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The Factorization Theorem

dσ

dX
=

∑

j,k

∫

X̂

fj(x1, Qi)fk(x2, Qi)
dσ̂j,k(Qi, Qf)

dX̂
F (X̂ → X;Qi, Qf)

dσ̂ X̂ → F → Xf(x,Qi)

︸ ︷︷ ︸
Parton Shower

f ⇒ Sum over all initial state histories leading to pj = xPproton.

F ⇒ Transition from partonic final state to the hadronic observable.
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The Matrix Element computation (at the tree level)

1) Elicity Methods

2) The Dyson Schwigner approach

Helicity Methods

• One evaluates directly the amplitudes as complex numbers

(instead of squaring them) ⇒
explicit representations of the wave functions of the external particles

(εµ, u, v) are needed :

• Massless vector:

ε(λ)µ (k) =
1√
2

ūλ(k)γµuλ(n)

ū−λ(n)uλ(k)
, n2 = 0 , λ = ± .
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• Massless (Weyl) spinors:

v−(1) = u+(1) = 1A v̄−(1) = ū+(1) = 1Ȧ

v+(1) = u−(1) = 1Ȧ v̄+(1) = ū−(1) = 1A

(1
2
, 0) + (0, 1

2
) SL(2, C) representation of the Lorentz group.

• γ matrices (Weyl representation):

γµ =


 0 σµḂA

σȦB
µ 0


 , γ5 =


 σ0 0

0 −σ0


 .

see e.g. J.G.M. Kuijf, Ph.D. Thesis, RX-1335, LEIDEN, (1991)
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• Basic rules and spinorial inner products:

σȦB
µ σµĊD = 2 εȦĊεBD , εAB =


 0 1

−1 0


 = εAB = εȦḂ = εȦḂ ,

εAB ≡ −εBA , 1B = 1Aε
AB , < 12 >≡ 1A2

A , [12] ≡ 1Ȧ2
Ȧ ,

< 12 > [12] = 2 p1 · p2 .
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• Example e+e− → µ+µ− in QED (all incoming momenta and massless particles):

2

1

4

3

A(++) ∝ v̄+(1)γµu−(2) v̄+(3)γ
µu−(4) = 1A 2Ḃ 3C 4Ḋ σµḂAσ

µ

ḊC

= 2 1A 2Ḃ 3C 4ḊεḂḊεAC = 2 [42] < 31 > .

• Helicity techniques based on spinorial inner products are

successfully used also in one-loop calculations (but care is necessary

when using dimensional regularization).
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• Although each diagram can be computed efficiently multi-particle

amplitudes involve the evaluation of an exceedingly large numbers of

Feynamn diagrams. e.g.

Process n = 7 n = 8 n = 9 n = 10

g g → n g 559,405 10,525,900 224,449,225 5,348,843,500

qq̄ → n g 231,280 4,016,775 79,603,720 1,773,172,275

Table 1: Number of Feynman diagrams corresponding to amplitudes with different num-

bers of quarks and gluons.

F. Caravaglios, M. L. Mangano, M. Moretti and R. P., NPB 539 (1999) 215

A pure numerical approach to the calculations of transition

amplitudes is welcome. This can be done with the ALPHA

algorithm

F. Caravaglios and M. Moretti, PLB 358 (1995) 332
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The Idea: The Matrix Element ‘is’ the Legendre Transform Z of the

(effective) Lagrangian Γ (1PI Green Functions generator) → the

problem can be re-casted as a minimum problem, more suitable for a

numerical approach (DS equation).

The Dyson-Schwinger equations

F. A. Berends and W. Giele, NPB 306 (1988) 759

A. Kanaki and C. G. Papadopoulos, hep-ph/0012004

An alternative to the Feynman graph representation is provided by

the Dyson-Schwinger approach.

Dyson-Schwinger equations express recursively the n-point Green’s

functions in terms of the 1−, 2−, . . . , (n− 1)-point functions.
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• Imagine a 0-dimensional universe with only one point φ. The

Quantum Field Theory describing such a system is comlpetely

specified by all possible p-point (Euclidean) Green Functions:

Gp ≡< φp >= N

∫
dφφp e−S(φ) .

• They can be obtained from a Generating Functional as follows:

Z(J) = N

∫
dφ e−S(φ)+Jφ =

∑

p≥0
Gp

Jp

p!
.

