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Abstract. In this paper we construct nontrivial exterior domains Ω ⊂ RN , for all
N ≥ 2, such that the problem

−∆u + u− up = 0, u > 0 in Ω,

u = 0 on ∂Ω,
∂u
∂ν

= cte on ∂Ω,

admits a positive bounded solution. This result gives a negative answer to the Berestycki-
Caffarelli-Nirenberg conjecture on overdetermined elliptic problems in dimension 2, the
only dimension in which the conjecture was still open. For higher dimensions, different
counterexamples have been found in the literature; however, our example is the first
one in the form of an exterior domain.

1. Introduction

This paper is concerned with the existence of solutions of a semilinear overdetermined
elliptic problem in the form

(1.1)


∆u+ f(u) = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
∂u
∂ν = c 6= 0 on ∂Ω.

Here Ω ⊂ RN is a regular domain, f is a Lipschitz function and ν stands for the exterior
normal vector to ∂Ω. Observe that the presence of two boundary conditions makes the
problem overdetermined. Overdetermined boundary conditions arise naturally in free
boundary problems, when the variational structure imposes suitable conditions on the
separation interface, see for example [3].

In 1971 J. Serrin proved that if (1.1) is solvable for a bounded domain Ω, then Ω must
be a ball ([24, 19]). This is also true if we replace the Laplacian operator by another
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strongly elliptic operator and if the function f depends also on the gradient of u. This
result has many applications in Physics, and some of them are the following: 1) when a
viscous incompressible fluid is moving in straight parallel streamlines through a pipe of
given cross section, the tangential stress per unit area on the pipe wall is the same at all
points if and only if the cross section is circular; 2) when a solid straight bar is subject
to torsion, the magnitude of the resulting traction which occurs at the surface of the bar
is independent of the position if and only if the bar has a circular cross section; 3) when
a liquid is rising in a straight capillary tube, the liquid will rise to the same height at
the tube wall if and only if the tube has circular section. Serrin’s proof is based on the
Alexandrov reflection principle, introduced in 1956 by Alexandrov in [2] to prove that
the only compact, connected, embedded hypersurfaces in RN whose mean curvature is
constant are the spheres. The reflection principle was used also in 1979 by Gidas, Ni
and Nirenberg [13] to derive radial symmetry results for positive solutions of semilinear
elliptic equations. After that paper the reflection principle has been named the moving
plane method.

A natural dual version of the previous situation is to consider problem (1.1) in exterior
domains, i.e., domains Ω given as the complement of a compact connected regionD ⊂ RN .
In Physics this situation corresponds to the case of very big domains (mathematically
considered as unbounded) with a hole. We refer the reader to the survey [27] for more
specific applications in Physics of elliptic overdetermined problems in exterior domains.

In the case of exterior domains, the following problem has been considered:

(1.2)


∆v + g(v) = 0 in Ω,
v = a > 0 on ∂Ω,
∂v
∂ν = c on ∂Ω,
0 ≤ v < a in Ω.

With the change of variables u := a − v we have immediately a problem in the form
(1.1) with the extra assumptions u ≤ a. In this framework, the main research line has
aimed to prove the counterpart of the Serrin’s symmetry result, that is, to prove that
Ω is the complement of a ball. For example under the assumptions that g(t) ≥ 0 and

that t−
n+2
n−2 g(t) is nonincreasing, Aftalion and Busca proved in [1] that if problem (1.2)

has a solution then Ω is the complement of a ball. In [20] Reichel proved the same
symmetry result but under different assumptions: he assumes that g(t) is decreasing
for small positive t and that v → 0 at infinity. Finally, Sirakov ([28]) extends Reichel’s
result in several directions: to other domains (like the complement of a finite number
of domains, with different constants ai, ci), to other elliptic operators, and moreover he
shows that the condition v < a can be replaced with the assumption ci ≥ 0.
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As a consequence of [20, 28], we show in this paper that for some special functions f ,
the solution u of (1.1) must be radially symmetric and increasing (see subsection 2.1)
and Ω is the complement of a ball. This includes, for instance, the case of the Allen-Cahn
nonlinearity f(u) = u− u3.

In the proofs of [1, 20, 28] the main tool used is the moving plane method from infinity,
sometimes combined with the moving spheres method. Then their proofs show not only
symmetry, but also monotonicity along the radius. At this point, we point out that
there are radially symmetric solutions of problem (1.1) which are not monotone along
the radius. For instance, there exists a non-monotone radial solution to the problem:

(1.3)

 ∆u+ up − u = 0 in Bc
R,

u > 0 in Bc
R,

u = 0 on ∂BR,

for any p > 1 and R > 0, where BR is the ball of radius R and Bc
R is its complement (see

for instance [10]). This equation receives the name of Nonlinear Schrödinger Equation
and has been widely studied in the literature. Its solution increases in the radius up to
a certain maximum, and then it decreases and converges to 0 at infinity. Therefore, the
usage of the moving plane method from infinity is intrinsically restricted to some kind of
nonlinearities and/or solutions u. The main goal of this paper is to prove that (1.1) is
solvable for some exterior domain different from the complement of a ball. For that, we
use a local bifurcation argument from the solutions of (1.3).

Before going further presenting our results, let us review the literature on overdeter-
mined semilinear elliptic problems. In [6] Berestycki, Caffarelli and Nirenberg consider
free boundary problems where the variational structure imposes overdetermined condi-
tions on the boundary. The study of the regularity of the solutions by a blow-up technique
led them to study problem (1.1) in epigraphs. Under some hypothesis on the nonlinearity
f and on the behavior of the epigraph at infinity, they proved that the epigraph must be
a half-space (these results were later extended by Farina and Valdinoci [11]). Motivated
by this, and by the aforementioned results on exterior domains, they proposed in [6] the
following conjecture:

BCN Conjecture: If RN\Ω is connected, then the existence of a bounded solution
to problem (1.1) implies that Ω is either a ball, a half-space, a generalized cylinder
Bk × RN−k (Bk is a ball in Rk), or the complement of one of them.

This conjecture has been answered negatively for N ≥ 3 in [26], where the third author
finds a periodic perturbation of the straight cylinder BN−1 ×R that supports a periodic
solution to problem (1.1) with f(t) = λ t.

In the last years, a parallelism between overdetermined elliptic problems and constant
mean curvature surfaces, in the spirit of the correspondence of Alexandrof’s and Serrin’s
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results, has been observed. Indeed, the counterexample to the BCN Conjecture built
in [26] belongs to a smooth one-parameter family that can be seen as a counterpart of
the family of Delaunay surfaces, see [25]. Such domains exist also in other homogeneous
manifolds, as Sn ×R or Hn ×R, as shown in [18] as the counterpart of other well known
families of constant mean curvature surfaces. In [14] Hélein, Hauswirth and Pacard
establish a kind of Weierstrass representation for overdetermined elliptic problems in
dimension 2 with f ≡ 0 in analogy with minimal surfaces. Moreover, Traizet finds a
one-to-one correspondence between solutions of problem (1.1) in dimension 2 with f ≡ 0
and a special class of minimal surfaces ([32]). Finally, in [9] Del Pino, Pacard and Wei
consider problem (1.1) for functions f of Allen-Cahn type and they build new solutions
in domains Ω with boundary close to a dilated embedded minimal surface in R3 with
finite total curvature and nondegenerate, or to a dilated Delaunay surface.

If Ω is an epigraph, the problem is also related to the De Giorgi’s conjecture (1978),
that is still open in its full generality. This conjecture states that the entire solutions
of the Allen-Cahn equation ∆u + u − u3 = 0 monotone in one direction must have
level sets which are parallel hyperplanes if N ≤ 8. The relationship between the De
Giorgi’s conjecture and overdetermined problems is not surprising if we recall that this
conjecture is the counterpart of the Bernstein’s conjecture on minimal surfaces (1914),
that stated that all entire minimal graphs in RN should be hyperplanes, and which has
been disproved by E. Bombieri, E. De Giorgi and E. Giusti for N ≥ 9 ([7]). Starting
from the Bombieri-De Giorgi-Giusti entire minimal graph, Del Pino, Kowalczyk and Wei
build entire nontrivial monotone solutions to the Allen-Cahn equation if N ≥ 9. In this
spirit, Del Pino, Pacard and Wei has recently built nontrivial solutions for (1.1) for f of
Allen-Cahn type in nontrivial epigraphs if N ≥ 9, see [9]. In [34] Wang and Wei prove
that this type of solutions do not exist if N ≤ 8, a result that can be put in analogy with
that of Savin for the De Giorgi conjecture ([23]). Finally, the notion of stability plays
an important role in the De Giorgi conjecture, and also in overdetermined problems, see
[33].

