diagrams for the process;

(b) apply the Feynman rules for propagators and vertices;

(c) calculate the amplitude squared by using trace theorems and γ matrix
properties.

2. Calculation of the phase space

(a) identify the number and the masses of the particles in the process;

(b) fix the reference frame and the momenta of the particles;

(c) calculate the integrals using the properties of the δs, as we have seen in
chapter 8.

3. Calculation of cross sections or decay rates

(a) by using (8.4) or (8.6), respectively.

75
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9.1 Problem: The µ decay in the large MW limit

Compute the muon lifetime.

Solution

The only contributing Feynman diagram is

µ , r
1

2
νµ , r

′

W
3
e , s

4
ν̄e , s

′

where we take mµ = m and me = mν̄e = mνµ = 0.

Using Feynman rules for propagators and vertices gives the following expression for
the invariant amplitude

M =

(

− ig

2
√
2

)2

(−i) ū(2)γµ(1− γ5)u(1)ū(3)γµ(1− γ5)v(4)
1

(−MW
2)
. (9.1)

Note that the exact propagator 1
p2−M2

W

has been replaced by 1
(−M2

W
)
. This is so

because we assume to work in the large MW limit, namely at low energy. We need an
expression for |M|2, so that we must find the complex conjugate ofM. A bi-spinor
product such as v̄γµu can be complex-conjugated as follows

(

v̄γµu
)
∗ = u† (γµ)†

(
γ0
)†
v = u† (γµ)†

(
γ0
)
v = u†γ0γµv = ūγµv.

Thus, the squared matrix element reads

|M|2 = g4

64MW
4

{
ū(1)γ

ν(1− γ5)u(2)v̄(4)γν(1− γ5)u(3)
}

×
{
ū(2)γµ(1− γ5)u(1)ū(3)γµ(1− γ5)v(4)

}
. (9.2)
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We are still free to specify particular polarizations r, r′, s, s′ for the fermions. How-
ever, in actual experiments it is difficult to retain control over spin states. In most
experiments the initial state is unpolarized, so the measured cross section, or decay
rate, is an average over the spin of the initial particles and a sum over the final state
polarizations. Besides, the expression for |M|2 simplifies considerably when we throw
away the spin information. In summary, the quantity we want to compute is

|M̄|2 ≡ 1

2

∑

r

∑

s

∑

r′

∑

s′

|M (r → r′, s, s′) |2, (9.3)

namely, the average over the µ spin (r), and the sums over the spins of the e (s), νµ
(r′) and ν̄e (s

′).

The spins sums can be performed by using the completeness relation for spinors:
∑

spin

u(j)ū(j) = /pj +mj ,
∑

spin

v(j)v̄(j) = /pj −mj . (9.4)

By working explicitly with spinor indices and taking the trace, one can freely move
all ū next to the u and all v̄ next to the v, so that (9.3) can be written as follows

|M̄|2 = g4

128MW
4Tr

{
∑

r′

u(2)ū(2)γµ(1− γ5)
∑

r

u(1)ū(1)γ
ν(1− γ5)

}

×Tr
{
∑

s

u(3)ū(3)γ
µ(1− γ5)

∑

s′

v(4)v̄(4)γν(1− γ5)
}

=
g4

128MW
4Tr {/p2γµ(1− γ5) (/p1 +m) γν(1− γ5)}Tr {/p3γµ(1− γ5)/p4γν(1− γ5)}

=
g4

128MW
4 4Tr {/p2γµ/p1γν(1− γ5)}Tr {/p3γµ/p4γν(1− γ5)} . (9.5)

By computing the traces one obtains

|M̄|2 = g4

128MW
4 64 {(p2µp1ν + p2νp1µ)− (p1 · p2)gµν − iǫ2µ1ν}

×
{
(pµ3p

ν
4 + pν3p

µ
4)− (p4 · p3)gµν − iǫ3µ4ν

}
. (9.6)

The crossed terms in the previous equation vanish because symmetric tensors are
contracted with antisymmetric ones, therefore

|M̄|2 = g4

2M4
W

{2(p2 · p3)(p1 · p4) + 2(p1 · p3)(p2 · p4) + 4(p1 · p2)(p3 · p4)

−2(p3 · p4)(p1 · p2)− 2(p1 · p2)(p3 · p4)− ǫ2µ1νǫ3µ4ν
}
. (9.7)



78 CHAPTER 9. PROBLEMS AT THE TREE-LEVEL

In addition
ǫ2µ1νǫ

3µ4ν = −2 [(p2 · p3)(p1 · p4)− (p2 · p4)(p1 · p3)] ,
so the final result reads

|M̄|2 = g4

2M4
W

{4(p2 · p3)(p1 · p4)} =
2g4

M4
W

(p1 · p4)(p2 · p3). (9.8)

The needed 3-body phase space has already been computed in Problem 8.6

∫

dφ3 = π2

m
2∫

0

dE2

m
2∫

m
2
−E2

dE3, (9.9)

with momenta given by

p1 = (m, 0, 0, 0)

p2 = E2(1, 1, 0, 0)

p3 = E3(1, c3, s3, 0)

p4 = E4(1, c4, s4, 0), (9.10)

where

c3 =
2E2E3 − 2m(E2 + E3) +m2

2E2E3
. (9.11)

We are now ready to compute the decay rate for the process with the help of the
formula

Γ =
(2π)−5

2m

∫

dφ3 |M̄|2.

With our explicit choice of momenta we have

(p1 · p4) =mE4 = m(m− E2 −E3)

(p2 · p3) = E2E3(1− c3). (9.12)

Therefore

|M̄|2 = 2g4

M4
W

mE2E3(m− E2 − E3)(1− c3). (9.13)

By using (9.11) one obtains

c3 = 1 +
m

2E2E3
(m− 2E2 − 2E3), (9.14)
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so that

|M̄|2 = g4

M4
W

(m−E2 − E3)m
2(2E2 + 2E3 −m). (9.15)

Finally, the decay rate is given by

Γ =
(2π)−5

2m
π2 g

4

m4
W

m2

m
2∫

0

dE2

m
2∫

m
2
−E2

dE3(m−E2 − E3)(2E2 + 2E3 −m)

≡ g4m

64π3M4
W

I. (9.16)

To compute I we change variables as follows

t2,3 =
2

m
E2,3.

Thus,

I =

1∫

0

dt2

1∫

1−t2

dt3

(m

2

)2 {

m− m

2
t2 −

m

2
t3

}

{mt2 +mt3 −m}

=
(m

2

)3

m

1∫

0

dt2

1∫

1−t2

dt3(2− t2 − t3)(t3 + t2 − 1). (9.17)

A further change t2 → 1− t2 gives

I =
m4

8

1∫

0

dt2

1∫

t2

dt3(1 + t2 − t3)(t3 − t2)

=
m4

8

1∫

0

dt2

1∫

t2

dt3
{
(t3 − t2)− (t3 − t2)2

}
. (9.18)

Finally, redefining

x = t2; y =
t3 − x
1− x ⇒ t3 = x+ y(1− x)

dt2 = dx; dt3 = (1− x)dy
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gives

I =
m4

8

1∫

0

dx

1∫

0

dy(1− x)
{
y(1− x)− y2(1− x)2

}
, (9.19)

and by further shifting x→ (1− x) one obtains

I =
m4

8

1∫

0

dx

1∫

0

dy
{
yx2 − y2x3

}
=
m4

8

{
1

2

1

3
− 1

3

1

4

}

=
m4

8× 12
, (9.20)

which gives

Γ =
g4m5

π3M4
W

· 1

6144
=
m5G2

F

192π3
, (9.21)

where we have defined

g2 =
GF√
2
8M2

W .

Finally, the muon lifetime is τ = 1
Γ
.

9.2 Problem: The Z decay width

Compute the total decay width ΓZ of the Z boson to massless fermions in terms of
GF ,MZ and MW .

Solution

The only contributing Feynman diagram is

Zµ

q

f

p1

f̄

p2
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from which we compute the amplitude

M = ǫµ(q)

(−ig
2cθ

)

ū(1)γµ(vf + afγ5)v(2), (9.22)

with vf = I3f − 2s2θQf and af = −I3f and where, by momentum conservation,
q = p1 + p2. The squared amplitude for the process, summed over the final state
polarizations and averaged over the initial state ones, can be calculated as in the
previous problem

|M̄|2 = g2

4c2θ

1

3

∑

spin

ǫµ(q)ǫ
∗ν
(q)

∑

spin

{
ū(1)γµ(vf + afγ5)v(2)

}
×
{
v̄(2)γν(vf + afγ5)u(1)

}
,(9.23)

where the factor 1
3
comes from the average over the initial spin. Using the trace

technique gives

|M̄|2 = g2

4c2θ

1

3

(
∑

spin

ǫµ(q)ǫ
∗ν
(q)

)

×Tr
{
∑

spin

u(1)ū(1)γµ(vf + afγ5)×
∑

spin

v(2)v̄(2)γν(vf + afγ5)

}

=
g2

4c2θ

1

3

(

−gµν + qµqν

M2
Z

)

Tr {/p1γµ(vf + afγ5)/p2γν(vf + afγ5)} . (9.24)

Now we are going to work in terms of ω± = 1/2(1 ± γ5), so that vf + afγ5 =

v+f ω
++v−f ω

− with v±f = vf±af . The projectors properties ω+ω− = 0 and (ω±)
2
= ω±

allow us to rewrite

|M̄|2 = g2

4c2θ

1

3

(

−gµν + qµqν

M2
Z

)

Tr
{
/p1γµ(v

+
f ω+ + v−f ω−)/p2γν(v

+
f ω+ + v−f ω−)

}

=
g2

4c2θ

1

3

(

−gµν + qµqν

M2
Z

)
[
(v+f )

2 Tr {/p1γµ/p2γνω+}+ (v−f )
2 Tr {/p1γµ/p2γνω−}

]
.

The traces containing γ5 do not contribute upon contraction with the symmetric

tensor
(

−gµν + qµqν

M2
Z

)

. Therefore

|M̄|2 = g2

8c2θ

1

3

[
(v+f )

2 + (v−f )
2
]
(

−gµν + qµqν

M2
Z

)

Tr {/p1γµ/p2γν} . (9.25)

Due to gauge invariance the qµqν piece does not contribute, as can be explicitly
checked,

Tr {/p1/q/p2/q} = Tr {/p1(/p1 + /p2)/p2(/p1 + /p2)} = 0.
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The gµν piece gives, instead,

−Tr {/p1γµ/p2γµ} = 2 Tr {/p1/p2} = 8(p1 · p2) = 4M2
Z . (9.26)

In conclusion

|M̄|2 = g2

2c2θ

1

3

[
(v+f )

2 + (v−f )
2
]
M2

Z . (9.27)

To compute the width we use the formula

Γf =
(2π)4−3n

2M

∫

dφn |M̄|2, (9.28)

which gives, for n = 2,

Γf =
(2π)−2

2MZ

∫

dφ2 |M̄|2. (9.29)

The 2-body massless phase space has been already calculated in chapter 8,
∫

dφ2 =
1

8

∫

dΩ =
π

2
. (9.30)

Finally the partial width decay Γf(Z → f f̄) for one family of fermions reads

Γf =
(2π)−2

2MZ

π

2
|M̄|2

=
1

3

(2π)−2

2MZ

π

2

g2

2c2θ
M2

Z

[
(v+f )

2 + (v−f )
2
]
=
GFM

3
Z

12
√
2π

[
(v+f )

2 + (v−f )
2
]

=
GFM

3
Z

6
√
2π

[
v2f + a2f

]
. (9.31)

To compute the total width one has to sum over all possibilities

ΓZ =
∑

f 6=top

NcfΓf , (9.32)

where Ncf is the colour factor, namely Ncf = 1 for leptons and Ncf = 3 for quarks.
We do not consider the top quark in the sum because, due to its large mass, the
decay into it is not kinematically allowed. We can then compute ΓZ by using as input
parameters

GF = 1.16637× 10−5 GeV−2,

MZ = 91.1867 GeV,

MW = 80.450 GeV, (9.33)
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which give the numerical value

ΓZ = 2.447 GeV, (9.34)

to be compared with the experimental value ΓEXP
Z = (2.495± 0.002) GeV.

As a last remark, one could use, instead of the previous one, the following set of
parameters

α(0) = 1/137.0359895,

MZ = 91.1807 GeV,

MW = 80.450 GeV. (9.35)

To achieve this, the following relations should be used connecting the two sets

g2 =
GF√
2
8M2

W ,

c2θ =
M2

W

M2
Z

,

4πα = g2s2θ,

GF =
πα√

2M2
W s

2
θ

. (9.36)

The result in this case would be

Γ′
Z = 2.371 GeV. (9.37)

The numerical difference between ΓZ and Γ′
Z is due to the neglected higher order

corrections, being our calculation at the tree-level only.

9.3 Problem: Cross section and FB asymmetry for

e+e− → µ+µ−

Compute, in the limit of massless fermions, the electroweak cross section and the
forward-backward asymmetry for the process e+e− → µ+µ−.

Solution

There are two contributing Feynman diagrams, where a photon and a Z boson are
exchanged, respectively
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e+

2

e−
1

γ, Z
= Mγ,Z .

µ−

3

µ+

4

By dubbingMγ,Z the corresponding amplitudes, one obtains

Mγ = (ie)2
(−i)
s

v̄(2)γµu(1)ū(3)γ
µv(4),

MZ =

(−ig
2cθ

)2
(−i)
s−M2

0

v̄(2)γµ(v + aγ5)u(1)ū(3)γ
µ(v + aγ5)v(4), (9.38)

where we have used

s = (p1 + p2)
2, v = −1

2
+ 2s2θ, a =

1

2
. (9.39)

Introducing the projectors ω± = 1
2
(1 ± γ5) gives v + aγ5 = v+ω+ + v−ω−, with

v± = v ± a, in terms of which the amplitudes read

Mγ =
ie2

s

[
v̄(2)γµω+u(1) + v̄(2)γµω−u(1)

] [
ū(3)γ

µω+v(4) + ū(3)γ
µω−v(4)

]
,

MZ =
ig2

4c2θ

1

s−M2
0

{
v+v̄(2)γµω+u(1) + v−v̄(2)γµω−u(1)

}

×
{
v+ū(3)γ

µω+v(4) + v−ū(3)γ
µω−v(4)

}
. (9.40)

The full amplitude is the sum of the two

Mγ +MZ = i
∑

λ,σ=±1

(
e2

s
+

g2

4c2θ(s−M2
0 )
vλvσ

)

×
[
v̄(2)γµωλu(1)ū(3)γ

µωσv(4)
]

:= i
∑

λ,σ=±1

(
e2

s
+

g2

4c2θ(s−M2
0 )
vλvσ

)

×Aλσ. (9.41)

When computing |M̄|2 each term in
∑

λ,σ=±1 does not interfere with the others. In
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fact
∑

spin

AλσA
∗
λ′σ′ =

∑

spin

(v̄(2)γµωλu(1))(ū(3)γ
µωσv(4))× (v̄(4)γ

αωσ′u(3))(ū(1)γαωλ′v(2))

= Tr[/p2γµωλ/p1γαωλ′ ]Tr[/p3γ
µωσ/p4γ

αωσ′]

= Tr[/p2γµ/p1γαωλωλ′ ]Tr[/p3γ
µ/p4γ

αωσωσ′] ∝ δλλ′δσσ′ . (9.42)

Therefore

|M̄|2 = 1

4

∑

λ,σ=±1

∣
∣
∣
∣

e2

s
+

g2

4c2θ(s−M2
0 )
vλvσ

∣
∣
∣
∣

2
(
∑

spin

AλσA
∗
λσ

)

. (9.43)

When λ = σ = 1 or λ = σ = −1 the product of traces is the same that appeared in
the computation of the µ decay (see Problem 9.1)

∑

spin

A++A
∗
++ =

∑

spin

A−−A
∗
−− = 16(p1 · p4)(p2 · p3) = 16(p2 · p3)2. (9.44)

On the contrary, when λ 6= σ the sign in front of ǫ2µ1νǫ
3µ4ν changes, giving

∑

spin

A−+A
∗
−+ =

∑

spin

A+−A
∗
+− = 16(p1 · p3)(p2 · p4) = 16(p1 · p3)2. (9.45)

Hence

|M̄|2 = 4

{∣
∣
∣
∣

e2

s
+

g2

4c2θ(s−M2
0 )
v+v+

∣
∣
∣
∣

2

(p2 · p3)2

+

∣
∣
∣
∣

e2

s
+

g2

4c2θ(s−M2
0 )
v−v−

∣
∣
∣
∣

2

(p2 · p3)2

+2

∣
∣
∣
∣

e2

s
+

g2

4c2θ(s−M2
0 )
v+v−

∣
∣
∣
∣

2

(p1 · p3)2
}

. (9.46)

In terms of Mandelstam variables

t = (p1 − p3)2 = −2(p1 · p3) = −2(p2 · p4),
u = (p1 − p4)2 = −2(p1 · p4) = −2(p2 · p3), (9.47)

the amplitude becomes

|M̄|2 = e4

s2

{∣
∣
∣
∣
1 +

s

4s2θc
2
θ(s−M2

0 )
v2+

∣
∣
∣
∣

2

u2 +

∣
∣
∣
∣
1 +

s

4s2θc
2
θ(s−M2

0 )
v2−

∣
∣
∣
∣

2

u2

+ 2

∣
∣
∣
∣
1 +

s

4s2θc
2
θ(s−M2

0 )
v+v−

∣
∣
∣
∣

2

t2

}

. (9.48)
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To describe the peak s ∼M2
0 one introduces the Z width as follows

M2
0 →M2

0 − iΓZM0.