• The DS Equations follow from the standard identity that the

integral of a derivative is zero:

0 = N

∫
dφ

d

dφ

{
e−S(φ)+Jφ

}

= N

∫
dφ {−S ′(φ) + J} e−S(φ)+Jφ

= {−S ′(∂J) + J}Z(J) .
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• Therefore one obtains the following Dyson-Schwinger equations:

S ′(∂J)Z = JZ(J) .

• For instance in QED these equations can be graphically

represented as follows:

= +

• This gives rise to a recursive algorithm easily implementable in a

Computer Code (ALPGEN).
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dσ

dX
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F (X̂ → X;Qi, Qf)

dσ̂ X̂ → F → Xf(x,Qi)

︸ ︷︷ ︸
Parton Shower
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The convolution with the pdf’s

• To complete the calculation, one needs to perform the integration

over the parton distribution functions

• Those distribution functions are extracted from deep inelastic

scattering data

see e.g. S. Willenbrock, BNL-43793 (1990)

• They are available as prepackaged computer programs, that can be

used to perform the integral numerically. The most popular sets are:

- CTEQ

J. Pumplin et al., JHEP 0207, 012 (2002)

- MRST

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C 14, 133 (2000)
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Subprocess selection

•The calculation of the cross section for multi-parton final states

involves typically the sum over a large set of subprocesses and

flavour configurations e.g. for the Wbb̄ final state:

jp subprocess jp subprocess jp subprocess

1 qq̄′ → WQQ 2 qg → q′WQQ 3 gq → q′WQQ

4 gg → qq̄′WQQ 5 qq̄′ → WQQq′′q̄′′ 6 qq′′ → WQQq′q′′

7 q′′q → WQQq′q′′ 8 qq̄ → WQQq′q̄′′ 9 qq̄′ → WQQqq̄

10 q̄′q → WQQqq̄ 11 qq̄ → WQQqq̄′ 12 qq̄ → WQQq′q̄

13 qq → WQQqq′ 14 qq′ → WQQqq 15 qq′ → WQQq′q′

16 qg → WQQq′q′′q̄′′ 17 gq → WQQq′q′′q̄′′ 18 qg → WQQqqq̄′

19 qg → WQQq′qq̄ 20 gq → WQQqqq̄′ 21 gq → WQQq′qq̄

22 gg → WQQqq̄′q′′q̄′′ 23 gg → WQQqq̄qq̄′

Each of these subprocesses receives contributions from several possible flavour

configurations (e.g. ud̄→ WQQgg , us̄→ WQQgg, etc.)
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• The subdivision in subprocesses can be designed to allow to sum

the contribution of different flavour configurations by simply adding

trivial factors such as parton densities or CKM factors, which

factorize out of a single, flavour independent, matrix element.

• For example the overall contribution from the 1st process in the list
is given by

[
u1d̄2 cos

2 θc + u1s̄2 sin
2 θc + c1s̄2 cos

2 θc + c1d̄2 sin
2 θc

]
× |M(qq̄′ → WQQgg)|2

where qi = f(xi), i = 1, 2, are the parton densities for the quark

flavour q. Contributions from charge-conjugate or isospin-rotated

states can also be summed up, after trivial momentum exchanges.
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• For example, the same matrix element calculation is used to

describe the four events:

u(p1)d̄(p2) → b(p3)b̄(p4)g(p5)g(p6)e
+(p5)ν(p6)

ū(p1)d(p2) → b̄(p3)b(p4)g(p5)g(p6)e
−(p5)ν̄(p6)

d̄(p1)u(p2) → b̄(p3)b(p4)g(p5)g(p6)ν(p5)e
+(p6)

d(p1)ū(p2) → b(p3)b̄(p4)g(p5)g(p6)ν̄(p5)e
−(p6)

• Event by event, the flavour configuration for the assigned

subprocess is then selected with a probability proportional to the

relative size of the individual contributions to the luminosity,

weighted by the Cabibbo angles.

18



dσ

dX
=

∑

j,k

∫

X̂

fj(x1, Qi)fk(x2, Qi)
dσ̂j,k(Qi, Qf)

dX̂
F (X̂ → X;Qi, Qf)

dσ̂ X̂ → F → Xf(x,Qi)

︸ ︷︷ ︸
Parton Shower

19



The perturbative Parton Shower

• It is important because a lot of final state jets are typically

observed, in hadronic collisions, coming from QCD radiation that,

subsequently, hadronizes. It is still pertubatively calculable by

introducing the so called Sudakov Form Factors.