Coming back to the BCN Conjecture, we point out that all counterexamples men-
tioned above require N ≥ 3, and we underline that all the examples of domains solving
an overdetermined elliptic problem are linked to minimal or constant mean curvature
surfaces.

In this paper we give a counterexample in the form of a exterior domain for any
dimension N ≥ 2. This gives a definitive negative answer to the conjecture, also in
dimension two. Partial positive answers to the BCN conjecture in dimension 2 have
been given in several works, see [11, 14, 21, 22, 32, 34]. In [21] the authors show that
the conjecture holds in dimension 2 under the hypothesis that ∂Ω is unbounded. The
counterexample we give in this paper shows that such hypothesis is actually sharp.
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Finally, this is the first example of a domain solving an overdetermined elliptic prob-
lem that has no clear counterpart in the theory of minimal or constant mean curvature
surfaces.

A first statement of our result (see Section 2 for a more detailed statement) is the
following:

Theorem 1.1. Let N ∈ N, N ≥ 2, 1 < p < N+2
N−2 (p > 1 if N = 2). There exist smooth

exterior domains Ω different from the complement of a ball such that the overdetermined
problem

(1.4)


−∆u+ u− up = 0, u > 0 in Ω,
u = 0 on ∂Ω,
∂u
∂ν = cte on ∂Ω,

admits a bounded solution.

Observe that, for any R > 0, the solutions to (1.3) form a trivial family of solutions
of (1.4). In this paper we use a local bifurcation argument to show that, from this
family of trivial solutions, there are nontrivial solutions in nontrivial domains bifurcating
at some values of the radius. The proof uses a general bifurcation result in the spirit
of Krasnoselskii. In order to do that, the nondegeneracy of the Dirichlet problem is
essential, but in general this is false at least for some radii R. Under some symmetry
assumptions, we find a spectral gap for the Dirichlet problem associated to (1.3), that is,
we show that it is nondegenerate for R ∈ (0, R0), for some R0 > 0. Another important
issue of the proof is to show that bifurcation occurs exactly in that interval. This is made
by studying the behavior of the first Steklov eigenvalue of the linearized operator.

The paper is organized as follows. In Section 2 we state a more precise version of
Theorem 1.1, which is the main result of the paper. Moreover, we complement our
analysis by showing the validity of the BCN conjecture for exterior domains and some
special nonlinearities f . In Section 3 we give some preliminary results. In particular,
the existence of the spectral gap for the Dirichlet problem is stated, but the proof is
postponed to Section 7. In Section 4 we define the operator that appears naturally in
our problems, and we compute its linearization. Section 5 is devoted to the study of
the linearized operator and its spectrum. Finally, in Section 6 we use a local bifurcation
result to conclude the proof.

The authors would like to thank the referee for his comments on the original version
of the paper. Those comments have given rise to subsection 2.1.
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2. Statement of our main result and comments

Let us first set some notations. Given a symmetry group G acting on RN , we say that
Ω ⊂ RN is G-symmetric if it is invariant under the action of the group G. In such case,
we can define the Sobolev spaces of G-symmetric functions as follows:

H1
G(Ω) = {u ∈ H1(Ω) : u = u ◦ g ∀g ∈ G},

H1
0,G(Ω) = {u ∈ H1

0 (Ω) : u = u ◦ g ∀g ∈ G},
and by H−1

G (Ω) the dual space of H1
0,G(Ω). We will use the same kind of notations for

functions defined in ∂Ω. In particular:

H
1/2
G (∂Ω) = {u ∈ H1/2(∂Ω) : u = u ◦ g ∀g ∈ G}.

We denote by BR ⊂ RN the ball of radius R centered at 0, and we may also write
SN−1 instead of ∂B1. If Ω is radially symmetric, we shall denote the spaces of radially
symmetric functions as:

H1
r (Ω) = {u ∈ H1(Ω) : u(x) = u(|x|) a.e. x ∈ Ω},

H1
0,r(Ω) = {u ∈ H1

0 (Ω) : u(x) = u(|x|) a.e. x ∈ Ω}.

For a function u ∈ H1(Ω), we denote ‖u‖ =
(
‖∇u‖2L2 + ‖u‖2L2

)1/2
its Sobolev norm.

Other norms will be clear from the subscript. In the case of the Holder regularity we can
define the following spaces:

Ck,αG (Ω) = {u ∈ Ck,α(Ω) : u = u ◦ g ∀g ∈ G},

Ck,αG (∂Ω) = {u ∈ Ck,α(∂Ω) : u = u ◦ g ∀g ∈ G}.
Moreover, we will denote by Ck,αG,m(SN−1) the set of functions in Ck,αG (SN−1) whose

mean is 0. Given a positive function w ∈ C2,α
G (SN−1) let us denote

Bw :=

{
x ∈ RN : 0 ≤ |x| < w

(
x

|x|

)}
.

and Bc
w its complement in RN .

We denote ∆SN−1 the Laplace-Beltrami operator in SN−1, and {µi}i∈N its eigenvalues,
i.e. µi = i(i+N − 2). From now on, we will fix a symmetry group G with the following
property:
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(G) G leaves invariant the origin and, denoting by {µik}k∈N the eigenvalues of ∆SN−1

restricted to G−symmetric functions and mk their multiplicity, we require i1 ≥ 2
and m1 odd.

We are now able to state the main result of this paper, from which Theorem 1.1 follows
immediately.

Theorem 2.1. Let N ∈ N, N ≥ 2, 1 < p < N+2
N−2 (p > 1 if N = 2). Let G be a group

of symmetries of RN satisfying (G). Then there exist R∗ = R∗(i1, p) > 0, a sequence

of non-zero functions vn ∈ C2,α
G,m(SN−1) converging to 0, and a sequence of positive real

numbers Rn converging to R∗ such that the overdetermined problem:
−∆u+ u− up = 0, in Bc

Rn(1+vn)

u = 0 on ∂BRn(1+vn)

∂u
∂ν = cte on ∂BRn(1+vn)

admits a positive bounded solution u ∈ C2,α
G

(
Bc
Rn(1+vn)

)
∩H1

0,G

(
Bc
Rn(1+vn)

)
.

Remark 2.2. There are many examples of groups G satisfying (G). For instance, if
1 ≤ m ≤ N − 1, the group G = O(m) × O(N −m) satisfies that i1 = 2 and m1 = 1.
Indeed, in this case, the corresponding eigenvalue is given as the restriction to SN−1 of
the 2-homogeneous harmonic polynomial:

p(x) = (N −m)(x2
1 + · · ·+ x2

m)−m(x2
m+1 + · · ·+ x2

N ).

In dimension 2, we can take as G any dihedral group Dk, k ≥ 3. In this case, i1 = k
and m1 = 1. In dimension 3 we can take G as the group of isometries of the tetrahedron
(i1 = 3 and m1 = 1), the octahedron (i1 = 4 and m1 = 1) or the icosahedron (i1 = 6 and
m1 = 1), see [16].

Remark 2.3. One could ask whether two different groups G1, G2 give rise to different
domains Ω. The answer is (partially) affirmative. Indeed, define G = 〈G1 , G2〉, and
denote:

(1) {µik} the eigenvalues of ∆SN−1 restricted to G1-symmetric functions,
(2) {µjk} the eigenvalues of ∆SN−1 restricted to G2-symmetric functions,
(3) {µlk} the eigenvalues of ∆SN−1 restricted to G-symmetric functions.

Clearly, l1 ≥ max{i1, j1}. If l1 > min{i1, j1}, then the two groups G1 and G2 give rise
to different domains Ω. In particular, this is true if i1 6= j1. In fact the value of the
bifurcation radius R∗ is different; this is due to the fact that the value R∗ is strictly
increasing with respect to i1, as can be see in the proof of Lemma 6.4.
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2.1. On the validity of the BCN conjecture for other type of nonlinearities. As
commented in the introduction, Theorem 2.1 gives a counterexample to the Beresticky-
Caffarelli-Nirenberg conjecture in exterior domains. We end this section by discussing
its validity for other types of nonlinear terms f(u).

Proposition 2.4. Let Ω be a bounded smooth domain and u be a bounded solution of
the problem:

(2.1)


∆u+ f(u) = 0 in Ωc,
u = 0 on ∂Ω,
∂v
∂ν = c on ∂Ω,
u > 0 in Ωc.

Suppose that f : [0,+∞)→ R is a C1 function such that there exists L > 0 with:

(1) f(t) > 0 for all t ∈ (0, L),
(2) f(t) < 0 for all t > L,
(3) f(L) = 0 and f ′(L) < 0,
(4) If f(0) = 0 then f ′(0) > 0.

Then Ω is a ball and u is radially symmetric and increasing.

Proof. The proof relies on the result [20] on exterior domains. But in order to apply it,
we need to show that u(x) < lim|x|→+∞ u(x) = L. This is done in two steps.