Therefore, defining

χ
Z
=

s

4s2θc
2
θ(s−M2

0 + iΓZM0)

gives

|M̄|2 = e4

s2

{

2
[
u2 + t2

]
+ |χ

Z
|2
[
u2(v4+ + v4−) + 2t2v2+v

2
−
]

+2ℜe χ
Z

[
u2(v2+ + v2−) + 2t2v+v−

]}

. (9.49)

In the center-of-mass frame

p1 =

√
s

2
(1, 1, 0, 0), p2 =

√
s

2
(1,−1, 0, 0), p3 =

√
s

2
(1, cθ′, sθ′sϕ, sθ′cϕ), (9.50)

one computes

t = −s
2
(1− cθ′), u = −s

2
(1 + cθ′).

The 2-body phase space is

∫

dφ2 =
π

4

∫ 1

−1

dcθ′, (9.51)

so that the differential cross section reads

dσ

dcθ′
=

1

32πs
|M̄|2. (9.52)

Let us take the pure QED limit to begin with. That meansM0 →∞, namely χ
Z
→ 0.

Then

|M̄|2 = 16π2α2(1 + c2θ′). (9.53)

Thus the differential QED cross section is

dσ

dcθ′
=
πα2

2s
(1 + c2θ′). (9.54)

Note that dσ/dcθ′ is symmetric when cθ′ → −cθ′ . The total QED cross section is
easily computed by integrating the previous equation

σ =
4

3
π
α2

s
. (9.55)
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Now we take the full result parametrized as

|M̄|2 = 16π2α2
{
A(1 + c2θ′) +Bcθ′

}
, with

A = 1 +
|χ

Z
|2

4
(v2+ + v2−)

2 +
ℜe χ

Z

2
(v+ + v−)

2,

B =
|χ

Z
|2

2
(v2+ − v2−)2 + ℜe χZ

(v+ − v−)2. (9.56)

The differential cross section then reads

dσ

dcθ′
=
πα2

2s

{
A(1 + c2θ′) +Bcθ′

}
. (9.57)

Now we have an asymmetry when cθ′ → −cθ′ , so we define a forward-backward
asymmetry as follows

∆FB =
1

σ







1∫

0

dcθ′
dσ

dcθ′
−

0∫

−1

dcθ′
dσ

dcθ′






=

3

8

B

A
, (9.58)

while the total cross section is given by

σ =

1∫

−1

dcθ′
dσ

dcθ′
=

4

3
π
α2

s
A. (9.59)

When s ∼ M2
0 one derives the asymmetry ∆FB = 3

(
av

a2 + v2

)2

, which can be used

to determine the Weinberg angle. The observables in (9.58) and (9.59) have been
measured with very high precision at LEP.

9.4 Problem∗: The W decay width

Compute the total decay width ΓW of the W boson to massless fermions in terms of
GF ,MZ and MW .
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Chapter 10

The Fermi Lagrangian

At low energies the electroweak Standard Model reduces to the 4-fermion contact
interactions described by the Fermi Lagrangian. In this chapter, we discuss this limit
in detail.

10.1 Charged currents

In the MW →∞ limit, which is equivalent to the low energy regime we are interested
in, the µ decay amplitude computed in chapter 9 can be also generated by an effective
Lagrangian

Leff =
GF√
2
ν̄µγα(1− γ5)µ ēγα(1− γ5)νe, (10.1)

in which the exchanged W is replaced by a contact interaction among four fermions,

µ

νµ

⇒

ν̄e

e

µ

νµ

ν̄e

e
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By including all quarks and leptons, the effective 4-fermion Fermi Lagrangian involv-
ing charged currents reads

Lc
F
=
GF√
2
J†
cαJ

α
c , (10.2)

where

Jα
c = ν̄eγ

α(1− γ5)e + ν̄µγ
α(1− γ5)µ+ ν̄τγ

α(1− γ5)τ +
3∑

i,j=1

ūiγ
α(1− γ5)Vijqj

is the total charged current, with

q1 = d, q2 = s, q3 = b,
u1 = u, u2 = c, u3 = t, Vij = C.K.M. matrix.

Therefore, Jα
c contains 12 contributions.

10.2 Neutral currents

The effective 4-fermion Lagrangian involving neutral currents can be derived from
the M0 →∞ limit of the tree-level νeµ→ νeµ amplitude

νe

µ

Z

νe

µ

One obtains

M =

(
ig

2cθ

)2

(−i)ν̄eγα(vνe + aνeγ5)νe µ̄γ
α(vµ + aµγ5)µ

1

(−M2
0 )

= −i g2

4cθ2M2
0

ν̄eγα(vνe + aνeγ5)νe µ̄γ
α(vµ + aµγ5)µ. (10.3)
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Such an amplitude can be generated by the effective Lagrangian

Leff =
GFρ√

2
JµJ

µ, (10.4)

where

Jα = ν̄eγα(vνe + aνeγ5)νe + µ̄γα(vµ + aµγ5)µ and ρ =
M2

W

c2θM
2
0

. (10.5)

By including all quarks and leptons, the effective neutral 4-fermion Fermi Lagrangian
reads

Ln
F
=
GFρ√

2
JnαJn

α, (10.6)

where

Jα
n =

∑

f

f̄γα(vf + afγ5)f (10.7)

is the total neutral current containing 12 contributions. Note that ρ = 1, when MW ,
cθ, M0 represent bare parameters of the Standard Model Lagrangian.

10.3 Problem: All possible interactions

Compute the total number of interactions described by the Fermi Lagrangian.

Solution

The complete Fermi Lagrangian is LF = Lc
F
+ Ln

F
, with

Lc
F
=
GF√
2
J+
cαJ

α
c and Ln

F
=
GFρ√

2
JnαJn

α. (10.8)

The current Jα
c contains n = 12 contributions. Thus J+

cαJ
α
c generates n(n+1)

2
= 78

different 4-fermion interactions mediated by charged currents. Analogously, Jnα con-
tains n = 12 terms, so that n(n+1)

2
= 78 different neutral 4-fermion interactions are

possible. In summary, the total number of interactions between leptons and quarks
is 78+78 = 156.
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10.4 Problem∗: The electroweak interactions among

leptons

Write down all possible 4-fermion interactions among leptons generated by the La-
grangian in (10.8).



Chapter 11

Gauge theories

In this chapter we show how the interaction between electrons and photons can be
introduced by requiring abelian local gauge invariance. The resulting theory is called
quantum electrodynamics (QED), and is described by the QED part of the Lagrangian
in (4.7). Extending local gauge invariance to nonabelian transformations leads to the
so-called Yang-Mills theories. Such theories contain generalizations of the photon
called gauge bosons. The photon and gauge boson propagators cannot be defined
without explicitly breaking gauge invariance. In the last part of this chapter we show
how this difficulty can be circumvented.

11.1 Abelian local gauge invariance

Our starting point is the sum of the free Lagrangians describing non-interacting pho-
tons and electrons

LQED

FREE
= −1

4
FµνF

µν + Ψ̄(i/∂ −m)Ψ, (11.1)

where Fµν = ∂µAν−∂νAµ. From LQED
FREE, we aim at constructing a Lagrangian invariant

under the following infinitesimal abelian local transformation

Ψ(x) →LT (1 + ieΛ(x))Ψ(x). (11.2)

The transformation →LT is abelian because it is the infinitesimal version of the U(1)
group transformation Ψ(x) → exp{ieΛ(x)}Ψ(x), and local because Λ(x) is an arbi-
trary real function of the space-time.
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One computes, at the first order in Λ,

LQED

FREE
→LT LQED

FREE
− e(∂µΛ(x))Ψ̄γµψ. (11.3)

The extra piece in the r.h.s. is compensated if one adds to LQED
FREE a term

LQED

INT = −eAµΨ̄γ
µΨ, (11.4)

and assumes the following transformation law for the field Aµ.
1

Aµ →
LT

Aµ − ∂µΛ(x). (11.5)

In summary, the Lagrangian

LQED = LQED

FREE + LQED

INT (11.6)

is invariant under the changes in (11.2) and (11.5). The simultaneous transformations

Ψ(x) →LT (1 + ieΛ(x))Ψ(x)

Aµ →
LT

Aµ − ∂µΛ(x) (11.7)

are called local gauge transformations.

11.2 Problem∗: The covariant derivative

Show that the interaction in (11.4) can also be derived from (11.1) by replacing the
derivative ∂µ acting of ψ with a covariant derivative Dµ defined as

Dµ = ∂µ + ieAµ. (11.8)

11.3 Nonabelian local gauge invariance

Consider an element U of a unitary group G which acts on a multicomponent fields
Ψi according to the following transformation

Ψi(x) →
LT

UijΨj(x). (11.9)

1Note that Fµν is invariant under the change in (11.5).



11.3. NONABELIAN LOCAL GAUGE INVARIANCE 95

The matrix Uij can be written in terms of the group generators T a
ij as follows

U = exp (igT aλa(x)) , (11.10)

where λa(x) are arbitrary real functions of the space-time and

[T a, T b] = icabcT c. (11.11)

If the structure constants cabc are different from zero, 2 the group G is nonabelian
and the transformation in (11.9) is called nonabelian local transformation.

Starting from the free fermion Lagrangian and the generalization of (11.8), both
written in matrix notation,

Lferm

FREE
= Ψ̄j(i/∂ −m)Ψj, := Ψ̄(i/∂ −m)Ψ, (11.12)

(Dµ)jk = δjk∂µ + igAa
µ(T

a)jk := ∂µ + igAµ, (11.13)

we look for the nonabelian equivalent of (11.7), where the Aa
µ are called gauge boson

fields.

The replacement /∂ → /D in (11.12) gives

Lferm

FREE
→ Lferm

INT
= Ψ̄(i/D −m)Ψ. (11.14)

The request of invariance of Lferm
INT

under the transformation in (11.9) implies the
following transformation law

Aµ →
LT

UAµU
−1 +

i

g
(∂µU)U

−1. (11.15)

As for the kinetic term of the gauge bosons, one adds to Lferm
INT

the invariant combina-
tion

LYM = − 1

4NR

Tr(FµνF
µν), Fµν = ∂µAν − ∂νAµ − ig[Aν , Aµ], (11.16)

where Tr(T aT b) = NRδ
ab. 3 In terms of fields, (11.16) is equivalent to

F a
µν = ∂µA

a
ν − ∂νAa

µ − gcabcAb
µA

c
ν . (11.17)

In summary, the Lagrangian

LINV = Lferm

INT + LYM (11.18)

2We assume cabc to be antisymmetric for exchanges of any two indices.
3NR depends on the representation of the group G used for the matrices T .
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is invariant under the simultaneous transformation in (11.9) and (11.15). This invari-
ance is called nonabelian local gauge invariance.

The infinitesimal versions of (11.9) and (11.15) are

Ψ →LT (1 + igΛ(x))Ψ,

Aµ →
LT

Aµ − ∂µΛ(x)− ig[Aµ,Λ(x)], (11.19)

where Λ(x) := λa(x)T a. In terms of the fields Aa
µ, (11.19) gives

Aa
µ →

LT

Aa
µ − ∂µλa(x)− gcabcλb(x)Ac

µ. (11.20)

11.4 Problem: The nonabelian invariance

Prove that LINV does not change under the transformations in (11.9) and (11.15).

11.5 Solution

We first consider Lferm
INT

. The vector Dµ transforms as Ψ

DµΨ = [∂µ + igAµ]Ψ →
LT

[

∂µ + ig

(

UAµU
−1 +

i

g
(∂µU)U

−1

)]

UΨ = U(DµΨ).

Thus

Lferm

INT = Ψ̄(i/D −m)Ψ →LT Ψ̄U−1U(i/D −m)Ψ = Lferm

INT . (11.21)

As for LYM, we first use the infinitesimal transformation in (11.19) to compute how
F µν changes at the first order in Λ(x)

F µν →LT ∂µ
(
Aν − ∂νΛ(x)− ig[Aν ,Λ(x)]

)
− ∂ν

(
Aµ − ∂µΛ(x)− ig[Aµ,Λ(x)]

)

−ig
(
[Aν , Aµ]−

[
Aν , ∂µΛ(x) + ig[Aµ,Λ(x)]

]
−
[
∂νΛ(x) + ig[Aν ,Λ(x)], Aµ

])

= F µν − ig[F µν ,Λ(x)], (11.22)

where we have used the Jacobi identity. This gives

Tr(FµνF
µν) →LT Tr

(
FµνF

µν − igFµν [F
µν ,Λ(x)]− ig[Fµν ,Λ(x)]F

µν
)
= Tr(FµνF

µν),

where the last equality follows from the cyclic property of the trace. Therefore
LYM →LT LYM.
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11.6 The Physics content of LYM

The Lagrangian LYM describes massless spin-1 self-interacting gauge bosons Aa
µ. In

fact, the request of local gauge invariance led to the F µν in (11.16), which generates
3- and 4-particle interaction vertices among the Aa

µ. Note that it is not possible to
insert by hand a mass term

LYM → LYM − 1

2
M2

AA
a
µA

aµ, (11.23)

because the combination Aa
µA

aµ is not invariant under the local gauge transformations
in (11.19),

Aa
µA

aµ =
1

NR

Tr(AµA
µ) →LT 1

NR

Tr(AµA
µ)− 2

NR

Tr(Aµ(∂
µΛ(x))). (11.24)

11.7 Gauge fixing and ghost fields

The part of LYM quadratic in the fields Aa
µ does not admit an inverse (see problem 4.4).

Thus, the propagators of the gauge bosons cannot be defined. This can be understood
because obtaining the equation of motions by imposing δS = 0 does not make sense
if S is invariant under a large class of transformations (the gauge transformations).
To quantize the theory one has to break gauge invariance by introducing in the
Lagrangian an explicit gauge fixing term LGF such that LGF →LT L′

GF
6= LGF, but in a

way that Physics do not depend on LGF. This is obtained by choosing [4]

LGF = −1
2
CaCa, (11.25)

where Ca is any non-singular expression which transforms as

Ca →LT Ca +Mabλb(x), (11.26)

and adding an additional ghost term LGhost defined as

LGhost = η̄aMabηb, (11.27)

where η and η̄ are anticommuting fields 4 that can only appear in loops. In summary,
a good Lagrangian to start the quantization is obtained from LYM as follows

LYM → LYM + LGF + LGhost. (11.28)
4This means that a minus sign has to be associated to each ghost loop.



98 CHAPTER 11. GAUGE THEORIES

11.8 Problem: LGhost in QED

Show that the choice Ca = ∂µA
µ in QED implies that one can safely take LGhost = 0.

Solution

In QED a = 1, so that we relabel C := Ca. Under the abelian transformation in
(11.5) one has C →T C − ∂2Λ(x), which gives M :=Mab = −∂2. Hence

LGhost = −η̄∂2η. (11.29)

The only content of (11.29) is a ghost propagator
p

= i/p2, which does
not interact with any field. Thus, LGhost can be neglected.

11.9 Problem: LGhost in QCD

Derive the ghost Lagrangian in (4.22) from the gauge fixing Lagrangian in (4.21).