• In QED (at the LL):

Q

= dσ0

(
1− α

π
log2

Q

Q0

)
, Q > Q0 > 0 ,

where the log2 comes from the overlap of soft and collinear

emissions.
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• Thanks to factorization theorems one can exponentiate this result

to get

dσrad = dσ0 exp

{
−α

π
log2

Q

Q0

}
.

• In QCD (at the LL): α → CFαs, CF = N2
c−1
2Nc

= 4
3 and

dσrad = dσ0 exp

{
−αsCF

π
log2

Q

Q0

}
.

• The term

exp

{
−αsCF

π
log2

Q

Q0

}

represents the probability for a quark of NOT radiating any gluon

when passing from a scale Q to a scale Q0 < Q.
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• In reality αs = αs(Q) and one defines

∆q(Q0, Q) ≡ exp

{
−
∫ Q

Q0

dq Γq(q,Q)

}
,

where

Γq(q,Q) =
2CF

π

αs

q

(
log

Q

q
− 3

4

)
= P (q → qg)

is the q → qg Altarelli-Parisi splitting function.

• When αs is a constant, taking the integral reproduces the previous

expression (at the LL).
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• Analogously, with

Γg(q,Q) = P (g → gg) and Γf(q) = P (g → qq̄) ,

one defines a Sudakov Form factor for the gluon

∆q(Q0, Q) ≡ expx

{
−
∫ Q

Q0

dq [Γg(q,Q) + Γf(q)]

}
.

• Knowing the ∆q,g(Q0, Q) one can easily construct Monte-Carlo

programs to explicitly generate the perturbative Parton Shower

cascade (in principle including an infinite number of emissions).

• However the results will be only reliable in the soft/collinear

regime. Outside one should calculate the exact Matrix elements

⇒ possible double counting problem

⇒ CKKW and Matching à la MLM (see later)

• In QCD, at each colour flow corresponds a different structure of

Sudakov Form Factors ⇒
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Reconstruction of colour flows

• The emission of soft gluon radiation in shower MC programs

accounts for quantum coherence, which is implemented via the

prescription of angular ordering in the parton cascade.

• The colour flow is the set of colour connections among the partons

which defines the set of dipoles for a given event.

• In order to reliably evolve a multi-parton state into a multi-jet

configuration, it is necessary to associate a specific colour-flow

pattern to each generated parton-level event.
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• Consider for example the case of multigluon processes. The

scattering amplitude for n gluons with momenta pµi , helicities ε
µ
i and

colours ai (with i = 1, . . . , n), can be written as

F.A. Berends and W. Giele, NPB 294 (1987) 700

M. Mangano, S. Parke and Z. Xu, NPB 298 (1988) 653

M({pi}, {εi}, {ai}) =
∑

P (2,3,...,n)

tr(λai1 λai2 . . . λain )A({pi1}, {εi1}; . . . {pin}, {εin}) .

• The functions A({Pi}) (known as dual or colour-ordered

amplitudes) are gauge-invariant, cyclically-symmetric functions of

the gluons’ momenta and helicities.

• Each dual amplitude A({Pi}) corresponds to a set of diagrams

where colour flows from one gluon to the next, according to the

ordering specified by the permutation of indices.
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• When summing over colours the amplitude squared, different

orderings of dual amplitudes are orthogonal at the leading order in

1/N 2

∑

col′s

|M({pi}, {εi}, {ai})|2 = Nn−2(N 2−1)
∑

Pi

[
|A({Pi})|2 +

1

N 2
(interf.)

]
.

• At the leading order in 1/N 2, therefore, the square of each dual

amplitude is proportional to the relative probability of the

corresponding colour flow

• Each flow defines, in a gauge invariant way, the set of colour

currents which are necessary and sufficient to implement the colour

ordering prescription necessary for the coherent evolution of the

gluon shower.
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• Because of the incoherence of different colour flows, each event can

be assigned a specific colour configuration by comparing the relative

size of |A({Pi})|2 for all possible flows.