Step 1. u(x) < L for all x ∈ Ωc.
Assume that α = supu > L, and take xn ∈ Ωc such that u(xn) → α. Since u is

subharmonic in the domain {u(x) > L}, then it cannot reach its supremum, so xn is
unbounded. Define un(x) = u(x+ xn). Clearly un is bounded in L∞, and hence also its
Ck norm is bounded in L∞ on compact sets, for every k ∈ N. As a consequence, un → v
in Ck sense on compact sets of RN , where 0 ≤ v(x) ≤ α is an entire solution of the
equation ∆v+ f(v) = 0, and v(0) = α > L. But v is strictly subharmonic in the domain
{v(x) > L}, then it cannot reach its supremum. Hence α ≤ L. Moreover, observe that
u ≡ L is a constant solution of the problem ∆u+ f(u) = 0. By the maximum principle,
those two solutions cannot be at contact, concluding the proof.

Step 2. lim|x|→+∞ u(x) = L.
Let us define β = lim inf |x|→+∞ u(x). This implies that there exists xn ∈ Ωc, |xn| →

+∞, such that u(xn) → β. As before, define un(x) = un(x + xn), un → v in Ck

sense on compact sets of RN , where β ≤ v(x) ≤ L is an entire solution of the equation
∆v + f(v) = 0. In particular v is superharmonic, and v(0) = β = inf v ∈ [0, L]. Hence
v ≡ β, which in turn implies that β = 0 or β = L. We now exclude the possibility β = 0.
In such case f(0) = 0 and un converges uniformly to 0 on compact sets. Then, given
any ε > 0, R > 0, we have that un(x) ∈ (0, ε) in B(0, R) for large n. By hypothesis (4),

f(u) ≥ f ′(0)
2 u for any u ∈ (0, ε), provided that ε > 0 is chosen sufficiently small. We can
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also choose R > 0 such that the first eigenvalue of the Laplace operator under Dirichlet

boundary conditions satisfies λ1 = λ1(BR) < f ′(0)
2 . Then un is a positive solution of the

inequality −∆un > λ1un in BR. But this is not possible, so we conclude that β = L.

We are now in conditions to apply the result of [20] to the function v(x) = L − u(x)
to conclude the proof. �

The above result applies for instance to the case of the Allen-Cahn nonlinearity f(u) =
u− u3. The following proposition, probably known in the literature, represents an other
example when the BCN conjecture works for exterior domains.

Proposition 2.5. Let Ω be a bounded smooth domain and u be a bounded solution of
the problem: 

∆u = 0 in Ωc,
u = 0 on ∂Ω,
∂v
∂ν = c on ∂Ω,
u > 0 in Ωc.

Then Ω is a ball and u is radially symmetric and increasing.

Proof. Here also the proof relies on the application of the result [20] to v(x) = L− u(x),
where L = lim|x|→+∞ u(x). This is possible because

(1) The limit lim|x|→+∞ u(x) exists for harmonic functions defined outside of a com-
pact set, and then L is well defined (see for example Theorems 4.9 and 4.10 of
[5]).

(2) v is positive, because u is harmonic and then u(x) < L for all x ∈ Ωc.

This concludes the proof. �

Remark 2.6. There exist nonlinearities such that, for any bounded smooth domain Ω ⊂
RN , the problem  ∆u+ f(u) = 0 in Ωc,

u = 0 on ∂Ω,
u > 0 in Ωc,

does not admit any bounded solution. In this case we could say that the BCN conjecture
holds in a degenerate way. This happens, for instance, under the following assumptions:

(1) f(t) < 0 for any t > 0. This can be seen by defining β = supu > 0, xn ∈ Ωc such
that u(xn)→ β and, arguing as in the proof of Proposition 2.4, we would pass to
a nonconstant subharmonic function attaining its supremum.

(2) f(t) ≥ εt for any t > 0 and some ε > 0, see for example [22, Proposition 3.1].
(3) f(t) ≥ c > 0 for any t > 0. Indeed, for any ball B(x0, R), we have that v(x) =

c
2N (R2− |x− x0|2) solves the equation ∆v+ c = 0, with 0 boundary data. By the



10 ANTONIO ROS, DAVID RUIZ, AND PIERALBERTO SICBALDI

maximum principle, if such ball is contained in Ωc, then a solution of (??) would
satisfy u ≥ v. But as R becomes large v becomes larger, giving a contradiction.

The previous results, together with [21], implies the following:

Corollary 2.7. In dimension 2, under the assumptions of Propositions 2.4 and 2.5 or
Remark 2.6, then the BCN conjecture holds.

We remark also that the case of the original Serrin’s overdetermined problem, i.e. the
case where f is a constant, is completely solved for exterior domains by the previous
results.

We finish this section with a comment on the case of affine functions f(u). In view of
Propositions 2.4 and 2.5 and Remark 2.6, the only case left is f(u) = au+ b with a > 0
and b < 0. This case seems to remain as an interesting and hard open problem.

To fix ideas, let us take N = 3. Then, the function u(x) = sin |x|
|x| + 2

3π is a solution of

the problem: 
∆u+ u− 2

3π = 0 in Bc,
u = 0 on ∂B,
∂v
∂ν = c 6= 0 on ∂B,
u > 0 in Bc.

Here B = B 3π
2

. This is of course a radial solution to the overdetermined problem, but it

is not monotone along the radius, as the solution of (1.3). Actually it oscillates infinitely
many times around its limit 2

3π . As a consequence a symmetry proof via monotonicity,
in the spirit of [1, 20, 28], cannot be performed. It would be interesting to use this
solution to build other counterexamples to the BCN conjecture, as we do in this paper,
but this seems difficult. The solution is explicit but it does not belong to the Sobolev
space H1(Bc), and its Morse index is infinity, even when we restrict ourselves to radially
symmetric functions.

3. Preliminary results

As commented in the introduction, we will prove Theorem 2.1 by means of a bifurcation
argument to show the existence of such domain Ω close to the exterior of a ball. For
that, we shall need some facts of the Dirichlet problem; given any p > 1, consider:

(3.1)

{
−∆u+ u− up = 0, u > 0 in Bc

R,
u = 0 on ∂BR.

It will be convenient to make a change of scale and pass to the equivalent problem:

(3.2)

{
−λ∆u+ u− up = 0, u > 0 in Bc

1,
u = 0 on ∂B1,

where λ = 1
R2 . In the proposition below we list some known properties of this problem.
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Proposition 3.1. There follows:

a) For any λ > 0, there exists a radially symmetric C∞ solution of (3.2). This
solution increases in the radius up to a certain maximum, and then it decreases
and converges to 0 at infinity.

b) The positive and radial solution to (3.2) is unique: we denote it by uλ.
c) Let us define the linearized operator Lλ : H1

0,G(Bc
1)→ H−1

G (Bc
1),

(3.3) Lλ(φ) = −λ∆φ+ φ− pup−1
λ φ ,

and consider the eigenvalue problem:

Lλ(φ) = τ φ.

In the space of radially symmetric functions H1
0,r(B

c
R) this problem has a unique

negative eigenvalue and no zero eigenvalues. In other words, uλ is nondegenerate
in H1

0,r(B
c
1) and has Morse index 1. We denote by zλ ∈ H1

0,r(B
c
1) (normalized by

‖zλ‖ = 1) the positive eigenfunction with negative eigenvalue, i.e.

(3.4)

{
−∆zλ + zλ − pup−1

λ zλ = τ0zλ in Bc
1,

zλ = 0 on ∂B1,

where τ0 = τ0(λ) < 0. Moreover zλ is a C∞ function.

Proof. Statement a) is quite well known and has been proved in [10], for instance. The
results b) and c) are more recent and have been obtained in [12, 31]. �

Let us define the bilinear operator associated to (3.3): Qλ : H1
0,G(Bc

1)×H1
0,G(Bc

1)→ R,

(3.5) Qλ(ψ1, ψ2) =

ˆ
Bc1

λ∇ψ1 · ∇ψ2 + ψ1 ψ2 − pup−1
λ ψ1 ψ2 .

By Proposition 3.1, c), Qλ is positive definite for ψ ∈ H1
0,r(B

c
1) with

´
Bc1
ψ zλ = 0. In next

lemma we show that this property may fail if we do not impose radial symmetry. This
might be known in the literature, but we have not been able to find a specific reference.

Proposition 3.2. Let G be a symmetry group satisfying hypothesis (G). Then there
exists ε > 0 such that for any λ ∈ (0, ε), there exists ψ ∈ H1

0,G(Bc
1) such that

(1)
´
Bc1
ψzλ = 0.

(2) Qλ(ψ,ψ) < 0.