Solution

In QCD the gauge fields Aµa are the gluon fields Gµa and the gauge group is SU(3).
Equation (4.21) corresponds to the choice Ca = ∂µG

µa. The nonabelian transforma-

tion in (11.20) gives Ca →LT Ca − ∂2δabλ(x)− gcabc∂µ(Gµcλb(x)). Thus

Mab = −∂2δab − gcabc∂µGµc, (11.30)

which gives the ghost Lagrangian of (4.22).



Chapter 12

The electroweak Standard Model

In this chapter we write down the full Standard Model electroweak Lagrangian LSM.
After introducing the Higgs mechanism, we keep track of the terms which produce
the W and Z masses. As for the fermionic part of LSM, we explicitly deduce the
couplings between gauge bosons and fermions, and explain how fermion masses are
generated by interactions among Higgs doublets and fermions. Finally, we discuss
the gauge fixing needed to quantize LSM.

12.1 The bosonic part of the Lagrangian

The bosonic part of LSM reads as follows

LBos = −
1

4
F 0
αβF

0αβ − 1

4
F a
αβF

aαβ + (DαK)†(DαK)− µ2(K†K)− λ(K†K)2. (12.1)

The field strength tensors in (12.1) are defined in terms of a U(1) singlet vector field
B0

α and an SU(2) triplet Ba
α (a = 1÷ 3),

F 0
αβ = ∂αB

0
β − ∂βB0

α,

F a
αβ = ∂αB

a
β − ∂βBa

α − gǫabcBb
αB

c
β, (12.2)

where ǫabc is the SU(2) structure constant (see section 13.1), and g the SU(2) coupling.
The field K is an SU(2) complex doublet

K =

(
φ+

φ0 +
i√
2
φ3

)

, (12.3)
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and the covariant derivative acting on K is

DαK =

(

∂α + ig
τa

2
Ba

α + ig′
Y (K)

2
B0

α

)

K. (12.4)

The hypercharge Y is defined as

Y = 2(Q− I3), (12.5)

where Q is the electric charge and I3 the third isospin component. Thus, Y (K) = 1.
The constant g′ is the U(1) coupling and τa := σa are the three Pauli matrices defined
in (13.1).

By construction, LBos is invariant under the following infinitesimal SU(2)×U(1) local
gauge transformations 1

B0
α →

LT

B0
α − ∂αλ0(x),

Ba
α →

LT

Ba
α − ∂αλa(x)− gǫabcλb(x)Bc

α,

K →LT
(

1 + ig
τa

2
λa(x) + ig′

Y (K)

2
λ0(x)

)

K. (12.6)

12.2 The Higgs mechanism

Consider the potential given by the last two terms of (12.1),

V (K) := µ2(K†K) + λ(K†K)2. (12.7)

If the field φ0 in (12.3) develops a vacuum expectation value v, namely

φ0 =
1√
2
(H + v) with v = constant, (12.8)

one rewrites

K ∼ 1√
2

(
0

H + v

)

, (12.9)

where the symbol ∼ means that we neglect contributions proportional to the fields
φ± or φ3.

2 Inserting this in (12.7) gives

V (K) ∼ v2

2

(

µ2 +
λv2

2

)

+
(
µ2v + λv3

)
H +

(
µ2 + 3λv2

) H2

2
+ λvH3 +

λ

4
H4.

(12.10)

1Cfr. (11.19) and (11.20).
2They play the role of the longitudinal polarizations of W± and Z (see section 12.5). To simplify

our discussion we do not include them here.
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In the following, we discuss, in turn, the five contributions in (12.10). The first term is
an irrelevant constant. As for the second one, the field H is physical if the coefficient
of H vanish. 3 This happens when

v = 0, or (12.11)

µ2 = −λv2. (12.12)

The solution with v 6= 0 drives the so called spontaneous symmetry breaking, 4 and
H is the Higgs field. Inserting (12.12) in the third piece gives the Higgs mass

M2
H = 2λv2. (12.13)

This implies λ > 0, so that µ2 < 0 in (12.12). Finally, the last two contributions
are the trilinear and quartic Higgs boson self couplings, respectively. Note that the
whole Higgs potential V (K) depends on two free parameters, which can be taken to
be v and MH ,

V (K) ∼ 1

2
M2

HH
2 +

M2
H

2v
H3 +

M2
H

8v2
H4. (12.14)

12.3 The W and Z masses

The masses of the W± and Z bosons are generated by the (DαK)†(DαK) term in
(12.1). One computes

(DαK) ∼ 1√
2

(
0

∂αH

)

+
ig

2
√
2
(H + v)

[(
0 1
1 0

)

B1
α +

(
0 −i
i 0

)

B2
α +

(
1 0
0 −1

)

B3
α +

g′

g

(
1 0
0 1

)

B0
α

](
0
1

)

=
1√
2

(
0

∂αH

)

+
ig

2
√
2
(H + v)

( √
2W+

α
g′

g
B0

α − B3
α

)

, (12.15)

where the W± fields are defined as

W±
α =

1√
2
(B1

α ∓ iB2
α). (12.16)

3Otherwise H particles could be generated and/or absorbed by the vacuum.
4The symmetry that is broken is the minimum of the potential V (K), which is not any longer in

K = 0.
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The structure of the last term in (12.15) suggests to introduce the Z and A fields as
rotations of the B0 and B3 fields. This is achieved by defining

g′

g
=
sθ
cθ
, (12.17)

in which sθ (cθ) is the sine (cosine) of an angle dubbed weak mixing angle. Thus
g′

g
B0

α −B3
α = − 1

cθ
Zα, where

(
Zα

Aα

)

=

(
cθ −sθ
sθ cθ

)(
B3

α

B0
α

)

,

(
B3

α

B0
α

)

=

(
cθ sθ
−sθ cθ

)(
Zα

Aα

)

, (12.18)

so that

(DαK)†(DαK) ∼ 1

2
(∂αH)(∂αH) +

g2

4
(H + v)2W+

α W
−α +

g2

8c2θ
(H + v)2ZαZ

α.

(12.19)

Hence, the gauge boson masses are

M2
W =

g2v2

4
and M2

Z =
M2

W

c2θ
, (12.20)

while the photon field A remains massless. In summary, the part of the bosonic
Lagrangian quadratic in the gauge fields reads

L(2)

Bos
= −1

4

3∑

j=0

(∂αB
j
β − ∂βBj

α)(∂
αBjβ − ∂βBjα) +M2

WW
+
α W

−α +
M2

Z

2
ZαZ

α

= LYM,A + L(2)

YM,Z + L(2)

YM,W +M2
WW

+
α W

−α +
M2

Z

2
ZαZ

α, (12.21)

with LYM,A, L(2)
YM,Z and L(2)

YM,W listed in (4.11).

Finally, note that the model predicts the couplings HW+W−, HHW+W−, HZZ,
HHZZ, and that the first terms in (12.14) and (12.19) give the H propagator.

12.4 The fermionic part of the Lagrangian

The part of LSM generating the couplings between fermions 5

ΨL =

(
fL
f ′
L

)

, fR, f ′
R, f

(′)
L,R :=

1

2
(1∓ γ5)f (′) (12.22)

5The fields fL and f ′
L denote the isospin 1/2 and -1/2 left-handed components of the SU(2)

doublet, while fR and f ′
R are right-handed singlets.
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and gauge boson fields reads

Lf = Ψ̄L(i /D)ΨL + f̄R(i /D)fR + f̄ ′
R(i /D)f ′

R. (12.23)

The covariant derivatives which makes Lf invariant under SU(2)×U(1) local gauge
transformations are

DαΨL =

(

∂α + ig
τa

2
Ba

α + ig′
Y (ΨL)

2
B0

α

)

ΨL,

Dαf
(′)
R =

(

∂α + ig′
Y (f (′))

2
B0

α

)

f
(′)
R . (12.24)

Using (12.16), (12.17) and (12.18) in (12.23) gives

Lf = f̄(i/∂)f + f̄ ′(i/∂)f ′ − g

2
√
2
W+

α f̄γ
α(1− γ5)f ′ − g

2
√
2
W−

α f̄
′γα(1− γ5)f

−gsθQfAαf̄γ
αf − gsθQf ′Aαf̄

′γαf ′ − g

2cθ
Zαf̄γ

α(vf + afγ5)f, (12.25)

with vf and af in (4.9). Inserting color indices and summing over all fermions leads
to the couplings in (4.8).

Fermion masses are generated by adding to Lf a contribution LY containing gauge
invariant Yukawa interactions between K and the fields in (12.22), 6

LY = −λf ′Ψ̄LKf
′
R − λfΨ̄LK̃fR + h.c. (12.26)

where

K̃ := iτ 2K∗ (τ 2 is the second Pauli matrix and Y (K̃) = −1). (12.27)

Using (12.9) gives

LY ∼ −
H + v√

2

(
λf ′ f̄ ′f ′ + λf f̄ f

)
. (12.28)

Hence

mf ′ =
vλf ′√

2
and mf =

vλf√
2
. (12.29)

Note that LY predicts interactions between H and massive fermions.

6Inserting by hand fermion masses in Lf would break gauge invariance.
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12.5 Fixing the gauge

Here we consider the problem of defining the gauge boson propagators by discussing
in detail the case of the Z. The 2-point vertex one reads from (12.21) is non singular

p

Zµ Zν

• = −i
[
(p2 −M2

Z) g
µν − pµpν

]
.

(12.30)

However, the last three terms of (12.1) produce zero-order interactions between the
gauge bosons and the fields φ± and φ3 in (12.3). In particular, the part of LBos

quadratic in the φs or in their products with the gauge fields reads

L(2)

φ
= (∂µφ

+)(∂µφ−)−MW

[
(∂µφ

+)W−µ + (∂µφ
−)W+µ

]

+
1

2
(∂µφ3)(∂

µφ3)−MZ(∂µφ3)Z
µ. (12.31)

The last two terms give rise to the φ3 propagator
p

= i/p2 and to the
vertex

•
p

φ3 Zν

= −MZp
ν .

(12.32)

This generates a further contribution,

• •
p

φ3 ZνZµ

= −ipµpνM2
Z/p

2,

to be added to (12.30). The resulting 2-point Z vertex,

V µν
Z = −i(p2 −M2

Z)

[

gµν − pµpν

p2

]

, (12.33)

is singular and requires the addition of a gauge fixing term. A convenient choice is

LGF,Z = −
1

2
(∂µZµ +MZφ3)

2

= −1
2
(∂µZµ)

2 − (∂µZµ)MZφ3 −
1

2
M2

Zφ
2
3. (12.34)

The first two terms cancel the pµpν and pν contributions in (12.30) and (12.32),
respectively. 7 As a consequence, the final result for the 2-point Z vertex is

V ′µν
Z = −i(p2 −M2

Z)g
µν , (12.35)

7The third term generates, instead, a mass MZ for the φ3 field. This is why φ3 represents the
longitudinal polarization of the massive Z boson.
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which gives the propagator in (4.17). In an analogous way, adding

LGF,W = −1
2
(∂µW−

µ +MWφ
+)2 − 1

2
(∂µW+

µ +MWφ
−)2 (12.36)

produces the W propagator of (4.16).

12.6 Problem∗: The Standard Model ghost La-

grangian

Construct the ghost Lagrangian corresponding to the gauge fixing terms in (12.34)
and (12.36).
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Chapter 13

The Flavour SU(N) symmetries

In this chapter, we discuss the group SU(N) and its role in the classification of mesonic
and baryonic states [5]. Our approach is, once again, a very practical one. Firstly, we
recall the SU(2) and SU(3) group algebras and prove them by means of explicit matrix
calculus. Secondly, we introduce the representation theory of SU(N), and the Young-
Tableaux as a convenient tool for manipulating it. At every step, a few problems are
proposed that serve as a link between the introduced mathematical objects and the
physical description of the hadrons.

13.1 The SU(2) Algebra

The fundamental representation of SU(2) is given in terms of the 3 Pauli Matrices:

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (13.1)

By introducing Ji =
σi

2
, the SU(2) algebra can be written as

[Ji, Jj] = iǫijkJk.

13.2 The SU(3) Algebra

The fundamental representation of the SU(3) algebra is given in terms of 8 the Gell-
Mann Matrices:

107



108 CHAPTER 13. THE FLAVOUR SU(N) SYMMETRIES

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

In this case ta =
λa

2
and the SU(3) algebra is

[ta, tb] = ifabctc,

where fabc is totally asymmetric and can only have one of the following values

(0, 1, 1
2
,−1

2
,
√

3
2
).

13.3 Problem: The SU(2) and SU(3) algebras

a) Verify the SU(2) algebra explicitly.
b) Verify the SU(3) algebra explicitly.
c) Prove that Tr[σi] = 0.
d) Prove that Tr[λi] = 0.

e) Prove that Tr[tatb] = δab

2
explicitly.

f) Prove that fabc = −2i[Tr(tatbtc)− Tr(tatccb)].

Note that the relation f) allows one to compute fabc.
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Solution

a) To verify the SU(2) algebra explicitly, we only have to expand the commutator:

[J1, J2] = J1J2 − J2J1 =
1

4

{(
0 1
1 0

)(
0 −i
i 0

)

−
(
0 −i
i 0

)(
0 1
1 0

)}

=
1

4

{(
i 0
0 −i

)

−
(
−i 0
0 i

)}

=
i

2

(
1 0
0 −1

)

=
i

2
σ3 = iJ3 etc.

b) To prove this, we do exactly the same, but with the Gell-Mann matrices:

[t1, t2] = [
λ1

2
,
λ2

2
] =

1

4



2i





1 0 0
0 −1 0
0 0 0







 = it3 etc.

c) We can see, by simple inspection, that the trace of the Pauli matrices is zero.

d) As in the above case, by simple inspection we see that the trace of the Gell-Mann
matrices is always 0.

e)

Tr[t1t1] = Tr[
(
t1
)2
] =

1

4
Tr









0 1 0
1 0 0
0 0 0









0 1 0
1 0 0
0 0 0







 =
1

4
Tr





1 0 0
0 1 0
0 0 0



 =
1

2

On the other hand:

Tr[t1t2] =
1

4
Tr









0 1 0
1 0 0
0 0 0









0 −i 0
i 0 0
0 0 0







 =
1

4
Tr





i 0 0
0 −i 0
0 0 0



 = 0 etc.

f) We start by multiplying the original expression by tc on the right:

[ta, tb]tc = ifabdtdtc

[tatbtc − tbtatc] = ifabdtdtc
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Now, by taking traces:

Tr[tatbtc − tbtatc] = Tr[tatbtc − tatctb] = ifabdTr[tdtc]

Using what we obtained in the previous section : Tr[tatb] = δab

2

Tr[tatbtc − tatctb] = ifabd δ
dc

2
=
i

2
fabc

So finally, we obtain the expression we where looking for:

fabc = −2i
[
Tr(tatbtc)− Tr(tatccb)

]
.

13.4 Problem: The SU(2) symmetry for protons

and neutrons

Prove that the isospin SU(2) symmetry is a good approximated symmetry for protons
and neutrons.

Solution

We can put p and n together to form a SU(2) isospin doublet (T = 1
2
):

(
p
n

)

,

so that they only differ by their T3 projections:

T3

(
p
0

)

=
σ3
2

(
p
0

)

=
1

2

(
1 0
0 −1

)(
p
0

)

= +
1

2

(
p
0

)

T3

(
0
n

)

=
σ3
2

(
0
n

)

=
1

2

(
1 0
0 −1

)(
0
n

)

= −1
2

(
0
n

)

,
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meaning that the proton has third isospin component = 1
2
, while the neutron has

third isospin component = −1
2
. p and n are then related by the “step” operator

T± = T1 ± iT2 as follows

|p〉 = T+|n〉. (13.2)

Suppose now H|n 〉= E|n 〉 , and that [H, Ti] = 0, namely that Ti commutes with the
Hamiltonian of the system. Then

H|p〉 = HT+|n〉 = T+H|n〉 = T+E|n〉 = E|p〉.

That means that, if [H, Ti] = 0, all the members of an isomultiplet should be de-
generated in mass. Let us check whether this is true for the isodoublet of p and
n:

mn −mp

mn +mp

= 0.7× 10−3.

The SU(2) isospin symmetry is therefore a rather a good symmetry for protons and
neutrons.

13.5 Problem: The SU(2) symmetry for pions

Show that the isospin SU(2) symmetry is a good approximated symmetry for the
pions π± and π0.

Solution

Now the π0 , π+ ,π− can be put into a SU(2) isotriplet (T = 1)





π+

π0

π−





and we can test the symmetry in the same way as in the previous problem by calcu-
lating

mπ± −mπ0

mπ± +mπ0

= 1.7× 10−2.
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The SU(2) isospin symmetry is therefore still a rather a good symmetry for the 3
pions.