• When working at the physical value of Nc = 3, the interferences

among different flows cannot be neglected in the evaluation of the

square of the matrix element. As a result, the basis of colour flows

does not provide an orthogonal set of colour states:

Our solution for and efficient color flow generation including 1/N

corrections in the Matrix Element evaluation

⇒
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- Choose a standard SU(3) orthonormal basis (Gell-Mann matrices

for example).

- Randomly select a non-vanishing colour assignment for the

external gluons.

- If the event is accepted choose randomly among the contributing

dual amplitudes a color flow on the basis of their relative weight.

• Two advantages:

1) Dual amplitudes required only for a small number of phase space

points.

2) Contributing dual amplitudes to a given external coulor

assignment ¿ than total number.
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The CKKW algorithm

• As an example take e+e− → n-jets.

• First recall that, in QCD, two objects i and j are resolved (using

the kT algorithm) if

yij ≡ 2 min{E2
i , E

2
j }(1− cos θij)/Q

2 > ycut. (1)

• One can reproduce (at the LL accuracy) the e+e−n-jet fractions at

the kT resolution

yini =
Q2

0

Q2

using a probabilistic diagrammatic (NOT Feynman diagrams)

approach as follows:
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Q

Q0

Q0

⇒ R2 = ∆q(Q0, Q)2

Q

Q0

Q0

Q0q

⇒ R3 = 2∆q(Q0, Q)2
∫ Q

Q0

dq Γq(q,Q)∆g(Q0, q) .

• If ycut > yini one can improve the above description by replacing Γ

with the appropriate tree-level matrix element squared.

For example, for the 3-jet distribution

Γq(q,Q) → |Mqq̄g|2 .
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In general

• At ycut > yini

1) choose the n-parton configuration with probability proportional to

the tree level matrix elements squared |Mn|2;
2) distribute all momenta according to |Mn|2;
3) reconstruct a probabilistic diagram by using the kT algorithm;

4) reweight |Mn|2 by a product of Sudakov form factors;

5) the argument of the form factors and the running coupling are

computed at the typical scales on the nodal values of the

reconstructed probabilistic diagram.

• At ycut < yini one uses instead a parton shower subjected to a

’veto’ procedure, which cancels the yini dependence

⇒ double counting is avoided
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The Matching á la MLM

• Simpler procedure

1) parton level events are defined by a minimum ET threshold Emin
T

for the partons and a minimum separation ∆Rij > Rmin;

2) a tree structure is reconstructed by using the kT algorithm, but

using information of the colour flow of the event ;

3) αs(Qi) is computed at the typical scales Qi on the nodal values of

the reconstructed probabilistic diagram;

4) the event is showered (using PYTHIA or HERWIG) without

applying any ’veto’ procedure;

5) no Sudakow reweighing is applied, rather, after the showering, a

jet cone algorithm (Rmin, E
min
T ) is applied and

only events where jet and partons match are kept ;

32



Few examples of matching (njets = 3): hard parton
parton emitted by the shower

Matched NOT matched: double log
double counting

NOT matched: single log
double counting

Matched: keep only if njets = Nmax
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6) Events obtained by applying this procedure to the parton level

with increasing multiplicity can then be combined to obtain fully

inclusive samples spanning a large multiplicity range.

This algorithm is implemented in ALPGEN (see later).
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Computing physical observables in

hard hadronic collisions at LHC

-Example 1: Hbb̄ Yukawa coupling at the LHC

-Example 2: Determination of λHHH at the (S)LHC
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Hbb̄ Yukawa coupling at the LHC

M. L. Mangano, M. Moretti, F. Piccinini, R. P. and A. Polosa, Phys. Lett. B556(2003)50

• Study of the H → bb̄ decay in the electroweak boson fusion (WBF)

production channel.

• Optimizing the signal significance (S/
√
B) leads to the following

set of cuts, on the b jets:

pbT > 30 GeV, |ηb| < 2.5,

∆Rbb > 0.7, |mbb −mH | < 0.12 ·mH ,

and on the forward jets:

pjT > 60GeV, |ηj1 − ηj2| > 4.2,

∆Rjj ,∆Rjb > 0.7, mjj > 1000 GeV.
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• In addition, two alternative selection criteria for the light-jet

rapidities are considered:

Case (a) ⇒ 2.5 < |ηj| < 5 and ηj1ηj2 < 0

Case (b) ⇒ |ηj| < 5

• The background sources considered are:

1. QCD production of bb̄jj final states, where j indicates a jet

originating from a light quark (u, d, s, c) or a gluon;

2. QCD production of jjjj final states;

3. Associated production of Z∗/γ∗ → bb̄ and light jets, where the

invariant mass of the bb̄ pair is in the Higgs signal region either

because of imperfect mass resolution, or because of the high-mass

tail of the intermediate vector boson;

4. tt̄ and tt̄j production;

5. bb̄jj and jjjj production via overlapping events.
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Results

• Assuming that the coupling HWW is the one predicted by the SM

or determined in other reactions:

mH 115 GeV 120 GeV 140 GeV

(a) δΓb/Γ 0.33 0.35 0.71

δyHbb/yHbb 0.58 0.51 0.56

(b) δΓb/Γ 0.20 0.19 0.37

δyHbb/yHbb 0.36 0.30 0.29

• A luminosity of 600 fb−1 is assumed with a b mistagging efficiency

εfake = 0.01.

• εfake = 0.05 would worsen these estimates by approximately 20%.
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Determination of λHHH at LHC

M. Moretti, S. Moretti, F. Piccinini, R. P. and A. Polosa, hep-ph/0410334 and hep-ph/0411039

• The complete reconstruction of the SM Higgs potential necessarily

requires the measurement of the Higgs self-couplings:

λ
(0)
HHH = −3

M 2
H

v
, λ

(0)
HHHH = −3

M 2
H

v2
, (v = 246 GeV)

• The leading production channels of Higgs boson pairs at hadron

colliders are

gg → HH (gg fusion)

gg, qq̄ → QQ̄HH (heavy − quark associated production)

qq(
′) → qq(

′)HH (vector− vector fusion)

qq̄(
′) → V HH (Higgs− strahlung)
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Figure 1: Cross sections for Higgs pair production in the SM via gg fusion, vector-

vector fusion and Higgs-strahlung, plus heavy-quark associated production. The ver-

tical arrows correspond to a variation of λHHH from 1/2 to 3/2 of the SM value.
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• Different decay channels dominate the final state, depending on

the value of MH :

- 120 GeV <∼ MH
<∼ 140 GeV (IMH) ⇒ H → bb̄

- MH
>∼ 140 GeV ⇒ H → W±(∗)W∓ and H → Z(∗)Z

IMH

• IMH boson pairs via gg → HH → bb̄bb̄ within the SM is most

probably not feasible at the LHC and very difficult at the so-called

SLHC∗ the tenfold luminosity increase option of the LHC (for a

heavier Higgs boson the situation is much brighter)

U. Baur, T. Plehn and D. Rainwater, Phys. Rev. D68 (2003) 033001

∗
F. Gianotti, M.L. Mangano, T. Virdee (conveners), hep-ph/0204087

• We present here the first results of studies performed specifically in

the case of IMH boson pairs produced via the other three production

modes.
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• IMH is still quite possible:

0

1

2

3

4

5

6

10020 400

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02747±0.00012

incl. low Q2 data

Theory uncertainty

Figure 2: Precision data vs. direct Higgs searches at LEP (Winter 2004).
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• A detailed signal-to-background analysis performed with ALPGEN

shows that the available statistics is in general too low for

quantitative SM estimates of λ
(0)
HHH at the LHC with 300 fb−1 of

accumulated luminosity.

• However, there are models beyond SM, that can “look alike” the

SM in their decoupling limit:

general type II CP-conserving THDM

J. F. Gunion and H. E. Haber, Phys. Rev. D67 (2003) 075019.

• The lightest Higgs (among the 5 Higgses) “look alike” the SM

Higgs, while the heavy modes decouple.

• Effectively, everything looks alike the SM, but

λHHH can considerably differ from the SM value λ
(0)
HHH

⇒
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Figure 3: Dependence of the cross sections for the three processes qq(
′) → qq(

′)HH,

gg, qq̄ → tt̄HH and qq̄(
′) → V HH on the triple-Higgs self-coupling, for three values

of the Higgs mass.
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• This possibility can be analyzed by implementing the exact

couplings of a generic 2HDM and scanning the parameter space

numerically (also checking possible problems with Gauge Invariance)

• The general scan was subject to the constraints of tree-level

unitarity and to the requirement that the couplings

g2hV V , g
2
htt and g2hbb differ from the SM values by no more than

30%, 30% and 70%, respectively, and with masses of the heavy Higgs

states mH
>∼ 300 GeV.