Remark 3.3. The proof of Proposition 3.2 can be adapted to show that the Morse index
of uλ in H1

0 (Bc
1) diverges as λ→ 0. This is in contrast with what happens in the radial

case. Hence, one expects the existence of infinitely many branches of nonradial solutions
to the problem (3.2) bifurcating from uλ. As far as we know, this result has not been
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explicitly written in the literature. In any case, the existence of this kind of solutions is
outside the scope of this paper.

Proof of Proposition 3.2. Let µi1 be the first eigenvalue of the operator ∆SN−1 restricted
to G-symmetric functions, and φ one of the corresponding normalized eigenfunctions.
Let us define the function ψ in polar coordinates: ψ(r, θ) = uλ(r)φ(θ), with θ ∈ SN−1.
Since zλ is radially symmetric,

´
Bc1
ψzλ = 0. Observe now that

|∇ψ|2 = u′λ(r)2 φ2(θ) +
1

r2
uλ(r)2 |∇θφ(θ)|2.

Therefore,

Qλ(ψ,ψ) =

ˆ +∞

1
rN−1

(
λu′λ(r)2 + uλ(r)2 − p|uλ(r)|p+1

) ˆ
SN−1

φ2(θ) dθ dr

+λ

ˆ +∞

1
rN−1 1

r2
uλ(r)2

ˆ
SN−1

|∇θφ(θ)|2 dθ dr

=

ˆ +∞

1

(
λu′λ(r)2 + uλ(r)2 − p|uλ(r)|p+1 + λ

µi1
r2
uλ(r)2

)
rN−1 dr .

If we multiply the equation in (3.2) (with u = uλ) by uλ and integrate, we obtain:

ˆ +∞

1

(
λu′λ(r)2 + uλ(r)2

)
rN−1 dr =

ˆ +∞

1
|uλ(r)|p+1 rN−1 dr.

Plugging this identity in the above expression, we obtain:

Qλ(ψ,ψ) =

ˆ +∞

1

(
(1− p)

(
λu′λ(r)2 + uλ(r)2

)
+ λ

µi1
r2

uλ(r)2
)
rN−1 dr

≤
ˆ +∞

1
(1− p+ λµi1)uλ(r)2 rN−1 dr,

and this last quantity is negative if λ < ε := p−1
µi1

. �

In view of Proposition 3.2, the operator Lλ may be degenerate if we consider non
radially symmetric functions. However, as a consequence of next proposition, we conclude
that Lλ is nondegenerate for large values of λ.

Proposition 3.4. There exists M > 0 such that for any λ > M , Qλ(ψ,ψ) > 0 for any
ψ ∈ H1

0,G(Bc
1) such that

´
Bc1
ψzλ = 0.

The proof of this proposition is postponed to Section 7.
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We define:

(3.6) Λ0 = sup

{
λ > 0 : Qλ(ψ,ψ) ≤ 0 for some ψ ∈ H1

0,G(Bc
1) \ {0},

ˆ
Bc1

ψzλ = 0

}
,

Observe that Proposition 3.4 implies that the set above is bounded from above, whereas
Proposition 3.2 implies Λ0 > 0. For λ > Λ0, the Dirichlet problem (3.2) is nondegenerate,
in the sense that the operator Lλ has trivial kernel. The following result is rather standard
but, since the domain under consideration is unbounded, we prefer to state it and include
its proof.

Lemma 3.5. Assume that the operator Lλ has trivial kernel. Then:

a) The operator Lλ is an isomorphism.

b) Given v ∈ H1/2
G (SN−1), there exists a unique solution ψv ∈ H1

G(Bc
1) of the prob-

lem:

(3.7)

{
−λ∆ψv + ψv − pup−1

λ ψv = 0 in Bc
1,

ψv = v on ∂B1.

Proof. We observe that the operator

ψ → λ∆ψ + ψ

is an isomorphism from H1
0,G(Bc

1)→ H−1
G (Bc

1). Moreover, the operator

ψ → pup−1
λ ψ

is a compact operator from H1
0,G(Bc

1)→ H−1
G (Bc

1), because uλ(x) tends to 0 when |x| →
+∞ (see Proposition 3.1). Our operator Lλ is the sum of the two previous operators,
and since it has trivial kernel by assumption, we conclude that it is an isomorphism.

In order to prove b), take φ ∈ H1
G(Bc

1) such that φ|∂B1 = v. Observe that ξ =

−λ∆φ+ φ− pup−1
λ φ is a element of H−1

G (Bc
1) in the sense that:

(ξ, ψ) =

ˆ
Bc1

λ∇φ · ∇ψ + φψ − pup−1
λ φψ.

for all ψ ∈ H1
0,G(Bc

1). By a), we can find θ ∈ H1
0,G(Bc

1) with Lλ(θ) = ξ. Then φ− θ is a

solution of (3.7). �

4. The Dirichlet-to-Neumann operator and its linearization

The main result of this section is the following:
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Proposition 4.1. Assume that λ > Λ0, where Λ0 is given by (3.6). Then, for all function

v ∈ C2,α
G,m(SN−1) whose norm is sufficiently small, there exists a unique positive solution

u = u(λ, v) ∈ C2,α(Bc
1+v) ∩H1

0,G(Bc
1+v) to the problem

(4.1)

{
−λ∆u+ u− up = 0 in Bc

1+v

u = 0 on ∂B1+v .

In addition u depends smoothly on the function v, and u = uλ when v ≡ 0.

Proof. Let v ∈ C2,α
G,m(SN−1). Instead of working on a domain depending on the function

v, it will be more convenient to work on the fixed domain Bc
1, endowed with a new metric

depending on the function v. This can be achieved by considering the diffeomorphism
Y : Bc

1 → Bc
1+v given by

(4.2) Y (y) :=

(
1 + χ(y) v

(
y

|y|

))
y

where χ is a cut-off function such that:

χ(y) =

{
0 |y| ≥ 3/2,
1 |y| ≤ 5/4.

Hence the coordinates we consider from now on are y ∈ Bc
1 and in these coordinates the

new metric g can be written as

g = δij +
∑
i,j

Cij dyi dyj ,

where the coefficients Cij ∈ C1,α
G (Bc

1) are functions of y depending on v and the first

partial derivatives of v. Moreover, Cij ≡ 0 when v = 0 and the maps v 7−→ Cij(v) are
smooth. Up to some multiplicative constant, the problem we want to solve can now be
rewritten in the form

(4.3)

{
−λ∆gû+ û− ûp = 0 in Bc

1

û = 0 on ∂B1 .

When v ≡ 0, the metric g is nothing but the Euclidean metric and a solution of (4.3) is
therefore given by û = uλ. In the general case, the relation between the function u and
the function û is simply given by

Y ∗u = û .

For ψ ∈ H1
0,G(Bc

1) we define

N(v, ψ) := −λ∆g(uλ + ψ) + (uλ + ψ)− [(uλ + ψ)+]p .
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where (uλ + ψ)+ denotes the positive part of the function uλ + ψ. We have

N(0, 0) = 0.

The mapping N is a smooth map from a neighborhood of (0, 0) in C2,α
G (SN−1)×H1

0,G(Bc
1)

into H−1
G (Bc

1). The partial differential of N with respect to ψ, computed at (0, 0), is given
by

DψN |(0,0) (ψ) = −λ∆ψ + ψ − pup−1
λ ψ .

Since λ > Λ0, DψN |(0,0) : H1
0,G(Bc

1) → H−1
G (Bc

1) is an isomorphism by Lemma 3.5.

Therefore, the Implicit Function Theorem implies that, for v in a neighborhood of 0
in C2,α

G (SN−1), there exists of ψ(λ, v) ∈ H1
0,G(Bc

1) such that N(v, ψ(v, λ)) = 0. The

regularity of u = uλ + ψ(v, λ) follows from classical Schauder regularity theory, whereas
the fact that u is positive comes from the maximum principle. �

For any λ > Λ0, after canonical identification of ∂B1+v with SN−1, we can take an

open set U ∈ (Λ0,+∞)× C2,α
G,m(SN−1) containing (Λ0,+∞)× {0}, as the domain of the

operator F : U → C1,α
G,m(SN−1) defined by

(4.4) F (λ, v) =
∂u(λ, v)

∂ν
− 1

Vol(∂B1+v)

ˆ
∂B1+v

∂u(λ, v)

∂ν

where ν denotes the unit normal vector field to ∂B1+v pointing to the interior of B1+v

and u(λ, v) is the solution of (4.1) provided by Proposition 4.1.

Observe that F (λ, v) = 0 if and only if ∂u∂ν is constant at the boundary ∂B1+v. Clearly,
F (λ, 0) = 0 for all λ ∈ (Λ0,+∞). Our purpose is to find a bifurcation branch from those

solutions, so that we get F (λ, vλ) = 0, with vλ ∈ C2,α
G,m(SN−1) small, but different from

0.