13.6 Products of representations

As it should be clear from the two previous examples, representations of different
dimensionality of the SU(N) groups exist. Representations of higher dimensionality
can be obtained by performing the tensor product of 2 representations of lower dimen-
sionality. This can be seen both graphically and with the help of Young Tableaux.

13.7 Problem: Graphical product of representa-

tions

Perform the tensor product 1
2
⊗ 1

2
graphically.

Solution

The graphical tensor product of 2 representations is performed by putting the center
of one representation to coincide with all possible values of the other representation.
In the case of SU(2) we obtain

−1
2

1
2

⊗
−1

2
1
2

=
−1 0 1

=
−1 0 1

⊕
0

so that
1

2
⊗ 1

2
= 1⊕ 0.
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13.8 Problem: The tensor product 3⊗ 3∗

Perform, for SU(3), the tensor product 3⊗ 3∗ graphically.

Solution

In this case the fundamental representation is bi-dimensional since in SU(3) there are
2 diagonal matrices, namely λ3 and λ8.

The two diagonal generators are therefore (remember Fa =
λa
2
)

F3 =
1

2





1 0 0
0 −1 0
0 0 0



 and F8 =
1

2
√
3





1 0 0
0 1 0
0 0 −2



 .

We can define 2 additive quantum numbers:

T3 = F3 → Isospin, and Y =
2√
3
F8 → Hypercharge.

All states can be represented in the (t3, y) plane, where t3 and y are the eigenvalues
of T3 and Y , respectively. 1 The possible states are





1
0
0



 with t3 =
1

2
and y =

1

3
,





0
1
0



 with t3 = −
1

2
and y =

1

3
,





0
0
1



 with t3 = 0 and y = −2
3
. (13.3)

Once we have the eigenvalues, we can represent them graphically in a t3, y plane as
follows

1The relations of t3 and y with baryon number B, strangeness S and charge Q are Q = t3 +
y
2

and y = B + S.
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|
−1

2

|
1
2

t3

-

-

-

-

y

|
−1

2

|
1
2

t3

-

-

-

-

y

−2
3

Representation of 3
for quarks

2
3

Representation of 3∗
for antiquarks

The composition will then be ⊗ = 3⊗ 3∗ = 8⊕ 1:
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(−1
2
, 1)

(−1, 0)

(1
2
, 1)

(1, 0)

(1
2
,−1)(−1

2
,−1)

⊕

13.9 Young Tableaux

A Young Tableau is a combinatorial object useful in representation theory. It pro-
vides a convenient way for describing the group representations of the symmetric and
general linear groups and to study their properties. As we will see now the tableau is
a finite collection of boxes, or cells, arranged in left-justified rows, with the row sizes
weakly decreasing.
When working with the Young Tableaux one has to keep in mind this rules:

• For SU(N) the tableau has no more than N-1 rows
• The length of the lower rows cannot exceed the upper ones.
• The numbers inside the boxes are no decreasing from left to right and increas-
ing top to bottom

This is an example of a Young Tableau .

Some important definitions are
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• f1: Length of the first row,
• f2: Length of the second row,
• λ1 = f1 − f2,
• λ2 = f2 − f3.

The dimension of the representation is given by the formula

d(λ1, λ2) = (1 + λ1) (1 + λ2)

(

1 +
λ1 + λ2

2

)

.

13.10 Problem: 3 and 3* of SU(3)

Find the representations 3 and 3* of SU(3) in terms of Young Tableaux

Solution

The 3 representation of SU(3)

Since we are working in SU(3) the tableau has a maximum of 2 rows. In this case:

→ f1 = 1 f2 = 0 f3 = 0

⇒ λ1 = 1 λ2 = 0

and the dimension is: d(1, 0) = (1 + 1)(1)(1 + 1
2
) = 3.

In fact there are the following 3 possibilities 1 2 3 .

The 3* representation of SU(3)

The representing Young Tableau is

→ f1 = 1 f2 = 1 f3 = 0
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⇒ λ1 = 0 λ2 = 1

and the dimension is: d(0, 1) = (1)(1 + 1)(1 + 1
2
) = 3.

In fact all the possible combinations are: 1
2

1
3

2
3
.

13.11 Problem: The octet of SU(3)

Show that is an octet of SU(3).

Solution

The length of the rows is:

f1 = 2 f2 = 1 f3 = 0 ⇒ λ1 = 1 λ2 = 1 (13.4)

and the dimension is

d(λ1, λ2) = d(1, 1) = (1 + 1)(1 + 1)(1 + 1) = 8.

Explicitly, the eight different possibilities are

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3 .

13.12 Problem: The decouplet of SU(3)

Show that is a decouplet of SU(3).
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Solution

As we did before, we start by looking at the row’s length

f1 = 3 f2 = 0 f3 = 0 ⇒ λ1 = 3 λ2 = 0. (13.5)

The dimension of the representation is then

d(λ1, λ2) = d(3, 0) = (1 + 3)(1 + 0)(1 +
3

2
) = 10.

Explicitly, the ten different possibilities are

1 1 1 1 1 2 1 1 3 1 2 2 1 2 3

1 3 3 2 2 2 2 2 3 2 3 3 3 3 3 .

13.13 Problem: A representation of SU(3) with

dimension 6

Show that has d=6.

Solution

The length of the row is:

f1 = 2 f2 = 0 f3 = 0 ⇒ λ1 = 2 λ2 = 0, (13.6)

and the dimension is

d(λ1, λ2) = d(2, 0) = (1 + 2)(1 + 0)(1 + 1) = 6.

Explicitly:

1 1 1 2 1 3 2 2 2 2 2 3 3 3 .



13.14. PROD. OF REPRESENTATIONS AND YOUNG TABLEAUX 119

13.14 Prod. of representations and Young Tableaux

The product of representations can be obtained by adding one representation to the
other in all possible ways that still generate a Young Tableau. For example

• Mesons : 3⊗ 3∗

⊗ = + ⇒ 8⊕ 1→

Meson nonet.

Note that is a singolet of SU(3), because it corresponds to the only pos-

sibility
1
2
3
.

• Baryons : 3⊗ 3⊗ 3

⊗ ⊗ = ⊗
{

⊕
}

= ⊗ + ⊗ =

= ⊕ ⊕ ⊕ = 10⊕ 8⊕ 8⊕ 1→

Baryon decuplet, octets, and singlet.

13.15 Conj. representation and Young Tableaux

To construct the conjugate representation one rotates of 180º the complementary
part, namely the part one has to add to obtain N rows in SU(N). For example:

3→ ⇒ 3∗ →

or
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6→ ⇒ 6∗ →

13.16 Problem: The 0− mesons

Given q =





u
d
s



 and q̄ =





ū
d̄
s̄



 show that the 0− mesons form the representation

8⊕ 1 of SU(3) in the (t3, y) plane.

Solution

We know that the constituent of the 0− meson nonet are

π+ ∼ d̄u π− ∼ ūd π0 ∼ 1√
2

(
ūu− d̄d

)

K+ ∼ s̄u K− ∼ ūs K0 ∼ s̄d

K̄0 ∼ d̄s η0 ∼ 1√
6

[
ūu+ d̄d− 2s̄s

]
η′ ∼ ūu+ d̄d+ s̄s√

3

. (13.7)

We start by looking for the t3 and y eigenvalues of the quarks:

t3(u) =
1

2
y(u) =

1

3
; t3(d) = −

1

2
y(d) =

1

3
; t3(s) = 0 y(s) = −2

3
.

And for the antiquarks:

t3(ū) = −
1

2
y(ū) = −1

3
; t3(d̄) =

1

2
y(d̄) = −1

3
; t3(s̄) = 0 y(s̄) =

2

3
.
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Now, we can obtain the eigenvalues for the mesons since they’re additive numbers.

π+ →
(
1

2
+

1

2
, 0

)

; K+ →
(
1

2
,
2

3
+

1

3

)

=

(
1

2
, 1

)

π− → (−1, 0) ; K− →
(

−1
2
,−1

3
− 2

3

)

=

(

−1
2
,−1

)

π0 → 1√
2
(0, 0) ; K0 →

(

−1
2
,
2

3
+

1

3

)

=

(

−1
2
, 1

)

K̄0 →
(
1

2
,−1

)

η0 → (0, 0) ; η′ → (0, 0)

And finally, we represent the eigenvalues for the nine mesons in the (t3, y) plane:

| | | |
t3(-1,0) (1,0)(0,0)
⊕ η′ = 8⊕ 1.

-

-

-

-

y

π− π0 η0 π+

K0 k+

K− K̄0

We can see that 3 out of the 9 states have quantum numbers t3 = y = 0 . These are
linear combinations of uū , dd̄ , and ss̄ . The singlet combination must contain each
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quark flavour on a equal footing, so after normalization we have:

η′ =
1√
3

(
uū+ dd̄+ ss̄

)

another one is a member of the isospin triplet, and so:

π0 =
1√
2

(
uū− dd̄

)

By requiring orthogonality to both π0 and η′ we found that the isospin singlet
(T3 = 0) is:

η0 =
1√
6

(
uū+ dd̄− 2ss̄

)
.

13.17 Problem: The 1− mesons

Repeat what we did in the previous problem in the case of the 1− mesons.

Solution

It is possible to have excited states of the constituent quarks of the 0− nonet, giving
particles with the same quark composition, but higher J . The 1− nonet is an
example. We can draw the (t3, y) representation in the same way
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| | | |
t3(-1,0) (1,0)(0,0)

⊕ ϕ̃ = 8⊕ 1

-

-

-

-

y

ρ− ρ0 ω̃ ρ+

K∗0 k∗+

K∗− K̄∗0

Since states with the same quantum numbers can mix, and since both ω̃ and ϕ̃ have
t3 = y = 0, one has

ϕ = cos(θ)ϕ̃+ sin(θ)ω̃

ω = −sin(θ)ϕ̃ + cos(θ)ω̃

where θ is a mixing angle. The physical states ω and ϕ are then a combination of
the isospin singlet ω̃ and the singlet ϕ̃.

13.18 Problem: The 1
2

+
baryon octet

Given that the tensor product 3 ⊗ 3 ⊗ 3 = 10⊕ 8 ⊕ 8 ⊕ 1 show that p, n, Σ±, Σ0,
Ξ−, Ξ0, and Λ0 form an octet of SU(3).

Solution

First, we have to know the quark composition of the particles

p ∼ udu ; n ∼ udd ; Ξ0 ∼ ssu ; Ξ− ∼ ssd
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Σ+ ∼ suu ; Σ− ∼ sdd ; Σ0 ∼ s(ud+ du)√
2

; Λ0 ∼ s(ud− du)
2

.

Then one obtains the following t3 and y eigenvalues (remember the eigenvalues of the
constituent quarks from Problem 13.16)

p→ (
1

2
, 1) ; n→ (−1

2
, 1) ; Ξ0 → (

1

2
,−1) ; Ξ− → (−1

2
,−1)

Σ+ → (1, 0) ; Σ− → (−1, 0) ; Σ0 → (0, 0) ; Λ0 → (0, 0).

Therefore, the representation in the t3, y plane for the baryons is

| | | |
t3(-1,0) (1,0)(0,0)

-

-

-

-

y

Σ− Σ0 Λ0
Σ+

n p

Ξ− Ξ0

This is the
1

2

+

baryon octet.

13.19 Problem: The baryonic SU(3) symmetry

Is the baryonic SU(3) symmetry a good one?
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Solution

SU(3) is a good symmetry if ms = md = mu, implying that all particles in the same
octet should have the same mass. In the particle data book one can find the mass for
Σ particles and nucleons N :

MN = 938.27203 MeV, MΣ = 1189.37 MeV. (13.8)

giving

MΣ −MN

MΣ +MN

= 0.12. (13.9)

Therefore SU(3) is not as good as SU(2), since it’s broken up to the 10%. However, as
we will see later, we can use this model to obtain some relations among the particle’s
masses, namely the Gell-Man Okubo formula.

13.20 Problem: The
3

2

+

baryonic decuplet of SU(3)

Show that the
3

2

+

baryons form a decuplet of SU(3).

Solution

The quark composition for the
3

2

+

baryons is:

∆++ ∼ uuu ; ∆+ ∼ uud ; ∆0 ∼ udd ; ∆− ∼ ddd

Σ∗+ ∼ suu ; Σ+0 ∼ sud ; Σ∗− ∼ sdd

Ξ∗0 ∼ ssu ; Ξ∗− ∼ ssd ; Ω− ∼ sss

And representing the eigenvalues in the t3, y plane, we have:
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( -1,0) ( 1,0)( 0,0)

y

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

t3

That is the representation of the
3

2

+

baryon decuplet.

13.21 Problem: The Gell-Mann Okubo mass for-

mula

By using the quark model derive relations among the masses of π, K, and η.

Solution

We suppose that the SU(2) symmetry is exact, so that mu = md. Then, the masses
are:

π ∼ ud −→ mπ
2 = m0 +md +mu = m0 + 2mu

K ∼ su −→ mK
2 = m0 +mu +ms
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η0 ∼
1√
6

(
uū+ dd̄− 2ss̄

)
−→ mη

2 = m0 +
2mu

3
+ 2ms

4

6
= m0 +

2

3
(mu + 2ms) ,

where m0 is the binding energy, mu = md and the mesons masses are squared because
it can be proved that the relation works better this way. We have to work with these
3 expressions so we can obtain one relation among the three mesons masses. We start
with

4mk
2 − 3mη

2 = 4m0 + 4mu + 4ms − 3m0 − 2mu − 4ms = m0 + 2mu = mπ
2

then

4mk
2 = mπ

2 + 3mη
2, (13.10)

This last relation is known as the Gell-Mann Okubo masses formula for mesons.
Numerically, the l.h.s. of (13.10) gives 0.98 GeV2 while the r.h.s. is 0.92 GeV2.

13.22 Problem: A mass formula for the 1
2

+
baryons

By using the quark model derive the mass formula for the 1
2

+
baryons

mΣ + 3mΛ

2
= mn +mΞ.

Solution

As we did in the previous problem, the first thing to do is knowing the quark compo-
sition of the baryons (remember that we are considering mu = md since the SU(2)
symmetry is supposed to be exact)

mn = m0+3mu ; mΣ = m0+2mu+ms ; mΞ = m0+mu+2ms ; mΛ = m0+2mu+ms.

The left part of the relation gives

mΣ + 3mΛ

2
=

1

2
(m0 + 2mu +ms + 3m0 + 6mu + 3ms)

= 2m0 + 4mu + 2mS, (13.11)

while the right part reads

mn +mΞ = 2m0 + 4mu + 2ms. (13.12)
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Since they’re equal, we have indeed proved the mass relation

mΣ + 3mΛ

2
= mN +mΞ. (13.13)

This is called the Gell-Mann Okubo mass formula for 1
2

+
baryons. Numerically, the

l.h.s. of (13.13) gives 2.23 GeV while the r.h.s. is 2.25 GeV.

13.23 Problem: A mass formula for the
3

2

+

baryon

decuplet

For the
3

2

+

baryon decuplet derive the rule: mΩ− −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −m∆.

Solution

By looking at the quark composition of the members of the decuplet (see Problem
13.20), by keeping in mind that we consider mu = md, and consequently that parti-
cles with the same isospin are degenerated in mass, and by decomposing the mass of
the particles into the binding energy (m0) plus the masses of the constituent quarks,
one obtains:

Ω− ∼ sss −→ mΩ− = m0 + 3ms

Ξ∗ ∼ ssu −→ mΞ∗ = m0 + 2ms +mu

Σ∗ ∼ suu −→ mΣ∗ = m0 +mS + 2mu

∆ ∼ uuu −→ m∆ = m0 + 3mu.

By subtracting, as suggested by the statement of the problem, one obtains

mΩ− −mΞ∗ = ms −mu ; mΞ∗ −mΣ∗ = ms −mu ; mΣ∗ −m∆ = ms −mu,

proving indeed the relation we where looking for:

mΩ− −mΞ∗ = m∗
Ξ −mΣ∗ = mΣ∗ −m∆.
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13.24 Problem∗: A representation of SU(3)

Compute the dimensionality of the representation of SU(3) and list ex-
plicitly all possible states in the language of the Young Tableaux.
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Chapter 14

Collisions involving hadrons

In the previous chapters, we dealt with the computation of cross sections and decay
rates for initial states involving fundamental point-like particles, such as (anti)electrons
or gauge bosons. The perfect knowledge of the initial state allows one to derive very
precise predictions. On the contrary, (anti)protons are not point like particles, since
they can be interpreted as bound states of quarks and gluons (partons). Despite
of this fact, since from an experimental point of view it is much easier accelerating
heavy objects, in modern high energy accelerator collisions are studied between pro-
tons (or between protons and anti-protons, or protons and leptons). In this chapter,
we briefly illustrate the complications that arise in this kind of processes and also
introduce computational tools that can be used to obtain physical predictions.