• The result of the scan is reported in the last row of the following

Table, together with the computed exclusion limits

⇒
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MH (GeV) 120 130 140

LHC, 95% CL −4.8 7.5 −6.0 9.0 −9.5 12.4

SLHC, 95% CL −1.8 3.7 −2.5 5.3 −4.4 7.4

LHC, 3σ −6.6 9.3 −8.1 11.0 −12.4 15.4

SLHC, 3σ −2.7 5.1 −3.6 6.5 −5.9 8.9

2HDM scan −8 < r< 36 −7 < r < 35 −6 < r < 34

Table 1: Constraints on the ratio r = λhhh/λ
(0)
HHH using all three channels. In the

top box, the two values in each entry correspond to rmin, rmax, where r < rmin and

r > rmax define the range which can be excluded at 95% CL (first row) or probed at

the 3σ level (second row). The bottom box contains the ranges for r allowed by the

2HDM scan.

• Notice that our analysis is model independent
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4

NLO forward-backward charge

asymmetries in p p̄
( ) → l−l+j

production at large hadron colliders
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• Based on:

F. del Aguila, L. Ametller and R.P., Phys. Lett. B 628, 40 (2005)

The motivation

The observables

The calculation

The results

The uncertainties

The problem of a realistic simulation

The conclusions
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The motivation

• The large cross sections for gauge boson production at Tevatron

and LHC might give a chance to determine the Standard Model

electroweak parameters with high precision.

• In particular, charge asymmetries allow to measure the fermion

couplings to the Z boson, namely sin2 θlepteff .

• The simplest case is AFB in the Drell-Yan process

qq̄ → Z, γ∗ → l−l+.
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• The associated production of a neutral gauge boson V = γ, Z

(with V → l−l+) and a jet has also a large cross section, especially

at LHC, thus can also allow for a precise determination of the

effective weak mixing angle.

• This correction to V production is a genuine new process when

the detection of the extra jet is required. In particular, gluons can

be also initial states, and the large gluon content of the proton at

high energy tends to make the V and V j production cross sections

of similar size.

• Then, it is worth studying the potential of the processes

p p̄
( ) → l−l+j

in providing a new determination of sin2 θlepteff including radiative

O(αs) corrections.

• Paper:

F. del Aguila, Ll. Ametller and R. Pittau, Phys. Lett. B628, 40 (2005)
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The observables

•

AFB =
F −B

F +B

F =

∫ 1

0

dσ

d cos θ
d cos θ, B =

∫ 0

−1

dσ

d cos θ
d cos θ .

• We consider two possible angles:

cos θCS =
2(pl

−
z El+ − pl

+

z El−)
√

(pl− + pl+)2
√
(pl− + pl+)2 + (pl

−
T + pl

+

T )2

cos θj =
(pl

− − pl
+

) · pj
(pl− + pl+) · pj .
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• θCS is the Collins-Soper angle (on average, the angle between l−

and the initial quark direction).

J.C. Collins and D.E. Soper, Phys. Rev. D 16, 2219 (1977)

• θj is the angle between l− and the direction opposite to the jet in

the l−l+ rest frame.

F. del Aguila et al., Phys. Rev. Lett. 89, 161802 (2002)

• Different asymmetries can be defined:

pp̄ : ACS cos θ = cos θCS

pp : ACS cos θ = cos θCS × |pe+

z +pe−
z +pj

z|
pe+
z +pe−

z +pj
z

pp̄ : Aj cos θ = cos θj × |pe+

z +pe−
z +pj

z|
pe+
z +pe−

z +pj
z

pp : Aj cos θ = cos θj

pp̄ : Ab cos θ = cos θj × (−sign(Qb))

pp : Ab cos θ = cos θj × (−sign(Qb))

6



The calculation

• As an example, we consider Ab (the same for ACS and Aj) :

g

b

b

b

e−

e+ +

g

b

b

b

e−

e+Leading Order gb and bg contributions.

with

b

g

q or q̄

Z, γ∗ → e−e+

NLO Virtual gb and bg contributions.
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(a) (b)

(c) (d)

NLO Real gb and bg (a), q̄
( )

b and b q̄
( )

(b), gg (c), qq̄ and q̄q (d)

contributions.
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•
dσNLO =

∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2 fNLO
i (x1)f

NLO
j (x2) dσ̂

NLO
ij

i, j = g, b, q, q̄

fNLO
i (x) = f

(0)
i (x) + αsf

(1)
i (x)

dσ̂NLO
ij = dσ̂

(0)
ij + αsdσ̂

(1)
ij .