We will compute now the Frechet derivative of the operator F . Before this, we state
a useful lemma.

Lemma 4.2. Let v ∈ C2,α
G,m(SN−1) and ψ = ψv ∈ C2,α

G (Bc
1) ∩ H1

G(Bc
1) be a solution of

(3.7). Then: ˆ
Bc1

ψzλ = 0,

ˆ
∂B1

∂ψ

∂ν
= 0.

Proof. We multiply the equation in (3.4) by ψ, the equation in (3.7) by zλ, and integrate
by parts to obtain:

τ0

ˆ
Bc1

zλψ =

ˆ
∂B1

(
∂ψ

∂ν
zλ −

∂z

∂ν
ψ

)
.
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We know that zλ = 0 and ∂zλ
∂ν is constant on ∂B1 (recall that zλ is radially symmetric)

ψ = v on ∂B1. The first identity follows immediately.
Now, define κλ ∈ H1

r (Bc
1) as the unique solution of the problem:

(4.5)

{
−∆κλ + κλ − pup−1

λ κλ = 0 in Bc
1,

κλ = 1 on ∂B1.

The existence of such solution is guaranteed for any λ ∈ R by Proposition (3.1) c) and
Lemma 3.5 b). We multiply (4.5) by ψ, (3.7) by κλ and integrate by parts to conclude:

0 =

ˆ
∂B1

(
∂ψ

∂ν
κλ −

∂κλ
∂ν

ψ

)
.

We know that kλ = 1 and ∂kλ
∂ν is constant on ∂B1 (kλ is also radially symmetric), and

that ψ = v on ∂B1. The second identity follows immediately. �

We define the operator Hλ : C2,α
G,m(SN−1)→ C1,α

G,m(SN−1),

(4.6) Hλ(v) =
∂ψv
∂ν
− (N − 1) v.

Here ψv is given by Lemma 3.5, b). Observe that by Schauder Elliptic Estimates, if

v ∈ C2,α
G,m(∂B1), ψv ∈ C2,α

G (Bc
1), and then the operator is well defined.

Proposition 4.3. The map F defined in 4.4 is a C1 operator in a neighborhood of (λ, 0)
for all λ > Λ0, and DvF |(λ,0) = Hλ.

Proof. The operator F is a C1 operator by Proposition 4.1 (the function u depends
smoothly on v). The linear operator obtained by linearizing F with respect to v at (λ, 0)
is then given by the directional derivative

F ′(w) = lim
s→0

F (λ, sw)− F (λ, 0)

s
= lim

s→0

F (λ, sw)

s
.

Writing v = sw, we consider the diffeomorphism Y : Bc
1 → Bc

1+v given in (4.2). We set
ĝ the induced metric, so that û = Y ∗u is the solution (smoothly depending on the real
parameter s) of {

−λ∆ĝ û+ û− ûp = 0 in Bc
1

û = 0 on ∂B1 .

We remark that ûλ := Y ∗uλ is a solution of

−λ∆ĝ ûλ + ûλ − ûpλ = 0

in a neighborhood of Bc
1 (note that uλ is radial and then can be extended in a neighbor-

hood of ∂B1), and
ûλ(y) = uλ((1 + sw) y) ,
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on ∂B1. Writing û = ûλ + ψ̂ we find that

(4.7)

 −λ∆ĝ ψ̂ + (ûλ + ψ̂)− (ûλ + ψ̂)p − ûλ + ûpλ = 0 in Bc
1

ψ̂ = −ûλ on ∂B1

Obviously ψ̂ is a smooth functions of s. When s = 0, we have u = uλ. Therefore, ψ̂ = 0
and ûλ = uλ when s = 0. We set

ψ̇ = ∂sψ̂|s=0 .

Differentiating (4.7) with respect to s and evaluating the result at s = 0, we obtain −λ∆ ψ̇ + (1 + pup−1
λ ) ψ̇ = 0 in Bc

1

ψ̇ = −∂ruλw on ∂B1

where we have set r := |y|. To summarize, we have proved that

û = ûλ + s ∂ruλψ +O(s2)

where ψ is the solution of (3.7). In particular, in Bc
5/4, we have

û(y) = uλ
((

1 + sw(y/|y|)
)
y
)

+ s ∂ruλ ψ(y) +O(s2)

= uλ(y) + s ∂ruλ
(
rw(y/|y|) + ψ

)
+O(s2)

In order to compute the normal derivative of the function û when the normal is computed
with respect to the metric ĝ, we use polar coordinates y = r θ where θ ∈ SN−1. Then the
metric ĝ can be expanded in B5/4 \B1 as

ĝ = (1 + sw)2 dr2 + 2 s (1 + sw) r dw dr + r2 (1 + sw)2 e̊+ s2 r2 dw2

where e̊ is the metric on SN−1 induced by the Euclidean metric. It follows from this
expression that the unit normal vector field to ∂B1 for the metric ĝ is given by

ν̂ =
(
(1 + sw)−1 +O(s2)

)
∂r +O(s) ∂θj

where ∂θj are vector fields induced by a parameterization of SN−1. Using this, we conclude
that

ĝ(∇û, ν̂) = ∂ruλ + s
(
w ∂2

ruλ + ∂rψ
)

+O(s2)

on ∂B1. The result then follows at once from the fact that ∂ruλ and ∂2
ruλ are constant

on ∂B1, while the terms w and ∂rψ have mean 0 on ∂B1, and

−λ(∂2
ruλ + (N − 1)∂ruλ) = 0

on ∂B1. This completes the proof of the proposition. �
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5. Study of the linearized operator

In view of Proposition 4.3, a bifurcation might appear only for values of λ so that Hλ

becomes degenerate (Hλ was defined in (4.6)). We shall see that this is indeed the case
for some λ > Λ0. Let us define the first eigenvalue of the operator Hλas

σ1(Hλ) = inf

{ˆ
SN−1

v Hλ(v) : v ∈ C2,α
G,m(SN−1) ,

ˆ
SN−1

v2 = 1

}
∈ [−∞,+∞).

The main result of this section is the following:

Proposition 5.1. There exists Λ2 > Λ∗ > Λ0 (Λ0 is given in (3.6)) such that:

(1) if λ ≥ Λ2 then σ1(Hλ) > 0;
(2) σ1(HΛ∗) = 0;
(3) there exists a sequence of real numbers λn, increasing and converging to Λ∗, such

that σ1(Hλn) < 0.

In order to prove Proposition 5.1, let us define the following bilinear forms: Tλ :

H
1/2
G (SN−1)×H1/2

G (SN−1)→ R defined by

Tλ(v1, v2) =

ˆ
SN−1

v1
∂ψv2
∂ν

,

and T̃λ : H
1/2
G (SN−1)×H1/2

G (SN−1)→ R defined by

T̃λ(v1, v2) =

ˆ
SN−1

v1
∂ψv2
∂ν
−
ˆ
SN−1

(N − 1)v1v2 .

Observe that Tλ, T̃λ are symmetryc. Moreover, it is clear that:

σ1(Hλ) = inf

{ˆ
SN−1

T̃λ(v, v) : v ∈ C2,α
G,m(SN−1),

ˆ
SN−1

v = 0,

ˆ
SN−1

|v|2 = 1

}
.

We also define the bilinear form Q̃λ : H1
G(Bc

1)×H1
G(Bc

1)→ R, by

(5.1) Q̃λ(ψ1, ψ2) = Qλ(ψ1, ψ2)− λ (N − 1)

ˆ
∂B1

ψ1ψ2 ,

where Qλ has been defined in (3.5). It is easy to verify that

Tλ(v1, v2) =
1

λ
Qλ(ψv1 , ψv2) , T̃λ(v1, v2) =

1

λ
Q̃λ(ψv1 , ψv2).

The following lemma relates σ1(Hλ) with the bilinear form Q̃.

Lemma 5.2. For any λ > Λ0 we have

σ1(Hλ) = inf

{
1

λ
Q̃(ψ,ψ) : ψ ∈ E ,

ˆ
∂B1

ψ2 = 1

}
.
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where

(5.2) E =

{
ψ ∈ H1

G(Bc
1),

ˆ
∂B1

ψ = 0,

ˆ
Bc1

ψzλ = 0

}
.

Moreover this infimum is attained.

Proof. Fix λ > Λ0. First we prove that

(5.3) γ1 := inf

{
Qλ(ψ,ψ) : ψ ∈ E ,

ˆ
∂B1

ψ2 = 1

}
.

is achieved. Take ψn ∈ E such that Qλ(ψn, ψn) → γ1 ∈ [−∞,+∞). We show that
ψn is bounded by contradiction; if ‖ψn‖ → +∞, define φn = ‖ψn‖−1ψn, and we can
assume that up to a subsequence φn ⇀ φ0. Observe that

´
∂B1

φ2
n → 0, which implies

that φ0 ∈ H1
0,G(Bc

1). We also point out that
ˆ
Bc1

up−1
λ φ2

n →
ˆ
Bc1

up−1
λ φ2

0.