14.1 The deep inelastic scattering

The simplest possible process involving hadrons is the scattering of an electron with
four-momentum k against a proton with four-momentum p. The kinematics is given
by

131
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p

k k1

q

pn

k = (E, k̄)

q = (k − k1)
k1 = (E1, k̄1)

Q2 = −q2

In the center-of-mass frame of the proton p = (M,~0) one has

E − E1 =
q · p
M

= ν and x =
Q2

2Mν
=
EE1(1− cos θ)

M(E − E1)
, (14.1)

therefore the kinematics is completely determined by E,E1 and cos θ.

The inclusive cross section can be written as

dσ2

dE1dΩ
=
α2

q4

(
E1

E

)

LµνW
µν , (14.2)

where Lµν and W µν are leptonic and hadronic tensors, respectively, whose form can
be determined by calculating the fully differential cross section

dσ =
(2π)4

4EM

∑

n

n∏

i=1

[
d3pi

(2π)32ωi

]

¯|M |2δ4(p+ k − k1 − pn)
d3k1

(2π)32E1

, (14.3)

where M is the amplitude of the process

M = −e
2

q2
ūλ(k1)γµuλ(k)T

µ(σ). (14.4)

In the previous equation T µ(σ) is the hadronic current and λ, σ denote spin polariza-
tions.

The matrix element squared, summed over the final state polarizations and averaged
over the initial state ones, is given by

¯|M |2 =
1

4

e4

q4
Tr[/k1γµ/kγν ]

∑

σ

T µ(σ)T ∗ν(σ)

=
e4

q4

{

kµ1k
ν + kν1k

µ +
q2

2
gµν
}
∑

σ

Tµ(σ)T
∗
ν (σ), (14.5)
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therefore

dσ =
(2π)4

4EM

(4πα)2

q4
E2

1 dΩ dE1

(2π)32E1

{...}
∑

n,σ

n∏

i=1

[
d3pi

(2π)32ωi

]

Tµ(σ)T
∗
ν (σ)δ

4(p+ q − pn).(14.6)

By comparing the previous equation with (14.2), one obtains

Lµν = 2

{

kµ1k
ν + kν1k

µ +
q2

2
gµν
}

≡ 1

2
Tr[/k1γµ/kγν],

W µν =
1

4M

∑

n,σ

∫ n∏

i=1

d3pi
(2π)32ωi

(2π)3δ4(p+ q − pn)Tµ(σ)T ∗
ν (σ). (14.7)

The tensor W µν is unknown but conserved (namely qµWµν = qνWµν = 0) and can be
written in terms of two form factors

Wµν =
1

M

{

−F1

(

gµν − qµqν

q2

)

+
F2

Mν

(

pν − (p · q)
q2

qν
)(

pµ − (p · q)
q2

qµ
)}

,

(14.8)

yielding

d2σ

dΩdE1
=

α2

4E2 sin4 θ
2

(
2F1

M
sin2 θ

2
+
F2

ν
cos2

θ

2

)

=
α2

4E2 sin4 θ
2

1

ν

[

cos2
θ

2
F2 + sin2 θ

2

Q2

xM2
F1

]

. (14.9)

Experimentally one observes a scaling phenomenon, namely

lim
Q2→∞
︸ ︷︷ ︸

at x fixed

Fj(x,
Q2

M2
) = Fj(x), (14.10)

and the following Callan-Gross relation between the two form factors

F2 = 2xF1. (14.11)

The two equations above can be explained by assuming a quark structure for the
proton. In fact, in the limit of four-momenta without any transversal component
(infinite momentum frame), the point-like scattering of the photon with a quark
carrying a fraction ξ of the momentum of the proton
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p

ξp
p1

∗ q

allows to compute

Tµ(σ) = ū(p1)γµu(ξp) (14.12)

and its contribution to the hadronic tensor W µν

W µν
ξ =

1

4Mξ
︸ ︷︷ ︸

from flux

∫
d3p1

(2π)32p01
(2π)3δ4(ξp+ q − p1) Tr {/p1γµ/pγν} ξ

=
1

4M

∫
d3p1
2p01

δ4(q + ξp− p1) Tr{· · · } =
1

4M

1

2p01
δ(q0 + ξp0 − p01) Tr{· · · }.

(14.13)

Note that the final state integration is performed over a 1-body phase space, because
only one parton collides. But in the infinite momentum frame one can rewrite

δ(q0 + ξp0 − p01)
2p01

= δ[(p01)
2 − (q0 + ξp0)

2] θ(p01) = δ[p21 − (q + ξp)2] θ(q0 + ξp0)

= δ[q2 + 2(q · p)ξ] θ(· · · ) = δ[−2x(q · p) + 2(q · p)ξ] θ(· · · )

=
1

2(q · p)δ(x− ξ) θ(· · · ) =
1

2Mν
δ(x− ξ) θ(q0 + ξp0). (14.14)

Therefore

W µν
ξ =

1

8M2ν
δ(x− ξ) Tr{(/q + ξ/p)γµ/pγν}, (14.15)

and

W µν =
1

8M2ν

∫ 1

0

dξ f(ξ) δ(x− ξ) Tr {(/q + ξ/p)γµ/pγν}

=
1

2M2ν
f(x)

{

(q + xp)µpν + (q + xp)νpµ − gµν(q · p)
}

=
f(x)

2M2ν

{

pµpν (2x) + · · · − gµν(q · p)
}

= f(x)

{

pµpν
( x

M2ν

)

− gµν (q · p)
2M2ν

}

, (14.16)
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yielding

F2

M2ν
=
f(x)x

M2ν
=⇒ F2 = xf(x)

−F1

M
= −f(x)

2M
=⇒ F1 =

f(x)

2
. (14.17)

Therefore

F2 = 2xF1, (14.18)

which is the Callan-Gross relation, and F1,2 depend on x, but not on Q2, as promised.

f(x) is interpreted as a parton density. For example, in a proton

f(x) =
4

9
(u+ ū) +

1

9
(d+ d̄) +

1

9
(s+ s̄). (14.19)

Sum-rules exist which reproduce the proton quantum numbers. For example, the
electric charge of the proton implies

∫ 1

0

dx

{
2

3
[u− ū]− 1

3
[d− d̄]− 1

3
[s− s̄]

}

= 1. (14.20)

Furthermore u = uv + us and d = dv + ds, with us and ds contributions due to the
see of gluons. Analogously in Drell-Yan processes (to produce, for example, a µ+µ−

pair) one has the following picture

p1

k1 γ

q

p2

k2

µ−

µ+

with

k1 = x1p1, k2 = x2p2,

q2 = (k1 + k2)
2 = 2x1x2(p1 · p2) = sx1x2. (14.21)

By denoting
dσ̂ii
dq2

the parton level cross section for the process qiq̄i → µ+µ−, the

hadron level cross-section can be written as follows

dσ

dq2
=

∑

i

∫

dx1dx2 [qi(x1)q̄i(x2) + q̄i(x1)qi(x2)]
dσ̂ii
dq2

δ(q2 − sx1x2). (14.22)
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The previous equation is an example of factorization formula, which will be discussed
in more detail in the next section.

14.2 The factorization formula

The key ingredient to study hadronic collisions is the so called factorization theorem

dσ

dX
=
∑

j,k

∫

X̂

fj(x1, Qi)fk(x2, Qi)
dσ̂j,k(Qi, Qf )

dX̂
F (X̂ → X ;Qi, Qf). (14.23)

The l.h.s. of (14.23) represents an observable at the hadronic level, that can be
obtained by convoluting the predictions for the hard collisions at the parton level,
dσ̂j,k(Qi,Qf )

dX̂
,with the so called parton densities ,fj(xi, Qi), that represent the probabil-

ity of finding the partons inside the (anti)proton. The sum
∑

j,k is over all possible

partons in the (anti)proton. Finally, F (X̂ → X ;Qi, Qf) represents the transition
of the partons in the final state to observable hadrons (the hadronization process).
In the previous formula, the quantities computable in Quantum Field Theory are
denoted by a .̂ They correspond to hard collisions between point-like, elementary
objects (the partons). The other quantities, such as the parton densities, can be mea-
sured, and this experimental information, together with the computation of the hard
part of the process, can be used to calculate physical observables at hadron colliders.
In summary, (14.23) tells us that the Physical description of the hadronic collisions

can be factorized into a short distance, perturbatively computable part,
dσ̂j,k(Qi,Qf )

dX̂
,

and a long distance non perturbative piece, represented by the parton densities. The
correctness of such an assumptions relies, in turn, to the asymptotic freedom of QCD,
that we will discuss in chapter 17. Equation (14.23) can be represented, pictorially,
as follows

dσ̂ X̂ → F → Xf(x,Qi)
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jp subprocess jp subprocess jp subprocess
1 qq̄′ →WQQ 2 qg → q′WQQ 3 gq → q′WQQ
4 gg → qq̄′WQQ 5 qq̄′ →WQQq′′q̄′′ 6 qq′′ →WQQq′q′′

7 q′′q → WQQq′q′′ 8 qq̄ →WQQq′q̄′′ 9 qq̄′ →WQQqq̄
10 q̄′q →WQQqq̄ 11 qq̄ →WQQqq̄′ 12 qq̄ → WQQq′q̄
13 qq →WQQqq′ 14 qq′ →WQQqq 15 qq′ →WQQq′q′

16 qg → WQQq′q′′q̄′′ 17 gq → WQQq′q′′q̄′′ 18 qg →WQQqqq̄′

19 qg → WQQq′qq̄ 20 gq → WQQqqq̄′ 21 gq →WQQq′qq̄
22 gg →WQQqq̄′q′′q̄′′ 23 gg →WQQqq̄qq̄′

Table 14.1: Subprocesses contributing to WQQ̄ + n jets final states.

14.3 Problem: Summing over subprocesses

Classify the possible subprocesses contributing to the process

pp→ WQQ̄ + n jets,

where Q is a heavy quark (b or c), not present in the initial state.

Solution

According to the number of jets (n), the situation can be summarized as in table 14.1,
where gluons in the final state are understood. So, for example, when n = 0 there
is just one contributing process (jp = 1 in the table), while when n = 2 there are 3
contributing processes, namely jp = 1 with a final state gluon, jp = 2 and jp = 3.

14.4 Problem: The number of Feynman diagrams

Find the number of Feynman diagrams contributing to the subprocesses g g → n g
and qq̄ → n g with n = 7, 8, 9.
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Solution

It is clear that only for small values of n one can find the solution by actually drawing
the diagrams. For example qq̄ → 2g receive contributions from 3 Feynman diagrams.
The situation for large values of n is summarized in table 14.2.

Process n = 7 n = 8 n = 9 n = 10

g g → n g 559,405 10,525,900 224,449,225 5,348,843,500

qq̄ → n g 231,280 4,016,775 79,603,720 1,773,172,275

Table 14.2: Number of Feynman diagrams corresponding to amplitudes with different
numbers of quarks and gluons. From F. Caravaglios, M. L. Mangano, M. Moretti and
R. P., NPB 539 (1999) 215.

14.5 ALPGEN

From the 2 previous problems, one can convince himself that a very little space is
left for analytic work in the case of Hadronic Collisions. On the other hand, the
LHC at CERN is a pp collider, and TEVATRON at FERMILAB is a pp̄ collider,
so that, for both of them, theoretical predictions are necessary. For these reasons,
public numerical codes are available, which one can use to obtain predictions, such
as ALPGEN [1].

14.6 Problem: Downloading ALPGEN

Download ALPGEN in your Personal Computer.

Solution

ALPGEN can be downloaded from the URL
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http://mlm.home.cern.ch/mlm/alpgen/

14.7 Problem: Estimating W +2j production with

ALPGEN

By Using ALPGEN, estimate the number of produced events in the processes:

1. pp̄→ W± + 2 jets with W+ → e+νe and W
− → e−ν̄e

at TEVATRON with integrated luminosity L = 10fb−1 and energy
√
s = 2Eb =

1960 GeV.

2. pp→ W± + 2 jets with W+ → e+νe and W
− → e−ν̄e

at the LHC with integrated luminosity L = 600fb−1 and energy
√
s = 2Eb =

14000 GeV.

Use the following set of cuts

• pT (jets) > 20 GeV,

• |η(jets)| < 2.5,

• ∆R(jet, jet) > 0.7.

Solution

By running ALPGEN, one finds the following estimates for the cross sections at
TEVATRON and at the LHC

σTEV (W2j) = 34.0(2) pb

σLHC(W2j) = 1075(4) pb (14.24)

The numbers of expected events can therefore be found after multiplication by the
integrated luminosities

NTEV (W2j) = 340000

NLHC(W2j) = 645× 106. (14.25)



140 CHAPTER 14. COLLISIONS INVOLVING HADRONS

14.8 Problem: Estimating e+e−+2j production with

ALPGEN

By Using ALPGEN, estimate the number of produced events in the processes:

1. pp̄→ Z/γ∗ + 2 jets with Z/γ∗ → e+e−

at TEVATRON with integrated luminosity L = 10fb−1 and energy
√
s = 2Eb =

1960 GeV.

2. pp→ Z/γ∗ + 2 jets with Z/γ∗ → e+e−

at the LHC with integrated luminosity L = 600fb−1 and energy
√
s = 2Eb =

14000 GeV.

Use the following set of cuts

• pT (jets) > 20 GeV,

• |η(jets)| < 2.5,

• ∆R(jet, jet) > 0.7,

• 40 GeV < m(e+e−) < 200 GeV,

where m(e+e−) is the invariant mass of the e+e− system.

Solution

By running ALPGEN, one finds the following estimates for the cross sections at
TEVATRON and at the LHC

σTEV (Z2j) = 3.61(4) pb

σLHC(Z2j) = 116(1) pb (14.26)

The numbers of expected events can therefore be found after multiplication by the
integrated luminosities

NTEV (Z2j) = 36100

NLHC(Z2j) = 69600000. (14.27)
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14.9 Problem: Estimating H + 2j production with

ALPGEN

By Using ALPGEN, estimate the number of produced events in the processes:

1. pp̄→ H + 2 jets (coming from an effective ggH coupling)

at TEVATRON with integrated luminosity L = 10fb−1 and energy
√
s = 2Eb =

1960 GeV.

2. pp→ H + 2 jets (coming from an effective ggH coupling)

at the LHC with integrated luminosity L = 600fb−1 and energy
√
s = 2Eb =

14000 GeV.

Use the following set of cuts

• pT (jets) > 20 GeV,

• |η(jets)| < 2.5,

• ∆R(jet, jet) > 0.7.

Solution

By running ALPGEN, one finds the following estimates for the cross sections at
TEVATRON and at the LHC

σTEV (H2j) = 0.0273(2) pb

σLHC(H2j) = 4.99(4) pb (14.28)

The numbers of expected events can therefore be found after multiplication by the
integrated luminosities

NTEV (H2j) = 273

NLHC(H2j) = 2994000. (14.29)
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14.10 Problem∗: Estimating WW production with

ALPGEN

By Using ALPGEN, estimate the cross section for the processes:

1. pp̄→WW at TEVATRON,

2. pp→WW at the LHC.



Chapter 15

Accelerating particles

In this chapter, we list a few problems on the main quantities one has to take into
account in particle accelerator Physics.

15.1 Parameters for accelerating particles

The following fundamental relation holds among the radius of the orbit, the momen-
tum, the charge and the magnetic field:

R =
pc

qB

mixed units
↑≃ p

0.3B







[p] = GeV/c
[B] = Tesla
[R] = meters.

15.2 Problem: Accelerating protons

Calculate the radius needed to accelerate protons to momenta of about 30 GeV/c
with a magnetic fields of 2 Tesla.

143
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Solution

R =
p

0.3B
=

30

(0.3)(2)
= 50m. (15.1)

15.3 Problem: The magnetic field of the LHC

At the LHC, whose circumference C is 27 km, pp collisions are going to be produced
at a center-of-mass energy of

√
s= 14 TeV. Compute the magnetic field that should

have the magnets to keep the protons in the orbit.