• The size of the various terms (L = log µ
mb

):

a)
[
f
(0)
g (x1)f

(0)
b (x2) dσ̂

(0)
gb + (x1 ↔ x2)

]
∼

∑∞
k=0 α

k
sL

k

b) αs

[
f
(0)
(g,q,q̄)(x1)f

(0)
b (x2) dσ̂

(1)
(g,q,q̄)b + (x1 ↔ x2)

]
∼ αs

∑∞
k=0 α

k
sL

k

c) αs

[
f
(0)
g (x1)f

(0)
g (x2) dσ̂

(1)
gg + (x1 ↔ x2)

]
∼ αs

∑∞
k=0 α

k
sL

k or ∼
αsL

∑∞
k=0 α

k
sL

k

9



• The apparent double counting is resolved when considering

the evolution of the parton densities:

d) αs

[(
f
(1)
g (x1)f

(0)
b (x2) + f

(0)
g (x1)f

(1)
b (x2)dσ̂

(0)
gb + (x1 ↔ x2)

)]

∼ −αsL
∑∞

k=0 α
k
sL

k

• The separation between Virtual and Real contributions in dσ̂
(1)
ij is

performed with a Dipole Formalism.

S. Catani and M.H. Seymour, Nucl. Phys. B485, 291 (1997)

• We used MCFM v4.1 (modified to compute Ab)

J.M. Campbell, R.K. Ellis, http://mcfm.fnal.gov/

and ALPGEN.

M.L. Mangano et al., JHEP 0307, 001 (2003)
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The results

• Our simulation of the set up at LHC (Tevatron) for l = e:

pet =
√

pe 2T > 20GeV, pjt =

√
pj 2T > 50 (30)GeV,

|ηe,j | < 2.5, ∆Re,j > 0.4 .

• Parton distributions cteq6l1 (cteq6m) at LO (NLO).

• A sanity check:

R =
pp̄→ V b̄

( )

pp̄→ V j
= 0.020

to be compared with Rexp = 0.023(5) measured by D/0.

V.M. Abazov et al., Phys. Rev. Lett. 94, 161801 (2005)
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Contributing LHC Tevatron

process LO NLO LO NLO

gq̄
( ) → V j(j) 44.3 53.4 3.40 4.77

qq̄ → V j(j)

q̄
( )

q̄
( ) → V j(j)

gg → V j(j)

8.4

−
−





3.7

4.61

−
−





2.76

Total 52.7 57.1 8.01 7.53

gb → V b(g)

gg → V b(b̄)

q̄
( )

b → V b( q̄
( )

)

1.81

−
−





1.81

0.038

−
−





0.049

qq̄ → V b(b̄) − 0.06 − 0.025

Total 1.81 1.87 0.038 0.074

Estimates for the e−e+j and e−e+b cross sections at LHC (
√
s = 14 TeV) and

Tevatron (
√
s = 1.96 TeV) in pb
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• A fit near the Z peak gives:

A ∼ b (a− sin2 θeff)

δ sin2 θeff ∼ −δA

b

δA ∼
√

1−A2

Nevents
=

√
1−A2

L · σ .

• We assume an integrated Luminosity L of

100 (10) fb−1 at LHC (Tevatron).

19



LO/NLO σ(pb) A δA δ sin2 θlepteff

LHC σV j = 53 ACS 8.7× 10−3 4.4× 10−4 1.3× 10−3

57 6.8× 10−3 4.2× 10−4 1.3× 10−3

Aj 1.2× 10−2 4.4× 10−4 8.8× 10−4

1.1× 10−2 4.2× 10−4 1.1× 10−3

σV b = 1.8 Ab 7.5× 10−2 2.3× 10−3 8.7× 10−4

1.9 4.9× 10−2 2.3× 10−3 1.4× 10−3

Tevatron σV j = 8.0 ACS 6.4× 10−2 3.5× 10−3 1.4× 10−3

7.5 5.5× 10−2 3.6× 10−3 1.7× 10−3

Aj 9.9× 10−3 3.5× 10−3 8.1× 10−3

1.1× 10−2 3.6× 10−3 7.2× 10−3

σV b = 0.04 Ab 5.5× 10−2 5.1× 10−2 2.5× 10−2

0.07 2.7× 10−2 3.7× 10−2 4.7× 10−2
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The uncertainties

• In the Table we assumed a b-tagging efficiency ε of 100 % and NO

contamination ω in disentangling b and b̄ jets.