Now, let us consider two cases:
Case 1: φ0 = 0. In such case,

Qλ(ψn, ψn) = ‖ψn‖2
ˆ
Bc1

(
λ|∇φn|2 + φ2

n − pu
p−1
λ φ2

n

)
→ +∞,

which is impossible.
Case 2: φ0 6= 0. In this case,

lim inf
n→+∞

Qλ(ψn, ψn) = lim inf
n→+∞

‖ψn‖2
ˆ
Bc1

(
λ|∇φn|2 + φ2

n − pu
p−1
λ φ2

n

)
≥ lim inf

n→+∞
‖ψn‖2Qλ(φ0, φ0),

but Qλ(φ0, φ0) > 0 since λ > Λ0. This is again a contradiction.
Therefore, ψn is bounded, so up to a subsequence we can pass to the weak limit ψn ⇀ ψ.
As before,

1 =

ˆ
∂B1

ψ2
n →

ˆ
∂B1

ψ2,

ˆ
Bc1

up−1
λ ψ2

n →
ˆ
Bc1

up−1
λ ψ2.

Then ψ is a minimizer for γ1, and in particular γ1 > −∞.

Now we observe that under the constraints ψ ∈ E, and
´
∂B1

ψ2 = 1 we have

(5.4) Q̃λ(ψ,ψ) = Qλ(ψ,ψ)− λ (N − 1)
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and in particular, also

inf

{
1

λ
Q̃λ(ψ,ψ) : ψ ∈ E ,

ˆ
∂B1

ψ2 = 1

}
.

is achieved.

Let ψ ∈ E be the minimizer such that Qλ(ψ,ψ) = γ1. By the Lagrange multiplier
rule, there exist α0, α1, α2 ∈ R so that for any ρ ∈ H1

G(Bc
1),

ˆ
Bc1

(
∇ψ · ∇ρ+ ψρ− pup−1

λ ψρ− α0ρzλ

)
=

ˆ
∂B1

ρ(α1ψ + α2).

Taking ρ = ψ, we conclude that α1 = γ1. Moreover, taking ρ = zλ and ρ = κλ (recall
the definitions of zλ and kλ in (3.4) and (4.5)), we conclude that α0 = 0 and α2 = 0,
respectively. In other words, ψ is a (weak) solution of the equation:

(5.5)

{
−λ∆ψ + ψ − pup−1

λ ψ = 0 in Bc
1,

∂ψ
∂ν = γ1ψ on ∂B1.

By the regularity theory, ψ ∈ C2,α
G (Bc

1).

Now recall that Tλ(v, v) = 1
λQλ(ψv, ψv). By Lemma 4.2 ψv ∈ C2,α

G (Bc
1) ∩ E, and then

γ1 ≤ inf

{
λTλ(v, v) : v ∈ C2,α

G (SN−1),

ˆ
SN−1

v = 0,

ˆ
SN−1

|v|2 = 1

}
Moreover, γ1 is achieved at a certain ψ ∈ C2,α

G (Bc
1), which solves (5.5). In particular,

denoting v = ψ|∂B1 , we conclude that λTλ(v, v) = γ1. Then we have

(5.6) γ1 = inf

{
λTλ(v, v) : v ∈ C2,α

G (SN−1),

ˆ
SN−1

v = 0,

ˆ
SN−1

|v|2 = 1

}
.

Now we observe that under the constraints
´
SN−1 v = 0, and

´
SN−1 |v|2 = 1 we have

T̃λ(v, v) = Tλ(v, v)− (N − 1)

and then the result follows at once from (5.3), (5.4) and (5.6). �

The previous lemma leads us to the study of the bilinear form Q̃λ. The first key result
for our purposes is the following:

Proposition 5.3. There exists M > Λ0 such that for any λ > M , Q̃λ(ψ,ψ) > 0 for any
ψ ∈ E \ {0}, where E is the subspace defined in (5.2).
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The proof of this proposition is somehow delicate and it is postponed to Section 7. We
point out that this is the only point where the assumption p < N+2

N−2 (if N > 2) is needed.

Let us define now:

(5.7) Λ∗ = sup{λ > 0 : Q̃λ(ψ,ψ) < 0 for some ψ ∈ E}.
By Proposition 5.3, Λ∗ < +∞. Moreover, since Q̃λ(ψ,ψ) = Qλ(ψ,ψ) for all ψ ∈
H1

0,G(Bc
1), we have also that Λ∗ ≥ Λ0. The last main ingredient to prove Proposition 5.1

is the following:

Lemma 5.4. Λ∗ > Λ0

Proof. It suffices to show that for λ = Λ0, Q̃λ(ψ,ψ) < 0 for some ψ ∈ E. Reasoning by

contradiction, assume that Q̃λ is semipositive definite in E. By definition of Λ0, there
exists ψ0 ∈ H1

0,G(Bc
1), with Qλ(ψ0, ψ0) = 0, and ψ0 is a solution of (3.3). We have ψ0 ∈ E

and by our assumptions it is also a minimizer for Q̃λ when defined in E. By the Lagrange
multiplier rule, there exist α0 and α1 ∈ R so that for any ρ ∈ H1

G(Bc
1),ˆ

Bc1

(
∇ψ · ∇ρ+ ψρ− pup−1

λ ψρ− α0ρzλ

)
= α1

ˆ
∂B1

ρ

Taking ρ = zλ and ρ = κλ (recall the definitions of zλ and kλ in (3.4) and (4.5)), we
conclude that α0 = 0 and α1 = 0, respectively. In other words, ψ is a (weak) solution of
the equation: {

−λ∆ψ0 + ψ0 − pup−1
λ ψ0 = 0 in Bc

1,
∂ψ0

∂η − (N − 1)ψ0 = 0 on ∂B1.

Since ψ0 = 0 on ∂B1, we have ∂ψ0

∂ν = 0 on ∂B1. By unique continuation we should have
ψ0 = 0, but this is a contradiction. �

We are now able to give the proof of the main proposition of this section.

Proof. (Proposition 5.1.) Assertion (1) follows immediately from Proposition 5.3. State-
ments (2) and (3) follow by the definition of Λ∗ in (5.7) and Lemma 5.4. �

6. The bifurcation argument

In order to use a local bifurcation result we need to rewrite our problem in a more
convenient way. For that, the following lemma will be essential.

Lemma 6.1. There exists ε > 0 such that for any λ ∈ (Λ∗ − ε,+∞), the operator

Hλ + Id : C2,α
G,m(SN−1) → C1,α

G,m(SN−1)

v 7→ Hλ(v) + v

is invertible.
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Proof. It suffices to prove that the operator

v → Hλ(v) + σ v

defined in C2,α
G,m(SN−1) is invertible for all σ > −σ1(Hλ). Equivalently, we can prove that

the operator

v → ∂ψv
∂ν

∣∣∣∣
∂B1

+ γ v

defined in C2,α
G,m(SN−1) is invertible for all γ > −γ1, where γ1 is defined in (5.3). Then,

define the bilinear form Qλ,γ : E × E → R as

Qλ,γ(ψ1, ψ2) = Qλ(ψ1, ψ2) + λ γ

ˆ
∂B1

ψ1 ψ2,

and the bilinear form Tλ,γ : H
1/2
G (SN−1)×H1/2

G (SN−1)→ R as

Tλ,γ(v1, v2) = Tλ(v1, v2) + γ

ˆ
SN−1

v1 v2.

Since γ > γ1, those bilinear forms are positive definite. We claim that they are indeed
coercive. Let us start with Qλ,γ , and show that:

α := inf{Qλ,γ(ψ,ψ) : ψ ∈ E, ‖ψ‖ = 1} > 0.

Take ψn ∈ E, ‖ψn‖ = 1, Qλ,γ(ψn, ψn)→ α, and assume that ψn ⇀ ψ0. If the convergence
is strong, then the infimum α is attained, which implies that α > 0. Otherwise,

α = lim sup
n→+∞

ˆ
Bc1

λ|∇ψn|2 + ψ2
n − pu

p−1
λ ψ2

n + γ

ˆ
∂B1

ψ2
n

>

ˆ
Bc1

λ|∇ψ0|2 + ψ2
0 − pu

p−1
λ ψ2

0 + γ

ˆ
∂B1

ψ2
0 ≥ 0.

