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Abstract
In this work, published in [2], we are interested in the microscopic description of fractional diffusion chemotactic models.

We will use the kinetic framework of collisional equations having a heavy–tailed distribution as equilibrium state (see [4]) and
take an adequate hydrodynamic scaling to deduce the fractional Keller–Segel system for the cell dynamics. In addition, we
use this frame to deduce some models for chemotaxis with fractional diffusion including biological effects and non standard
drift terms.

Introduction: anomalous diffusion and heavy tail kinetic relaxation model
Classically, macroscopic diffusion is obtained as the description of the spatiotemporal distribution of a popu-

lation density of random walkers. However, in many situations found in Nature,
Lévy flights are commonly adopted as an efficient search strategy of living or-
ganisms to diffuse. The correct description of such a population is given by the
substitution of the Laplacian operator by a fractional operator of the Riesz type,
defined from its Fourier transform [3]:

̂
(−∆x)

α
2ρ := −|k|α ρ̂, 1 < α < 2. (1)

The microscopic description of these phenomena consists in describing the
movement of cells/bacteria by a “run & tumble” process. They move along a

straight line in the running phase and make reorientation as a reaction to the surrounding chemicals during the
tumbling phase. The kinetic equation reads:

∂tf+v·∇xf = L(S, f ) :=

Relaxation︷ ︸︸ ︷
1

τ0

(
F (v)ρ− f

)
+

Turning depending on S︷ ︸︸ ︷
1

τ1

∫
RN

(
T [S]v′→vf (v′)− T [S]v→v′f (v)

)
dv′ +

Biol. interact.︷ ︸︸ ︷
R(f, S)

∂tS = D∆xS + βρ− µS = classical diffusion+production term due to bacteria+natural destruction.

The operator L =relaxation+turning+biological interaction, models the change of direction of cells and S
stands for the chemical concentration. For our purposes, the equilibrium function F (v) correspond to a heavy
tailed function with infinite kinetic energy :

F (−v) = F (v), F (v)
|v|>c0

=
K0

|v|N+γ+1
, 0 < γ < 1 ,

∫
RN

F (v)dv = 1. (2)

Anomalous “parabolic” scaling of the model
The non-dimensional version of the kinetic system reads:

∂tf + α v ·∇xf =
α

β
(ρF − f ) + θ

L1(Sε,fε)︷ ︸︸ ︷∫
RN

(
T [Sε]v′→vfε(v

′)− T [Sε]v→v′fε(v)
)
dv′ +θ2 Biol. interac.,

∂tS = D̃∆xS + ρ− ν̃S.

where α is the scaled root-mean-square velocity, and β is the scaled mean free path associated to the main
relaxation time τ0. θ is the dimensionless secondary frequency,

Following [1] we can fix the hydrodynamical “hyperbolic” scale by calling β = ε and α = 1
εγ (the typical

velocity is small, at an intermediate order, compared with the r.m.s velocity c0). Taking finally the secon-
dary frequency (as in the parabolic case): (τ1)−1 = εγ(τ0)−1, the kinetic eq. reads:

ε1+γ∂tfε + εv ·∇xfε = (ρεF − fε) + εγL1(Sε, fε) + εγ+1R(fε, Sε), . (APS)

Actually in the pure limiting hyperbolic case, γ = 0, they are equivalent velocities and, in the other limiting
case, γ = 1, we arrive to the classical parabolic limit (where the equilibrium F has finite energy).

Formal limit via Fourier transform
Aim: pass to the limit on the continuity equation (obtained by integration on (APS) with respect to dv),

∂tρε + divxjε =

∫
RN

R(fε, Sε)dv, where the current jε is jε =
1

εγ

∫
RN

vfε dv.

by identifying the limit of the current from the first order moment eq. (integrating (APS) w.r. to v dv
εγ ):

−jε = ε1−γ Divx

∫
RN

v ⊗ vfεdv︸ ︷︷ ︸−
∫
RN

vL1(Sε, fε) dv︸ ︷︷ ︸+ ε1+γ∂tjε + εR(fε, Sε)︸ ︷︷ ︸ (3)

↓ ↓ ↓
0∞ 7→ fractional diffusion chemotaxis (drift) cancel.