Solution

p

0.3R
, C = 2πR, (15.2)

p =

√
s

2

1

c
= 7000GeV/c. (15.3)

Then

B =
7000 · 2π
0.3 · C =

7000 · 6.28
0.3 · 27000 =

7 · 6.28
0.3 · 27 = 5.4Tesla. (15.4)

Since, in normal magnets, B ≤ 2T , superconducting magnets have to be used at the
LHC.

15.4 Problem: The luminosity of the LHC

Compute the instantaneous luminosity of the LHC by knowing that protons bunches
contain 1011 particles, have a transverse radius of 15µm and that there are 2600
bunches for each beam.
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Solution

The instantaneous luminosity is given by the formula

L = f · nN1N2

A
. (15.5)

By using

n = 2600, N1 = N2 = 1011, f =
300000

27 s
= 11111s−1,

A = 4πR2, R = 15 · 10−6m = 15 · 10−4 cm, (15.6)

one obtains

L =
(11111)(2600)(1022)

(4)(3.14)(152)(10−8)

1

cm2 · s = 10222 · 1030 cm−2s−1 = 1 · 1034 cm−2s−1. (15.7)

15.5 Problem: The integrated luminosity of the

LHC

Compute, in fb−1, the integrated luminosity
∫
dt L ≡ L of one year of taking data

at the LHC assuming an efficiency of 30%.

Solution

The number of seconds (Ns) of data taking in one year, with 30% of efficiency is

Ns =
30

100
· 365 · 3600 · 24 = 9460800 s ∽ 107s. (15.8)

Then

L = L ·Ns = 1041cm−2 = 1041
1

cm2
= 1041

1

cm2

(
10−24cm2

1 b

)

= 1017
1

b
=

1017

1015fb
= 100 fb−1. (15.9)
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15.6 Problem: tt̄ production at the LHC

Knowing that σtt̄ ≃ 7 pb compute the number of tt̄ pairs (Ntt̄) produced each year at
the LHC.

Solution

Ntt̄ = σtt · L = 7 pb · 100
fb

= 7 · 100 · 1000fb
1fb

= 7 · 105. (15.10)

15.7 Problem: e− energy loss at LEP1

Calculate the energy loss of an electron following a circular orbit at LEP1 at energies
near the peak of the Z0 and compare the result with the energy loss of a proton.

Solution

For electrons one has

∆E =
4π

3

αℏcβ3γ4

R
, (15.11)

namely

∆E[KeV ] = 88.5
E4[GeV ]

R[m]
. (15.12)

Since

E = 45GeV, R =
C
2π

=
27000

2π
= 4300m (15.13)

one obtains

∆E =
88.5 · (45)4

4300
KeV = 84392KeV = 84MeV. (15.14)
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For protons, one would have, instead

∆E[KeV ] = 88.5
E4[GeV ]

R([m])

(
me

mp

)4

, (15.15)

namely

∆E = 84MeV (10−13) = 84 · 106eV · 10−13 = 84 · 10−7eV ∽ 10−5eV. (15.16)

that is a negligible energy loss. That is the reason why it is much easier the acceler-
ation of protons.

15.8 Problem∗: The SLHC

A project exists to upgrade the LHC to reach an instantaneous luminosity of

L = 1 · 1035 cm−2s−1. (15.17)

This upgraded LHC is called Super LHC (SLHC). Discuss the possible options to
increase the Luminosity.
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Chapter 16

Quantum Field Theory at one-loop

So far we have dealt with the problem of computing physical processes at the tree-level
only. However, any Quantum Field Theory describing Nature should be internally
consistent, meaning that, among other things, it should be possible to compute the so
called radiative corrections, that is the contributions coming from Feynman diagrams
with loops. In this chapter, we discuss the complications which arise in the one-
loop case and show how they can be solved [4]. We do it both in the framework of
the electroweak Standard Model (SM) and with the help of simple scalar λφ3 and
gφ4 theories. Finally, we present a tool to compute in a numerical way one-loop
corrections for arbitrary processes.

16.1 UV divergent one-loop diagrams

When computing loop corrections in Quantum Field Theories divergences may appear
due to the integration over large components of the momentum flowing in the loops.
As an example, consider the interaction Lagrangian LINT = −λφ3/3!. It gives rise to
the following one-loop diagram

p
m

m

q
=

λ2

2(2π)4

∫

d4q
1

(q2 −m2)[(q + p)2 −m2]
,

(16.1)
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which gives an infinite contribution. In fact, the q →∞ limit of the integral behaves
as

∫ Λ

dq
q3

q4
=

∫ Λ dq

q
= ln (Λ), (16.2)

which gives ∞ when Λ → ∞. Divergences like that are dubbed ultraviolet (UV)
divergences.

16.2 Problem: UV infinities in gφ4.

Classify the UV divergent one-loop diagrams and integrals appearing in the scalar
gφ4 theory.

Solution

The Lagrangian is

L =
1

2
(∂µφ)(∂

µφ)− m2

2
φ2 − g

4!
φ4, (16.3)

from which one derives the following Feynman rules

=
i

p2 −m2 = −ig.

They give rise to the following UV divergent one-loop diagrams

q

A

q

p

B .
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Diagram A is proportional to the integral

∫

d4q
1

q2 −m2
∼

∫ Λ

dq
q3

q2
∼

∫ Λ

dq q ∼ Λ2, (16.4)

which diverges when Λ→∞.

Analogously, diagram B produces the same UV divergent integral of (16.1),

∫

d4q
1

(q2 −m2)[(q + p)2 −m2]
∼

∫ Λ

dq
q3

q4
∼ ln Λ. (16.5)

16.3 Regularization

Prior to any attempt to manipulate loop integrals to get rid of the UV infinities,
one needs a method to regularize them. This is necessary in order to deal with
well defined mathematical objects. Such a procedure is called regularization. One
example of regularization is the use of a cut-off Λ in the loop momentum, as shown in
the previous examples. However, this is not suitable in the context of gauge theories,
because it violates, in general, the Ward Identities dictated by the gauge invariance.
1 On the contrary, the dimensional regularization procedure described in the next
section preserves gauge invariance. For this reason, it is nowadays the mostly common
used method to regularize Quantum Field Theories.

16.4 Dimensional regularization

The basic observation is that the presence of UV divergences depends on the dimen-
sionality of the space-time. For example, the diagram in (16.1) is UV convergent
in 3 dimensions, but divergent in 4. Therefore, one computes the loop integrals in
a generic n-dimensional space-time. In this way UV divergences appear as poles in
ǫ = n − 4 when taking the physical limit n → 4. The advantage of this is that
the Ward Identities at the base of the needed gauge cancellations do not depend
upon the number of the space-time coordinates. This is the reason why dimensional
regularization does not break gauge invariance.

The relevant formulas to be used are
1This means that important gauge cancellations among Feynman diagrams are broken by the

presence of the regulator Λ.
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• Feynman parameters:

1

aα1
1 · · ·aαk

k

=
Γ(α1 + · · ·αk)

Γ(α1) · · ·Γ(αk)
(16.6)

×
∫ 1

0

dx1 · · ·
∫ 1

0

dxk
xα1−1
1 · · ·xαk−1

k δ(1− x1 − · · · − xk)
[a1x1 + · · ·+ akxk]

α1+···+αk
,

where the ais have imaginary parts with the same sign.

• Wick rotation:

dnq → idnq and q2
∣
∣
M
→ −q2

∣
∣
E
,

where the subscripts M and E stand for Minkowskian and Euclidean space,
respectively.

• Angular integration:
∫

dΩn =
2π

n
2

Γ(n
2
)
.

• Integration over the Euclidean norm of q:

∫ ∞

0

dq
qβ

(q2 + χ)α
=

1

2

Γ(β+1
2
)Γ(α− β+1

2
)

Γ(α)χα−β+1
2

.

• Furthermore, the following properties of the Γ function are useful:

Γ(n) = (n− 1)! , zΓ(z) = Γ(z + 1) , Γ(ǫ) =
1

ǫ
− γE +O(ǫ). (16.7)

16.5 Problem: The one-loop scalar integrals

Compute the Pole Part (P.P.) of

A(m2) :=

∫

dnq
1

q2 −m2
(16.8)

and

B(p2, m2, m2) :=

∫

dnq
1

(q2 −m2) [(q + p)2 −m2]
. (16.9)
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Solution

Let us start with

A(m2) =

∫

dnq
1

q2 −m2
= −i

∫

E

dnq
1

q2 +m2
, (16.10)

where
∫

E
means integration in the Euclidean space. Then

A(m2) = −i
∫

dΩn

∫ ∞

0

dq
qn−1

q2 +m2
= −i 2π

n
2

Γ(n
2
)

1

2

Γ(n
2
)Γ(1− n

2
)

(m2)1−
n
2

. (16.11)

By splitting n = 4 + ǫ gives

A(m2) = −iπ2π
ǫ
2 Γ(−1− ǫ

2
)

︸ ︷︷ ︸

Γ(− ǫ
2
)

−1 − ǫ
2

= − 1

1 + ǫ
2

(−2
ǫ

+ · · ·
)

(m2)1+
ǫ
2

= −iπ2
(

1 +
ǫ

2
ln π + · · ·

)(2

ǫ
+ · · ·

)

m2
(

1 +
ǫ

2
lnm2

)

= −iπ2m2

(
2

ǫ
+ finite parts

)

. (16.12)

Thus

P.P.
[
A(m2)

]
= −iπ2m2

(
2

ǫ

)

. (16.13)

As for the second integral, one first puts together the two denominators

B(p2, m2, m2) =

∫

dnq
1

(q2 −m2) [(q + p)2 −m2]
=

∫ 1

0

dx

∫

dnq
1

[D0(1− x) +D1x]
2 ,

where D0 = (q2 −m2) and D1 = [(q + p)2 −m2], so that

[D0(1− x) +D1x] = q2 −m2 + 2(q · p)x+ p2x. (16.14)

The change of variables q → q − px gives

[D0(1− x) +D1x] → q2 + p2x2 − 2(q · p)x−m2 + p2x+ 2px · (q − px)

= q2 − (m2 − p2x(1− x))
︸ ︷︷ ︸

M2(x)

. (16.15)
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Thus

B(p2, m2, m2) =

∫ 1

0

dx

∫

dnq
1

[q2 −M2(x)]2
= i

∫ 1

0

dx

∫

E

dnq
1

[q2 +M2(x)]2

= i

∫ 1

0

dx

∫

dΩn

∫ ∞

0

dq
qn−1

[q2 +M2(x)]2

= i

∫ 1

0

dx
2π

n
2

Γ(n
2
)

1

2

Γ(n
2
)Γ(2− n

2
)

Γ(2)(M2(x))2−
n
2

. (16.16)

Splitting n = 4 + ǫ gives

B(p2, m2, m2) = iπ2+ ǫ
2

∫ 1

0

dxΓ(− ǫ
2
)(M2(x))

ǫ
2

= iπ2

(

−2
ǫ
+ · · ·

)(

1 +
ǫ

2
ln π + · · ·

)∫ 1

0

dx
(

1 +
ǫ

2
lnM2(x)

)

= iπ2

(

−2
ǫ

)

+ finite parts, (16.17)

so that

P.P.
[
B(p2, m2, m2)

]
= −iπ2

(
2

ǫ

)

. (16.18)

As promised, a meaning in n = 4 + ǫ dimensions is given to both UV divergent
integrals at the price of having poles in ǫ = 0.

16.6 Renormalization

After regularizing the loop integrals, the “hope” is that the regulator dependence only
occur in the intermediate steps of the calculation, while disappear from physical pre-
dictions. If this happens, the theory under study is called renormalizable and can be
used to describe Nature at a fundamental level. If it does not, it is nonrenormalizable,
and cannot represent fundamental interactions. 2

In renormalizable theories, the UV regulator leaves no trace in the physical S ma-
trix elements because the original parameters in the Lagrangian L (the so called bare

2Nonrenormalizable Quantum Field Theories can still be used as effective models, valid up to
energy scales of the order of the UV cut-off Λ, meaning that the theory is expected to change at
higher energies.
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parameters) can be made divergent in such a way that the two kinds of infinities com-
pensate each other when bare parameters are fixed in terms of physical measurements.
In other words, UV infinities are not observable because they can be reabsorbed in
the free parameters of the theory.

Roughly speaking, a theory is renormalizable when the type of possible UV infinities
is limited and does not increase with the number of loops. Thus, they can be ac-
commodated by redefining a finite number of terms in L. When computing physical
observables, only couplings and masses need to be redefined. On the contrary, field
redefinitions are also necessary to obtain UV finite Green’s functions. The first ap-
proach is the one we use until section 16.13, while the second procedure is described
in section 16.14.

In summary, absorbing UV divergences in L is the essence of the renormalization
procedure, which makes sense because bare parameters have no direct physical inter-
pretation, unless linked to measurements. As a practical consequence, one computes
divergent loop integrals in n dimensions and sets n→ 4 in physical quantities. If the
theory is renormalizable all UV divergent terms cancel and the n → 4 limit exists.
The simplest realistic case is the renormalization of the electric charge discussed in
the next section.

16.7 Problem: Charge renormalization in QED

Renormalize the electric charge in QED.

Solution

Suppose we want to compute the QED one-loop corrections to the process e+e− →
µ+µ−. This means considering, among many others, the contribution

e+

e−

2

1

f̄

f

µ−

µ+

3

4

where f is a fermion. The relevant one-loop diagram is therefore
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p

µ

q + p

q

ν
≡ Πµν(p

2),

with

Πµν = − (ie)2

(2π)4
ii

∫

dnq
1

D1D2

Tr[γµ (/q +m) γν (/q + /p+m)], (16.19)

where D1 = q2 − m2, D2 = (q + p)2 − m2, m = mf and the (-) sign is due to the
fermion loop.

By using Feynman parametrization one obtains

Πµν = − e2

16π4

∫ 1

0

dx

∫

dnq
Tr[ · · · ]

(D1(1− x) + D2x)2
. (16.20)

But

D1(1− x) +D2x = q2 −m2 + 2(q · p)x+ p2x, (16.21)

so that, to get rid of the term (q · p), we change the integration variables by shifting
q → q − px, that gives

Πµν = − e2

16π4

∫ 1

0

dx

∫

dnq
1

[q2 − χ]2Tr[γµ(/q − x/p +m)γν(/q + /p(1− x) +m)],

with χ = m2 − p2x(1− x). By computing the trace one obtains

Tr[ · · · ] = 4
{
(q − xp)µ(q + p(1− x))ν + (q + p(1− x))µ(q − px)ν

+gµν
[
m2 − (q − xp) · (q + p(1− x))

] }
, (16.22)

and by virtue of the fact that

∫

dnq
qµ

[q2 − χ]2 = 0 only a few terms survive, resulting

in

Πµν = − e2

4π4

∫ 1

0

dx

∫

dnq
1

[q2 − χ]2
{
2qµqν − gµν

(
q2 −m2 − x(1− x)p2)

)
+ Apµpν

}
.