Hence Qλ,γ is coercive. Now, observe that:

Tλ,γ(v, v) =

ˆ
∂B1

[
v
∂ψv
∂ν

+ γ v2

]
=

1

λ
Qλ,γ(ψv, ψv) ≥ c‖ψv‖2H1(Bc1) ≥ c

′‖v‖2
H1/2(SN−1)

,

where we have used the trace estimate in the last inequality. Therefore Tλ,γ is coercive.
By the Lax-Milgram Theorem, the operator

v → ∂ψv
∂ν

∣∣∣∣
∂B1

+ γ v

is invertible for all γ > −γ1 in the spaces H
1/2
G (SN−1)→ H

−1/2
G (SN−1). By the regularity

theory and the fact that the mean property is preserved, it is invertible also in the spaces
C2,α
G,m(SN−1)→ C1,α

G,m(SN−1). �
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According to Proposition 5.1, we can take Λ1 ∈ (Λ0,Λ
∗) sufficiently close to Λ∗ so that

σ1(HΛ1) < 0. We define G : [Λ1,Λ2]× V → W by

(6.1) G(λ, v) = F (λ, v) + v.

Here V ⊂ C2,α
G,m(SN−1) and W ⊂ C1,α

G,m(SN−1) are open neighborhoods of the 0 function,

and Λ2 is given by Proposition 5.1. By Lemma 6.1, taking Λ1 close enough to Λ∗ we
can assume that DvG|(λ,0) is an isomorphism for all λ ∈ [Λ1,Λ2]. By using the Inverse

Function Theorem, we can further restrict V and W so that G(λ, ·) is invertible for all
λ ∈ [Λ1,Λ2].

Define now R : [Λ1,Λ2]×W →W, R(λ,w) = w − w̃, where w̃ is such that G(λ, w̃) =
w. We point out that R has the form of identity plus a compact operator. Clearly,
F (λ, v) = 0 ⇔ R(λ, v) = 0. Hence Theorem 2.1 follows if we show local bifurcation of
solutions of the equation R(λ, v) = 0.

We have

DwR|(λ,0) (w) = w − DwG|−1
(λ,0) (w).

Hence

(6.2) DwR|(λ,0) (w) = µw ⇔ Hλ(w) =
µ

1− µ
w.

By the proof of Lemma 6.1, µ < 1 if λ ≥ Λ1. Therefore DwR|(λ,0) (w) has the same

number of negative eigenvalues as Hλ.

In this framework we can use a local bifurcation result by Krasnoselskii.

Theorem 6.2. (see for instance [17], [II.3.2]). Let F : [a, b] × Z → X be C1 map
defined in Z ⊂ X a neighborhood of the origin in the Banach Space X. Assume that F is
given by F (λ, x) = x−K(λ, x) where K(λ, ·) is a compact map. Assume moreover, that
DxF |(a,0) and DxF |(b,0) are isomorphisms of X. Denote by iDxF (a) and iDxF (b) their

indices, that is, the number of negative eigenvalues (counted with algebraic multiplicity).
Assume finally that iDxF (a) − iDxF (b) is an odd integer. Then every neighborhood of
[a, b]× {0} contains solutions of F (λ, x) = 0, with λ ∈ (a, b), x ∈ X, x 6= 0.

Remark 6.3. The above version of the Krasnoselskii bifurcation result differs slightly
from the classical one; usually one imposes the existence of an unique value λ ∈ (a, b)
such that the derivative DxF |(λ,0) is degenerate. Under this assumption, one concludes

bifurcation at the point (λ, 0). The version we give above follows immediately from the
proof of the classical Krasnoselskii bifurcation result, which is based on a change of the
Leray-Schauder degree of the 0 solution. A drawback of this version is that we cannot
identify exactly the bifurcation point.
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We now apply Theorem 6.2 to R(λ,w). For λ = Λ2, iDvR(Λ2) = 0 by Proposition 5.1.
Therefore we just need to show the validity of the following Lemma.

Lemma 6.4. iDvR(Λ1) is odd if Λ1 is chosen sufficiently close to Λ∗.

Proof. In view of (6.2), it suffices to prove that HΛ∗ has a kernel with odd multiplicity.
For any ψ ∈ E, there exist functions ψ0, ψk,j defined in [1,+∞) such that we can write

ψ(r, θ) = ψ0(r) +

+∞∑
k=1

m̃k∑
j=1

ψk,j(r) ζk,j(θ) ,

where r = |x|, θ = x
|x| and ζk,j are the G-symmetric spherical harmonics (normalized

to 1 in the L2-norm) with eigenvalue µik of multiplicity mk. Then the quadratic form

ψ → Q̃λ(ψ,ψ) defined in E can be written as

(6.3) Q̃λ(ψ,ψ) = Q̃λ,0(ψ0) +
+∞∑
k=1

m̃k∑
j=0

Q̃λ,k(ψk,j)

where for a function φ : (1,+∞)→ R we denote

Q̃λ,k(φ) =

ˆ +∞

1

(
λφ′ φ′ + φ2 − p up−1

λ φ2
)
rN−1 dr − (N − 1)φ(1)2

+µik

ˆ +∞

1
φ2 rN−3 dr

choosing by convention that µi0 = 0. Since ψ ∈ E we have that ψ0(1) = 0 and that ψ0

is orthogonal to the function zλ restricted to the radial variable. By Proposition 3.1 we
have Q̃λ,0(ψ0) > 0. For λ = Λ∗, the bilinear form Q̃λ is positive semi-definite in E × E,

and then from (6.3) we have that all the quadratic forms Q̃λ,k are positive semi-definite.
Moreover, it is clear that

Q̃λ,k1(φ) < Q̃λ,k2(φ)

if 1 ≤ k1 < k2. We know also that there exists a ψ ∈ E such that Q̃λ(ψ,ψ) = 0. Therefore

Q̃λ,1 is positive semi-definite, and Q̃λ,k are positive definite for k > 1. This implies that
the kernel of HΛ∗ has dimension equal to m1, which is odd by assumption (G). �

7. Proof of Propositions 3.4 and 5.3

Observe that the bilinear form Q̃λ defined in (5.1), when restricted to functions in
H1

0,G(Bc
1), is nothing but Qλ (recall (3.5)). Hence Proposition 3.4 follows immediately

from Proposition 5.3.
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In order to prove Proposition 5.3, we shall consider the problem in the form (3.1); that

is, we aim to prove that Q̂R : H1
G(Bc

R)×H1
G(Bc

R)→ R,

Q̂R(ψ1, ψ2) =

ˆ
BcR

∇ψ1 · ∇ψ2 + ψ1 ψ2 − pup−1
R ψ1 ψ2 −

N − 1

R

ˆ
∂BR

ψ1ψ2

is positive definite if R > 0 is sufficiently small, when ψ1, ψ2 belong to the space:

ER =

{
ψ ∈ H1

G(Bc
R),

ˆ
∂BR

ψ = 0,

ˆ
BcR

ψzR = 0

}
.

Here uR and zR stand for

uR(x) = uλ

( x
R

)
, zR(x) = zλ

( x
R

)
, λ = R−2.

The strategy of the proof is to make R = Rn → 0 to and assume that Q̂R is not positive
definite in ER to reach a contradiction. For that, the behavior of uR, zR as R → 0
is needed. This result might be known, but we have not been able to find a specific
reference.

Lemma 7.1. Let un be the positive radial solution of (3.1) for R = Rn ↓ 0, and zn =
‖zRn‖−1zRn. Let us consider those functions extended to RN by 0. Then, un → U and
zn → Z in H1(RN ), where U is the radial ground state solution of problem:

(7.1) −∆U + U = Up, U > 0, in RN ,

and Z is the normalized positive eigenfunction corresponding to the negative eigenvalue
of the linearized problem, that is,

(7.2) −∆Z + Z − pUp−1Z = τZ, in RN ,

with τ < 0.

Proof. Let us define the energy functional associated to (3.1):

I(u) =
1

2

(ˆ
BcRn

|∇u|2 + u2

)
− 1

p+ 1

ˆ
BcRn

|u|p+1.

It is well known that,

I(un) = inf{max{I(tu) : t > 0} , u ∈ H1
0,r(B

c
Rn)} > 0,

see for instance [30]. Since H1
0,r(B

c
Rn

) ⊂ H1
0,r(B

c
Rn+1

) (up to extension by 0), then I(un)

is decreasing in n. In particular, I(un) is bounded. Moreover, multiplying (3.1) by un
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and integrating, we obtain that DIun(un) = 0. What follows is standard (see for instance
[4]); first, observe that:

(p+ 1)I(un) = (p+ 1)I(un)−DIun(un) =
p− 1

2
‖un‖2,

frow which un is bounded. Passing to a subsequence, we can assume that un ⇀ u0 in H1

sense. Multiplying (3.1) by φ ∈ C∞0 (RN \ {0}), we conclude that u0 is a weak solution
of the problem:

(7.3) −∆u0 + u0 = up0 in RN \ {0}.
Since u0 is in the Sobolev class, the singularity is removable. Multiplying (3.1) by un
and (7.3) by u0, we have:

‖un‖2 =

ˆ
RN
|un|p+1, ‖u0‖2 =

ˆ
RN
|u0|p+1.