• Taking ε and ω into account means in practice dividing δ sin2 θlepteff

coming from the V b events by
√
ε(1− 2ω).

• A typical value for ε is 50 % while ω can be estimated as follows:

- Once the forward and backward hemispheres are identified, event by

event, with some criterion, the charge separation δexpb of the average

charges measured in both hemispheres can be determined:

δexpb =< Qb >F − < Qb >B.

- On the other hand a simple calculation yields a relation among δexpb ,

the bare quark charge Qb and ω:

δexpb = 2Qb(1− 2ω).

- Using Qb = − 1
3
, together with the experimental LEP value

δexpb = −0.21, gives ω ∼ 0.34 .
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• This loss of precision is partly compensated by the fact that the

Table refers to b production only: adding b̄ doubles the available

statistics.

At any rate approaching the quoted precisions will be an

experimental challenge.

• Another source of uncertainty is the dependence of the

asymmetries on parton densities (cteq and mrst).

• Variations of the asymmetries of the order of 10% can be easily

observed around the Z peak at both colliders.

• This can be considered as an extra handle provided by the

asymmetry measurements in constraining the parton distribution

functions.

• Conversely, with a more precise knowledge of them, the charge

asymmetries can be used for precision measurements.
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The problem of a realistic simulation

F. del Aguila, Ll. Ametller and R. Pittau, PoS (HEP2005) 311

• Although a complete NLO result is essential to predict the

correct production rates, a realistic experimental analysis is better

performed with a tree level program allowing an easier interface

with parton shower and hadronization packages.

• This looks feasible in the V j case, but the stronger impact of the

NLO corrections seems to prevent that for V b.

• A possible way out is using a program as ALPGEN and produce the

V b final state only through the tree level gg → V b(b̄) and

qq̄ → V b(b̄) subprocesses (the former rate is finite when computed

with mb 6= 0).

• As a result, a good approximation to the exact asymmetries

around the Z peak can be obtained:
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The dotted line refers to the approximation of using only ALPGEN
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The dotted line refers to the approximation of using only ALPGEN
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• As a drawback of this approach wrong rates are obtained, namely

σV b = 1.0 (0.04) pb at LHC (Tevatron) to be compared with the

NLO numbers: 1.9 (0.007) pb

⇒ a K factor should be included

• A rather easy way to achieve this is using a fake b mass:

with mb ∼ 1 GeV the correct V b production rate is reproduced at

Tevatron, leaving the corresponding asymmetry nearly unchanged.
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The conclusions

• Our result should be compared with the final LEP1 + SLD

analysis (Winter ’05):

10 2

10 3

0.23 0.232 0.234

sin2θ
lept

eff

m
H
  [

G
eV

]

χ2/d.o.f.: 11.8 / 5

A
0,l

fb 0.23099 ± 0.00053

Al(Pτ) 0.23159 ± 0.00041

Al(SLD) 0.23098 ± 0.00026

A
0,b

fb 0.23221 ± 0.00029

A
0,c

fb 0.23220 ± 0.00081

Q
had

fb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

∆αhad= 0.02761 ± 0.00036∆α(5)

mt= 178.0 ± 4.3 GeV
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• To make contact with experiment, we quote a recent result by D/0

using Drell-Yan with 72 pb−1 of integrated luminosity:

sin2 θeff = 0.2238± 0.0040± 0.0030 .

D. Acosta et al., Phys. Rev. D71, 052002 (2005)

• The 2 dominant backgrounds are under control:

[1] j’s misidentified as e±, [2] pp̄→W+W− → e+e−νeν̄e.

• In our case, with 1 additional jet, we need an even more

demanding experimental performance. For example:

a) events with exactly 1 jet should be selected

b) Ab requires measuring the charge of the b quark inside the jet.

Even though the experimental challenge is very demanding,

pursuing such measurements might provide an important and new

test of the Standard Model.
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