The pµpν term does not contribute when inserted in the amplitude. 3 In fact, it
would give a contribution proportional to

[v̄2/pu1]× [ū3/pv4] = [v̄2/p1u1 + v̄2/p2u1]× [ū3/p3v4 + ū3/p4v4]

= (me −me)(mµ −mµ) v̄2u1ū3v4 = 0. (16.23)

3This is a consequence of the Ward Identities.
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One is therefore left with the integral

Πµν = − e2

4π4

∫ 1

0

dx

∫

dnq
1

[q2 − χ]2
{
2qµqν − gµν(q2 −m2 − x(1− x)p2)

}
. (16.24)

The piece

∫

dnq
1

[· · · ]2 qµqν must be proportional to gµν ,

∫

dnq
1

[· · · ]2 qµqν = Bgµν . (16.25)

By multiplying both sides by gµν and using gµνg
µν = n, one obtains B,

∫

dnq
qµqν
[· · · ]2 =

1

n

∫

dnq
q2

[· · · ]2gµν . (16.26)

This gives

Πµν = − e2

4π4
gµνΠ0(p

2), (16.27)

with

Π0(p
2) =

∫ 1

0

dx

{(
2

n
− 1

)

J +
(
p2x(1 − x) +m2

)
I

}

, (16.28)

where

I =

∫

dnq
1

[q2 − χ]2 and J =

∫

dnq
q2

[q2 − χ]2 . (16.29)

The integral I can be computed as follows

I = i

∫

E

dnq
1

[q2 + χ]2
= i

2π
n
2

Γ(n
2
)

∫ ∞

0

dq
qn−1

[q2 + χ]2
︸ ︷︷ ︸

1
2

Γ(n2 )Γ(2−n
2 )

Γ(2)
χ
(n2 −2)

= iπ
n
2Γ
(

2− n

2

)

χ
n
2
−2. (16.30)

Introducing n = 4 + ǫ gives

I = iπ2π
ǫ
2Γ
(

− ǫ
2

)

χ
ǫ
2 . (16.31)



158 CHAPTER 16. QUANTUM FIELD THEORY AT ONE-LOOP

For J one obtains instead

J = −i
∫

E

dnq
q2

[q2 + χ]2
= −i 2π

n
2

Γ(n
2
)

∫ ∞

0

dq
qn+1

[q2 + χ]2
︸ ︷︷ ︸

1
2

Γ(n+2
2 )Γ(2−n+2

2 )

Γ(2)
χ−(1−n

2 )

= −iπ2π
ǫ
2Γ
(

−1 − ǫ

2

)

χ1+ ǫ
2

1

(2 + ǫ
2
)−1

. (16.32)

Now we use

Γ
(

−1− ǫ

2

)

=
Γ(− ǫ

2
)

−(1 + ǫ
2
)

(16.33)

so that

J = iπ2π
ǫ
2Γ
(

− ǫ
2

) 4 + ǫ

2 + ǫ
χχ

ǫ
2 . (16.34)

The part which diverges when ǫ→ 0 is contained in Γ(− ǫ
2
), while the rest can be

expanded in powers of ǫ. Putting everything together gives

Π0(p
2) = iπ2π

ǫ
2Γ
(

− ǫ
2

)∫ 1

0

dx
{
−χ + (p2x(1− x) +m2)

}
χ

ǫ
2

= iπ2π
ǫ
2Γ
(

− ǫ
2

)

p22

∫ 1

0

dxx(1− x)χ ǫ
2 . (16.35)

But

Γ
(

− ǫ
2

)

= −2
ǫ
− γE +O(ǫ), χ

ǫ
2 = 1 +

ǫ

2
lnχ+O(ǫ2), π

ǫ
2 = 1 +

ǫ

2
ln π +O(ǫ2).

Hence

Π0(p
2) = −iπ2p22

∫ 1

o

dxx(1 − x) [∆ + lnχ] +O(ǫ),

where

∆ =
2

ǫ
+ γE + ln π

is the part which diverges when ǫ→ 0. Finally

Π0(p
2) = −iπ2p22

{
∆

6
+

∫ 1

0

dxx(1 − x) lnχ
}

.
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Thus 4

Πµν = igµνΠF , with ΠF =
e2

2π2
p2
{
∆

6
+

∫ 1

0

dxx(1− x) lnχ
}

. (16.36)

This result serves to compute the so called Dressed Photon Propagator,

=
µ ν

+
µ ν

+ + . . .

= −igµν
1

p2
− igµν

1

p2
ΠF

1

p2
+ · · ·

= −igµν
1

p2

(

1 +
ΠF

p2
+ · · ·

)

= −igµν
1

p2
(

1− ΠF

p2

)

= −igµν
1

p2
(

1− e2

2π2

{
∆
6
+
∫ 1

0
dxx(1 − x) lnχ

}) . (16.37)

This dressed propagator has to be inserted in the amplitude we want to compute,

= (ie)2(−i)Jβ(e−)Jβ(µ−)
1

p2( ... )
,

(16.38)

so that the following combination appears,

e2
(

1− e2

2π2

{
∆
6
+
∫ 1

0
dxx(1− x) lnχ

}) . (16.39)

Before the theory can be used to predict observables, one has to measure the QED
coupling e by using, for example, the low energy limit of the e−µ− scattering,

e− e−

µ− µ−

t

4Note that the fact that ΠF ∝ p2 means that the photon remains massless.
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Due to the Ward Identities, only the propagator corrections contribute when t → 0.
Note the appearance of the dressed propagator we just computed. This fixes e in
terms of the measured value of α ≃ 1/137.036,

4πα =
e2

1− e2

2π2

{
∆
6
+
∫ 1

0
dxx(1− x) lnm2

} , (16.40)

where we used lim
t→0

χ = m2. This condition determines 1/e2,

1

e2
=

1

4πα
+

1

2π2

{
∆

6
+

∫ 1

0

dxx(1− x) lnm2

}

. (16.41)

Inserting this expression in (16.38) makes the theory UV finite and predictive,

= i
4πα Jβ(e

−)Jβ(µ−)

1− 2α
π

∫ 1

0
dxx(1 − x) ln

[

1− p2

m2x(1− x)
] .

Note that the correction we just computed can be parametrized by introducing a
running α(s),

α(s) =
α(0)

1− 2α(0)
π

∫ 1

0
dxx(1 − x) ln

[
1− s

m2x(1− x)
] , (16.42)

where α(0) ≃ 1/137.036.

The asymptotic s≫ m2 behaviour of real part of α(s) can be easily computed,

ℜe
∫ 1

0

dxx(1− x) ln
[

1− s

m2
x(1− x)

]

→s→∞ 1

6
ln
∣
∣s/m2

∣
∣ . (16.43)

This gives

ℜe [α(s)] →s→∞ α(0)

1− α(0)
3π

ln |s/m2|
, (16.44)

so that α(s) increases with the energy.

The running of α is observed, for example, at LEP, where one measures

ℜe [α(M2
Z)] =

1

128.9
. (16.45)

Finally, note that the dependence of α(s) with the energy can also be derived by
using renormalization group arguments.
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16.8 Large mtop corrections to MW in the SM

We are now ready to show the renormalization procedure at work in the full SM.
For that we use a specific example, namely the computation of the corrections to
MW induced by top quark loops (in the limit mtop → ∞). These corrections are
fermionic ones, therefore gauge invariant. As already observed, before the theory
becomes predictive we have to connect the Lagrangian’s parameters to a specific set
of measurements. The parameters in the Lagrangian are {g, sθ,M} and we choose to
relate them with the measured values of {α,GF ,MZ}. The latter set is the chosen
input parameter set. Of course, we did not include there MW , which is in fact what
we want to predict! Again, renormalizing means finding the relations between the 2
sets,

{g, sθ,M} ←→ {α,GF ,MZ} ,
that can be achieved by considering the dressed, Dyson resummed propagators for
the gauge bosons,

∆̄γ := i
−gµν

p2 [1− g2s2θΠγ(p2)]
,

∆̄W := i
−gµν

p2 −M2 − g2

4
ΣW (p2)

,

∆̄Z := i
−gµν

p2 − M2

c2
θ

− g2

4c2
θ

ΣZ(p2)
.

Those propagators are nothing but the sum of the series

= + + + · · ·

and are divergent quantities (before renormalization). For example, in the previous
section we have computed

Πγ(p
2) =

1

2π2

{
∆

6
+

∫ 1

0

dxx(1 − x) ln
[
m2 − p2x(1− x)

]
}

. (16.46)

Analogously, one can calculate ΣZ(p
2) and ΣW (p2) (see later). Πγ ,ΣZ and ΣW are

called self-energies. By means of the dressed propagators we can find the relations
between {g, sθ,M} and {α,GF ,MZ}, namely the Fitting Equations,

g2s2θ
1− g2s2θΠγ(0)

= 4πα, (16.47)
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g2

8
[

M2 + g2

4
ΣW (0)

] =
GF√
2
≡ G, (16.48)

M2

c2θ
+

g2

4c2θ
ReΣZ(M

2
Z) =M2

Z , (16.49)

which link the experimental quantities on the r.h.s. to the combinations of La-
grangian’s parameters and self energies appering in the l.h.s.

Equation (16.47) is the charge renormalization condition we have already discussed
in section 16.7. Equation (16.48) defines GF through the muon decay. Remember
that we have computed it at the tree-level,

g2

8M2
W

=
GF√
2
, (16.50)

where M2
W is nothing but low energy limit of the tree-level W propagator

1

M2
W

= − lim
p2→0

1

p2 −M2
W

.

Thus, when turning on loop corrections, the tree-level propagator must be replaced
by the dressed one, whose low energy limit reads

− lim
p2→0

1

p2 −M2 − g2

4
ΣW (p2)

,

which gives (16.48). Finally, (16.49) defines the Z mass to be the real part of the

pole of the Z propagator. At the tree-level M2
Z =

M2
W

c2θ
, while at one-loop we have

the condition 5

M2
Z −

M2

c2θ
− g2

4c2θ
ΣR

Z = 0,

that is (16.49).

The next step is inverting (16.47), (16.48) and (16.49), namely determining g, sθ, and
M in terms of {α,GF ,MZ}. However, before doing so, let us explicitly note that
the r.h.s. of the fitting equations is a finite quantity (it is a measured value!). So

5Here and in the following we define ΣR
W,Z := Re (ΣW,Z).
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that also the l.h.s. must be finite. Since Πγ and ΣW,Z contains divergences, that
implies that also {g, sθ,M} must be divergent in such way that the two divergences
compensate each other. This is the essence of the renormalization procedure: one
gives up with the idea of having finite parameters in the Lagrangian and accepts the
fact that only physical, observable quantities must be finite. Indeed, in the following
we will explicitly see that substituting {g, sθ,M} in the real part of the W (dressed)
propagator gives a finite prediction for the W mass.

16.9 Problem: Solving the Fitting Equations

Solve the Fitting Equations 16.47-16.49.

Solution

The first equation fixes
1

g2s2θ
:

1

g2s2θ
= Πγ(0) +

1

4πα
. (16.51)

The second equation fixes
M2

g2
:

4
M2

g2
=

1

2G
− ΣW (0). (16.52)

From the last equation we obtain
g2

c2θ
:

g2

4c2θ
= M2

Z

{
4M2

g2
+ ΣR

Z

}−1

=
2GM2

Z

1 + 2GΣF

, (16.53)

where ΣF = ΣR
Z −ΣW (0). By multiplying the first and the third equation one derives

s2θc
2
θ =

πα

2GM2
Z

1 + 2GΣF

1 + 4παΠγ(0)
. (16.54)
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Since we are interested in solutions at one-loop, we can look for a perturbative solution
by setting s2θ = s̄2 + δ and c2θ = c̄2 − δ in (16.54):

s̄2c̄2 + δ(c̄2 − s̄2) =
πα

2GM2
Z

{1 + 2GΣF − 4παΠγ(0)} . (16.55)

Then

s̄2c̄2 =
πα

2GM2
Z

≡ a, (16.56)

namely

s̄2 =
1

2

{

1−
(

1− 2πα

GM2
Z

) 1
2

}

, (16.57)

and

δ =
s̄2c̄2

c̄2 − s̄2 [2GΣF − 4παΠγ(0)] .

Therefore our solution is:

s2θ = s̄2
{

1 +
c̄2

c̄2 − s̄2 [2GΣF − 4παΠγ(0)]

}

= s̄2 + δ = s̄2(1 +
δ

s̄2
).

16.10 Computing MW

Compute MW by inserting the solution of the fitting equations into the dressed W
propagator and extract the terms proportional to m2

top.

Solution

MW is defined to be the the zero of the Real part of the inverse W propagator. We
then look for a x ≡M2

W solution of

Re

{
x

g2
− M2

g2
− ΣW (x)

4

}

= 0. (16.58)
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Let us define f(x) ≡ x

g2
− M2

g2
− ΣW (x)

4
. By inserting the fitting equations we just

computed we derive

f(x) = (xs2θ)

(
1

g2s2θ

)

− 1

4

(
4M2

g2

)

− ΣW (x)

4

=
xs̄2

4πα

(

1 +
δ

s̄2

)

(1 + 4παΠγ(0))−
1

4

(
1

2G
− ΣW (0)

)

− ΣW (x)

4

= − 1

8G
+

ΣW (0)− ΣW (x)

4

+
xs̄2

4πα

{

1 + 4παΠγ(0) +
c̄

c̄2 − s̄2 [2GΣF − 4παΠγ(0)]

}

, (16.59)

and the solution is that value of x such that Ref(x) = 0. The above solution is the
full fermionic contribution. Now we want to explicitly compute it in the leading ap-
proximation for large values ofmtop. When mtop →∞ one obtains terms proportional
to ln(mt) and m

2
t . We will keep only the latter ones. Πγ(0) is logarithmic in mt :

Πγ(0) =
1

2π2

{
∆

6
+

1

6
lnm2

t

}

, (16.60)

so that, at the leading order in m2
t , Πγ(0) ∼ 0. In addition, when mt → ∞ there is

just one scale left in the problem, namely the top mass, so that

lim
mt→∞

(ΣW (x)− ΣW (0)) ∼ 0. (16.61)

In this limit we then have

f(x) ∼ − 1

8G
+
xs̄2

4πα

{

1 +
c̄2

c̄2 − s̄22GΣF

}

, (16.62)

therefore

M2
W ≡ x ∼ πα

2Gs̄2

{

1− 2Gc̄2ΣF

c̄2 − s̄2
}

. (16.63)

Then, one has to compute the terms proportional to m2
t in the combination:

ΣF = ΣR
Z − ΣW (0). (16.64)

16.11 Problem: Computation of the W self-energy

Compute the asymptotic behaviour of ΣW when mtop →∞.
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Solution

The diagram to be computed is

W

p
µ

b

q

t

W

ν
= −

(−ig
2
√
2

)2
ii

(2π)4
Iµν ≡ ΣW

µν ,

where

Iµν =

∫

dnq
Nµν

D1D2

, (16.65)

with

D1 = q2 + iǫ, D2 = (q + p)2 −m2, m ≡ mtop, (16.66)

and

Nµν = 4Tr {γµ/qγν(/q + /p)ω+} , ω± =
1

2
(1± γ5). (16.67)

The asymptotic behaviour of D2 when m→∞ is

D2 ∼ q2 −m2, (16.68)

therefore

Iµν ∼
∫ 1

0

dx

∫

dnq
Nµν

(q2 −m2x)2
, (16.69)

and since, by power counting, only terms quadratic in q can give a contribution
O(m2):

Nµν ∼ 4Tr {γµ/qγν/qω+} = 8
{
2qµqν − q2gµν

}
, (16.70)

so that

Iµν ∼ 8

(
2

n
− 1

)∫ 1

0

dx

∫

dnq
q2

(q2 −m2x)2
︸ ︷︷ ︸

J

gµν . (16.71)
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We already computed a J-like integral in (16.34):

J = iπ2π
ǫ
2Γ
(

− ǫ
2

) 4 + ǫ

2 + ǫ
χχ

ǫ
2 , χ = m2x, n = 4 + ǫ, (16.72)

furthermore

(
2

n
− 1

)

= −2 + ǫ

4 + ǫ
, (16.73)

Then

Iµν ∼ −8iπ2π
ǫ
2Γ
(

− ǫ
2

)∫ 1

0

dxm2x(m2x)
ǫ
2 gµν

= 4iπ2gµνm
2

{

∆+ lnm2 − 1

2

}

+O(ǫ), (16.74)

where, as usual,

∆ =
2

ǫ
+ γE + ln π, (16.75)

and where we used

∫ 1

0

dxx ln x = −1
4
. (16.76)

Therefore

ΣW
µν = igµν

g2

4
ΣW (p2), (16.77)

with

ΣW (p2) = −m
2

8π2

{

∆+ lnm2 − 1

2

}

. (16.78)

16.12 Problem: Computation of the Z self-energy

Compute the asymptotic behaviour of ΣZ when mtop →∞.
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Solution

The diagram to be computed is

Z

p
µ

q

t

t

Z

ν

= −
(−ig
2cθ

)2
ii

(2π)4

∫

dnq
Nµν

D1D2
︸ ︷︷ ︸

Iµν

≡ ΣZ
µν

where

D1 = q2 −m2, D2 = (q + p)2 −m2,

Nµν = Tr
[
γµ(v

+ω+ + v−ω−)(/q +m)γν(v
+ω+ + v−ω−)(/q + /p+m)

]
,

v+ ≡ v + a = − 2s2θQt, v− ≡ v − a = 1− 2s2θQt, Qt = 2/3.