By [29], un → u0 strongly in Lp+1, so that ‖un‖ → ‖u0‖. From this we conclude
that un → u0 strongly in H1(RN ) and u0 is a nontrivial positive solution of (7.1). By
uniqueness ([15]), u0 = U . Regarding zn, it is a radially symmetric function solving:

(7.4)

{
−∆zn + zn − pup−1

n zn = τnzn in Bc
Rn
,

zn = 0 on ∂BRn ,

with τn < 0. Since ‖zn‖ = 1, zn converges weakly to some z0. Multiplying the above
equation by zn we get:

(7.5)

ˆ
RN
|∇zn|2 + (1− τn)z2

n − pup−1
n z2

n = 0.

By compact embedding of radial functions ([29]), for instance, we conclude that:

(7.6)

ˆ
RN

up−1
n z2

n →
ˆ
RN

Up−1z2
0 .

This implies in particular that z0 is not zero. Moreover, lim infn→+∞
´
RN z

2
n ≥

´
RN z

2
0 .

In particular τn is bounded, and we can assume τn → τ0 ≤ 0. Then, z0 is a weak solution
of

−∆z0 + z0 − pUp−1z0 = τ0z0 in RN \ {0}.
Since z0 belongs to the Sobolev class, the singularity is removable, and it is an entire
solution; hence z0 = Z. In particular,ˆ

RN
|∇z0|2 + (1− τ0)z2

0 − pUp−1z2
0 = 0.

This, together with (7.5) and (7.6), allows us to conclude that zn → z0 strongly, conclud-
ing the proof. �
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The following lemmas will be of use:

Lemma 7.2. For any f ∈ C∞0 (R), the following inequality holds:

rN−2f(r)2 ≤ 1

λ

ˆ +∞

r
f ′(s)2sN−1 ds+ (2−N + λ)

ˆ +∞

r
f(s)2sN−3 ds,

where N ≥ 2, λ > 0 and r > 0.

Proof. Observe that:

rN−2f(r)2 = −
ˆ +∞

r
(2sN−2f(s)f ′(s) + (N − 2)sN−3f(s)2) ds.

We now estimate the first term in the right hand side by using Cauchy-Schwartz inequal-
ity: ˆ +∞

r
2sN−2|f(s)||f ′(s)| ds =

ˆ +∞

r
2s

N−3
2 |f(s)|s

N−1
2 |f ′(s)| ds

≤ λ
ˆ +∞

r
sN−3f(s)2 ds+

1

λ

ˆ +∞

r
sN−1f ′(s)2 ds .

This lemma follows at once. �

Lemma 7.3. Let G be a group of symmetries satisfying (G). Then,

1

R

ˆ
∂BR

ψ(x)2 dsx ≤
1

N

ˆ
BcR

|∇ψ(x)|2 dx

for any ψ ∈ H1
G(Bc

R) with
´
∂BR

ψ(x) dsx = 0.

Proof. By density arguments, we can assume that ψ ∈ C∞0 (Bc
R). We decompose it in

Fourier series:

ψ(r, θ) =

∞∑
i=0

ψk(r)φk(θ),

where φk are the eigenfunctions of ∆SN−1 under G−symmetry. Observe that φ0(θ) = 1
and ψ0( 1

R) = 0. Therefore it suffices to prove the inequality for the summands ψk(r)φk(θ),
i ≥ 1. Observe that:ˆ

BcR

|∇(ψk(r)φk(θ))|2 dr dθ =

ˆ +∞

R
(ψ′k(r)

2rN−1 + µikψk(r)
2rN−3) dr

ˆ
∂B1

φk(θ)
2 dθ.

Moreover,
1

R

ˆ
∂BR

|ψk(r)φk(θ)|2 dsx = RN−2ψk(R)2

ˆ
∂B1

φk(θ)
2 dθ.

By assumption (G), µi1 ≥ µ2 = 2N . Now it suffices to take λ = N in Lemma 7.2 to
conclude. �
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We are now able to prove Proposition 5.3.

Proof. (Proposition 5.3) Take R = Rn → 0, denote Bn = BRn , un = uRn and zn = zRn ,
and define:

χn = inf

{
Q̂R(ψ,ψ) : ψ ∈ H1

G(Bc
n),

ˆ
∂Bn

ψ = 0,

ˆ
Bcn

ψzn = 0,

ˆ
Bcn

|ψ|2 = 1

}
.

Assume, by contradiction, that χn ≤ 0. The proof will be divided in several steps:

Step 1: We show here that χn is attained.
Take ψk a minimizing sequence for χn. If ψk is unbounded in the H1 norm, define
φk = ‖ψk‖−1ψk. Then,

0 ≤
ˆ
Bcn

|∇φk|2 + (1− χn)|φk|2 − pup−1
n |φk|2 −

N − 1

Rn

ˆ
∂Bn

|φk|2 → 0.

But φk → 0 in the L2 norm, so that
´
Bcn
up−1
n |φk|2 → 0 as k → +∞. Moreover, φk ⇀ 0

in H1, so
´
∂Bn
|φk|2 → 0, yielding a contradiction. Hence ψk is bounded in H1, so that

we can assume that ψk ⇀ ψ. Then,ˆ
Bcn

up−1
n |ψk|2 →

ˆ
Bcn

up−1
n |ψ|2,

ˆ
∂Bn

|ψk|2 →
ˆ
∂Bn

|ψ|2.

Above we have used the fact that un decays to 0 at infinity and the fact that the embed-
ding H1(Bc

n) ↪→ L2(∂Bn) is compact. We conclude that the convergence is strong and
that ψ is a minimizer for χn.

Step 2: We pass now to the limit.
Let us denote by ψn the minimizer of χn renormalized with respect to the H1 norm.
Observe that ψn is a solution of the equation:

(7.7) −∆ψn + ψn − pup−1
n ψ = χnψ in Bc

n.

Moreover,

(7.8)

ˆ
Bcn

|∇ψn|2 + (1− χn)|ψn|2 − pup−1
n |ψn|2 −

N − 1

Rn

ˆ
∂Bn

|ψn|2 = 0.

By a Cantor diagonal process, ψn ⇀ ψ0 ∈ H1
G(Bc

r) for any r > 0, where ψ0 ∈ H1(RN )
(recall that H1

0 (RN \ {0}) = H1(RN )).

Step 3: We show here thatˆ
Bcn

up−1
n |ψn|2 →

ˆ
RN

Up−1|ψ0|2.
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Indeed, given any ε > 0, ψn ⇀ ψ0 in H1(Bc
ε), which implies that ψ2

n ⇀ ψ2
0 in L

p+1
2 .

Moreover un → U in H1(RN ), hence:

ˆ
Bcε

up−1
n |ψn|2 →

ˆ
Bcε

Up−1|ψ0|2.

Apply now the Hölder inequality:

ˆ
Bε\Bn

up−1
n |ψn|2 ≤

(ˆ
Bε

up+1
n

) p−1
p+1
(ˆ

Bcn

|ψn|p+1
) 2
p+1

.

Recall that un → U in Lp+1 so that
ˆ
Bε

|un|p+1 ≤
ˆ
RN
|un − U |p+1 +

ˆ
Bε

|U |p+1 ≤ CεN ,

by choosing sufficiently large n. Since ε is arbitrary, we conclude the proof of step 2.

Step 4: We get now the desired contradiction.
By Lemma 7.3,

N − 1

Rn

ˆ
∂Bn

|ψn|2 ≤
N − 1

N

ˆ
Bcn

|∇ψn|2.

This, together with Step 2 and (7.8), implies that ψ0 6= 0. In particular,

lim inf
n→+∞

ˆ
Bcn

|ψn|2 ≥
ˆ
Bcn

|ψ0|2 > 0.

Plugging this information in (7.8), and taking into account Lemma 7.3, we conclude that
χn is bounded. Let us assume that χn → χ0 ≤ 0. By (7.7), ψ0 is a nontrivial weak
solution of the problem:

−∆ψ0 + ψ0 − pUp−1ψ0 = χ0ψ0, in RN \ {0}.

Since ψ0 ∈ H1(RN ), the singularity is removable and ψ is a weak solution in the whole
RN . Since ψ0 is G-symmetric, the only possibility is ψ0 = kZ, k 6= 0 (see [15]). Observe
now that

´
Bcn
ψnzn = 0. By the same arguments as in Step 2, we conclude that

ˆ
Bcn

ψnzn →
ˆ
RN

ψ0Z,

which yields the desired contradiction. �
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