(16.79)

When m→∞

D1 = D2 ∼ q2 −m2, (16.80)

and

Nµν ∼ Tr[γµ(· · · )/qγν(· · · )/q] +m2[γµ(· · · )γν(· · · )]
= αTr[γµ/qγν/q] + βm2Tr[γµγν ], (16.81)

with

α =
v2+ + v2−

2
, β = v+v−. (16.82)

Then

Nµν ∼ 4
{
α
(
2qµqν − q2gµν

)
+m2βgµν

}
=⇒

Nµν ∼ 4gµν

{

α

(
2

n
− 1

)

q2 +m2β

}

, (16.83)

so that

Iµν ≡
∫

dnq
Nµν

D1D2
∼ 4gµν







α

(
2

n
− 1

)∫

dnq
q2

(q2 −m2)2
︸ ︷︷ ︸

J

+m2β

∫

dnq
1

(q2 −m2)2
︸ ︷︷ ︸

I







.

(16.84)
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We already computed (see eqs. (16.34) and (16.31))

J = iπ2π
ǫ
2Γ
(

− ǫ
2

) 4 + ǫ

2 + ǫ
m2(m2)

ǫ
2

I = iπ2π
ǫ
2Γ
(

− ǫ
2

)

(m2)
ǫ
2 , (16.85)

furthermore

(
2

n
− 1

)

= −2 + ǫ

4 + ǫ
. (16.86)

Therefore

Iµν = 4gµνm
2iπ2(m2π)

ǫ
2Γ
(

− ǫ
2

){
− α + β

}

︸ ︷︷ ︸

− 1
2

= −2m2gµνiπ
2
(

1 +
ǫ

2
ln(m2π)

)(

−2
ǫ
− γE

)

= 2m2iπ2gµν





2

ǫ
+ γE + ln π

︸ ︷︷ ︸

∆

+ lnm2




 , (16.87)

and

ΣZ
µν = igµν

g2

4c2θ
ΣZ(p

2), (16.88)

with

ΣZ(p
2) = −m

2

8π2

(
∆+ lnm2

)
. (16.89)

16.13 The leading mtop contribution to MW

The combination appearing in the solution for the W mass (see (16.63)) is

ΣF = ReΣZ(M
2
Z)− ΣW (0) = −

m2
top

16π2
. (16.90)
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Note that all divergences canceled out, together with lnm2
top (this is necessary to have

scale independent results) as expected. When considering a factor 3, due to the QCD
color, one has to replace

ΣF → −
3m2

top

16π2
. (16.91)

Therefore

M2
W =

πα

2Gs̄2

{

1 +
3

8π2

Gc̄2m2
top

c̄2 − s̄2
}

. (16.92)

Equation (16.92) can be now computed by using the experimental values

MZ = 91.1876 GeV (LEP1),

mtop = 173.5 GeV (TEV ATRON + LHC),

GF = 1.16637× 10−5 GeV−2,

α =
1

137.036
, (16.93)

to find the leading mtop contribution at one-loop

(MW )tree = 80.939 GeV

(MW )1−loop = 81.459 GeV, (16.94)

to be compared with the experimental value

(MW )exp = 80.385± 0.015 GeV (LEP2 + TEV ATRON). (16.95)

The corrections given by mtop seem then to go in the wrong direction. But there is
one important ingredient missing, i.e. the vacuum polarization, namely the running
of αEM computed in (16.42). By using a different scheme, in which α(MZ) is used to
resum the large logs due to the light fermions:

MZ = 91.1876 GeV (LEP1),

mtop = 173.5 GeV (TEV ATRON + LHC),

GF = 1.16637× 10−5 GeV−2,

α(MZ) =
1

128.89
(LEP1), (16.96)

one obtains a prediction which includes both leading mtop contributions and vacuum
polarization effects

(MW )′tree = 79.958 GeV

(MW )′1−loop = 80.495 GeV, (16.97)

which is sow in very good agreement with the experimental value in (16.95). Of course
sub-leading radiative corrections are also present (and can be computed!).
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16.14 Problem: Multiplicative renormalization

By using multiplicative renormalization, renormalize the Lagrangian of the scalar
theory gφ4.

Solution

We start writing the Lagrangian in terms of bare parameters and fields (denoted by
the subscript 0) as follows

L0 =
1

2

[
(∂µφ0)(∂

µφ0)−m2
0φ

2
0

]
− g0

4!
φ4
0. (16.98)

Then, we suppose that the bare (in general infinite in 4 dimensions) parameters are
connected to the renormalized ones (finite in 4 dimension) by the following, multi-
plicative relations

φ0 = Z
1
2
φ φ

m0 = Zmm

g0 = Zggµ
−ǫ ≡ ZggR ⇔ gR = gµ−ǫ, (16.99)

where µ−ǫ has been introduced in order to keep the coupling constant g dimensionless.
Then one can split the original Lagrangian into a renormalized one (L) plus a counter-
term Lagrangian (Lc) as follows

L0 = L+ Lc. (16.100)

Explicitly, the two parts read

L =
1

2

[
(∂µφ)(∂

µφ)−m2φ2)
]
− gR

4!
φ4,

Lc =
1

2
(Zϕ − 1)(∂µφ)(∂

µφ)− 1

2
(Z2

mZϕ − 1)m2φ2 − 1

4!
(ZgZ

2
ϕ − 1)gRφ

4.

(16.101)

L gives the following Feynman rules in terms of finite parameters (in 4 dimensions)

= i
1

p2 −m2 = −igR
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from which the counter terms in Lc can be fixed to compensate the infinities coming
from the loop functions. All Z in Lc must therefore have the form

Z =
(

1 +
α1

ǫ
+
α2

ǫ2
+ · · ·

)

. (16.102)

16.15 Problem: The renormalization constants

Fix, at one-loop, the renormalization constants Zφ, Zm and Zg in the theory gφ4.

Solution

In problem 16.5 we computed

P.P.(A(m2)) = −iπ2m2

(
2

ǫ

)

and P.P.(B(p2, m,m)) = −iπ2

(
2

ǫ

)

. (16.103)

Now we compute the P.P of the corrections to the bare propagator .

They are given by the following diagram

=
1

2

1

(2π)4
(−igR)(i)

∫

dnq
1

(q2 −m2)

= − gR
32π4

iπ2m2

(
2

ǫ
+ · · ·

)

= − igR
32π2

m2

(
2

ǫ
+ · · ·

)

.

Since this correction is ∝ m2 it only gives a contribution to the mass renormalization
and no external field renormalization is necessary. Therefore

Zφ = 1. (16.104)
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From the term in Lc

−m
2φ2

2
(Z2

m − 1) (16.105)

the following counter-term is generated

= −im2(Z2
m − 1),

and Zm can then be fixed by requiring

0 = P.P.

[

+

]

= −im2(Z2
m − 1)− igR

32π2
m2

(
2

ǫ

)

,

Namely

−im2
[

Z2
m − 1 +

gR
16π2ǫ

]

= 0.

Therefore

Zm = 1− gR
32π2ǫ

. (16.106)

Now consider the vertex corrections to

= −igR.

At one-loop one has

≡ + +

For the first diagram one computes
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p

q=
1

2

1

(2π)4
(−igR)2(i)2

∫

dnq
1

(q2 −m2)

1

((q + p2)−m2)

=
1

32π4
g2RB(p2, m,m) =

1

34π4
g2R(−iπ2 2

ǫ
+ · · · )

=
−i
16π2

g2R
1

ǫ
+ · · · .

Therefore, since this result does not depend on p, also the other 2 diagrams give the
same contribution, so that

P.P.

[ ]

= − 3i

16π2
g2R

1

ǫ
.

From the term in Lc

− 1

4!
(Zg − 1)gRφ

4

the following counter-term is generated

= −i(Zg − 1)gR.

We then fix Zg such that

P.P.

[

+

]

= 0, (16.107)

namely

−3i
16π2

g2R
1

ǫ
− i(Zg − 1)gR = 0, (16.108)

so that

Zg = 1− 3

16π2

gR
ǫ
. (16.109)

In summary

Zφ = 1,

Zm = 1− gR
32π2ǫ

,

Zg = 1− 3

16π2

gR
ǫ
. (16.110)
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16.16 Tensor integrals

In practical calculations one-loop tensor integrals appear of the form

∫

dnq
qµ1 · · · qµr

D0 · · ·Dm

, (16.111)

where Di = (q + pi)
2 − m2

i and p0 = 0. Such integrals can always be reduced to
scalar integrals (namely integrals with no q in the numerator) by means of the so
called Passarino-Veltman reduction technique [6]. Because of that, one can write the
following Master Equation for any one-loop amplitudeM

M =
∑

i

diBoxi +
∑

i

ciTrianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R,(16.112)

where di, ci, bi and ai are the coefficients of the scalar 4-,3-,2-,1-point functions and
R is a left over piece called Rational Part of the amplitude.

16.17 Problem: The rank-1 two point function

Express the rank-1 two point function

Bµ(p21, m
2
0, m

2
1) :=

∫

dnq
qµ

D0D1

(16.113)

in terms of one-loop scalar integrals.

Solution

Since pµ1 is the only momentum at our disposal to obtain the desired tensor structure,
one can write

Bµ(p21, m
2
0, m

2
1) = B1 p

µ
1 . (16.114)

The constant B1 can be determined by multiplying (16.114) by p1µ,

∫

dnq
(q · p1)
D0D1

= p21B1. (16.115)
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Reconstructing denominators gives (q · p1) = 1
2
(D1 −D0 +m2

1 −m2
0 − p21), so that

B1 =
1

2 p21

∫

dnq
D1 −D0 +m2

1 −m2
0 − p21

D0D1

=
1

2 p21

[

(m2
1 −m2

0 − p21)
∫

dnq
1

D0D1
+

∫

dnq
1

D0
−
∫

dnq
1

D1

]

.

Hence, the desired decomposition reads

Bµ(p21, m
2
0, m

2
1) =

pµ1
2 p21

[

(m2
1 −m2

0 − p21)
∫

dnq
1

D0D1
+

∫

dnq
1

D0
−
∫

dnq
1

D1

]

.

16.18 Cuttools

The Passarino-Veltman technique can always be used, but it becomes very cumber-
some for high point high rank tensor integrals. In addition, each tensor structure
should be treated separately, with a lot of analytic work. Very recently, new nu-
merical techniques appeared, where those problems have been solved by working at
the integrand level of the loop function [7]. This techniques allow one to numerically
compute the coefficients of the contributing scalar functions just by knowing numer-
ically the numerator function N(q) of the loop integrand. More in detail, rewriting
the amplitude in equation 16.112 as follows

M =

∫

dnq
N(q)

D0 · · ·Dm

, (16.116)

all the coefficients di, ci ,bi and ai can be determined by solving simple systems of
linear equations involving the numerator function N(q) computed at special values
of q.

A program implementing such a strategy is CUTTOOLS [2] and can be downloaded
in

http://www.ugr.es/local/pittau/CutTools/.

16.19 Problem∗: The light-light scattering

By using CUTTOOLS, prove, numerically, that the P.P. of the QED process
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γγ → γγ

is zero. Prove this both in the case of massless and massive fermion loop.

16.20 Problem∗: W → 3 jets

By using CUTTOOLS compute, numerically and in one phase space point, the fol-
lowing diagram contributing to W → 3 jets

3, α

q

µ
W

1

2

where particles 1 and 2 are massless quarks and the curly lines represent gluons.
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Chapter 17

The β function

The ultraviolet divergent behaviour of a Quantum Field Theory describing Nature can
be used to determine the running of its coupling constant. There are 2 possibilities

1. either the coupling constant increases with energy,

2. or the coupling constant decreases with energy.

This second possibility happens in QCD, that is the theory describing the so called
strong interactions, and has the very important phenomenological consequence that,
in the high energy regime, collisions of strong interacting particles, like protons, be-
come perturbatively computable, as we have seen in Chapter 14. This Quantum Field
Theory property is directly linked to a fundamental quantity called β function [4]. In
this chapter, we introduce and explicitly compute the β function of the simple scalar
gφ4 theory, and give a flavour of what happens in QED and QCD.

17.1 Problem: The dimension of the coupling con-

stant in n dimensions

Calculate the dimensions of φ0 and g0 in the Lagrangian

L0 =
1

2

[
(∂µφ0)(∂

µφ0)−mc
0ont2φ

2
0

]
− g0

4!
φ4
0. (17.1)

continued to n = 4 + ǫ

179
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Solution

In n dimensions the action
∫
dnL should be dimensionless. Therefore

[L] =Mn.

The dimension of φ0 can be read from the kinetic term

Mn =
[
m2φ2

0

]
=M2 [φ0]

2 → [φ0] =M
n−2
2 .

The dimension of g0 can be read form the interaction term

Mn = [g0] [φ0]
4 = [g0]M

2n−4.

Therefore
[g0] =Mn−2n+4 =M4−n =M−ǫ.

Note that M is an arbitrary scale put into the game Physics should not the depend
on it. It is customary to call this arbitrary scale µ 1 and this has very important
consequences, as we will see later.

17.2 Problem: The running of g

Show, heuristically, that the knowledge of the quantity

β ≡ µ
∂g

∂µ
, (17.2)

where g is the renormalized coupling constant g (see equation 16.99 in the case of the
scalar gφ4 theory) allows one to compute the running of g.

Solution

β = µ
∂g

∂µ
, µ ≡ et,

dµ

dt
= µ,

∂

∂µ
=
∂t

∂µ

∂

∂t
=

1

µ

∂

∂Z
. (17.3)

1This scale µ is the same appearing in equation 16.99.
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Then

β = µ
1

µ

∂

∂t
g(t) (17.4)

namely

β =
∂g(t)

∂t
. (17.5)

The situation can be depicted as follows

β =
dg(t)

dt
⇒ if β > 0

if β < 0

In the second case, the theory at hand is asymptotically free.

17.3 Problem: Computation of the β function

Given the pole structure of the bare coupling constant g0, compute the β function.

Solution

We have seen, in the previous chapter, that one expects, in general, the following
expression for the bare coupling constant g0 of the theory under study

g0 = µαǫ

[

g +

∞∑

r=1

ar
1

ǫr

]

. (17.6)
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On the other hand, as we have seen in problem 17.1, g0 should not depend on the
arbitrary mass scale µ. Therefore

0 = µ
∂g0
∂µ

= µ

{

(ǫα)µ(ǫα−1)

[

g +
∑

r

ar
ǫr

]

+ µαǫ

(

∂g

∂µ
+

∞∑

r=1

1

ǫr
∂ar
∂µ

)}

=

{

ǫα

[

g +
∑

r

ar
ǫr

]

+ β +
∞∑

r=1

1

ǫr
µ
∂ar
µ

}

= ǫα

[

g +
∑

r

ar
ǫr

]

+ β +
∞∑

r=1

(
1

ǫr
µ
∂ar
∂g

∂g

∂µ

)

= ǫα

[

g +
∑

r

ar
ǫr

]

+ β + β
∞∑

r=1

(
1

ǫr
∂ar
∂g

)

= β

(

1 +

∞∑

r=1

(
1

ǫr
∂ar
∂g

))

+ ǫα

[

g +
∑

r

ar
ǫr

]

. (17.7)

Furthermore β should be analytic in ǫ, so that,

β = d0 + ǫd1 + · · ·

Then

(d0 + ǫd1 + · · · )
(

1 +
1

ǫ

∂a1
∂g

+ · · ·
)

+ ǫα
(

g +
a1
ǫ
+ · · ·

)

= 0.

From which one obtains







d0 + d1
∂a1
∂g

+ αa1 = 0

d1 + αg = 0
⇒

d1 = −αg
d0 = −αa1 + αg

∂a1
∂g

Therefore

β = α

[

−a1 + g
∂a1
∂g

]

. (17.8)

In summary, to compute the β function, one simply needs to know a1, namely the
simple pole of the renormalization constant Zg.
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17.4 Problem: The β function of gφ4

Compute the β function of the scalar theory gφ4.

Solution

In this case α = −1 in equation 17.6, so that

g0 = µ−ǫZgg = µ−ǫ

[

g +
∞∑

r=1

ar
1

ǫr

]

.

By comparing this equation with equation 16.109, one obtains

a1 = −
3

16π2
g2, (17.9)

and therefore

β =
3g2

16π2
> 0. (17.10)

The coupling constant grows with energy.

17.5 Problem∗: The β function of QED

Prove that the β function of QED is

βQED =
e3

12π2
. (17.11)

Is QED an asymptotically free theory?.

17.6 Problem∗: The β function of QCD

Prove that the β function of QCD is

βQCD = −g
3

π2

[
11Ncol − 2nf

48

]

, (17.12)
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where Ncol and nf are the number of colors and of active flavours, respectively. Is
QCD an asymptotically free theory?.
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