This becomes workable by taking Fourier transform (Fx→k) in (3) and (APS), obtaining

ĵε = ρ̂ε

∫
RN

ε1−γ i(v ·k)vF (v)

1− εv ·k i
dv +

∫
RN

vF(L1(Sε,
ρ̂εF (v)

1− εv ·k i
))dv +O(εγ) = A1 + A2 +O(εγ). (4)

Then, we can prove rigorously the following convergence results:

Lemma: Let 0 < γ < 1, k ∈ RN , and assume F is a positive continuous function verifying (2). Then

• A1→ Dρ i k|k|γ−1 with “diffusion” coefficient given by Dρ =

∫
RN

y2
1

1 + y2
1

1

|y|N+γ+1
dy.

• A2 −→ Ψ(ρ, S) :=

∫
RN

vF(L1(S, ρF ))dv.

•
∫
RN

R(fε, Sε)dv −→ Γ(ρ, S) =

∫
RN

R(ρF (v), S)dv.

We can then pass to the limit in the expression (4) after taking Inverse Fourier transform denoted by F−1:

∂tρ = −Dρ divx

(
F−1

(
iρ̂k|k|γ−1

))
− divx

(
F−1(Ψ(ρ, S))

)
+ Γ(ρ, S).

To compute the first term on the r.h.s. we take again Fourier transform to write:

F
(

divx

(
F−1

(
iρ̂εk|k|γ−1

)))
= −ikF(

(
F−1

(
iρ̂k|k|γ−1

))
= |k|γ+1ρ̂,

that is, the fractional diffusion operator (1) in Fourier coordinates: Finally, noting that

F−1(Ψ(ρ, S)) = F−1
∫
RN

vF(L1(S, ρF ))dv =

∫
RN

v L1(S, ρF )dv = ρ

∫
RN

v L1(S, F )dv =: H(ρ, S),

we obtain the main Theorem, the limiting macroscopic equation.

∂tρ = −Dρ(−∆x)
γ+1
2 ρ− divx(H(ρ, S)) + Γ(ρ, S). (5)

Some fundamentals of fractional Chemotaxis
Let us present several choices of functions T1 and R, and thus of H and Γ, which will produce a fractional
diffusion macroscopic system corresponding to some known models of chemotaxis. We will examine several
forms for the dependence of the kernel on S and its gradient, some of which lead to the fractional Keller–
Segel chemotaxis model. Precisely, we investigate how the classical chemotaxis equations can be obtained
from the microscopic description delivered by our model, as well as some more precise approaches to the
several phenomena described in the literature.

Fractional Keller–Segel type models. The choice T [S]v′→v = φ(v, v′, S) · ∇xS , where φ(v, v′, S) is a vec-
tor valued function, leads to the chemotactic term H(ρ, S) = ρχ(S)∇xS, where the chemotactic sensitivity
χ(S) is given by the matrix χ(S) =

∫
RN

∫
RN v ⊗

(
F (v′)φ(v, v′, S) − F (v)φ(v′, v, S)

)
dvdv′. Therefore, (5)

coupled with the equation for S becomes the fractional Keller-Segel (type) model{
∂tρ = −Dρ(−∆x)

γ+1
2 ρ− divx(ρχ(S)∇xS) + Γ(ρ, S),

∂tS = DS∆xS + βρ− µS,
(6)

with Dρ, and Γ given by Lemma. Let us see some particular cases of (6) existing on the literature (see [2]).

In 1–D, with φ(v, v′, S) independent of S and
R(f, S) = 0, the chemotactic sensitivity becomes
constant, and we obtain the following system,{

∂tρ + χ∂x(ρ∂xS) = −Dρ(−∆x)
γ+1
2 ρ

∂tS = DS ∆xS + βρ− µS.

In 2–D with φ(v, v′, S) independent of S and
R(f, S) = 0, and considering the stationary equa-
tion of Poisson type for Se: −∆xS = ρ, then, sys-
tem (6) becomes

∂tρ = −Dρ(−∆x)
γ+1
2 ρ + divx

(
ρχ∇x(∆−1

x ρ)
)
.

Taking R(f, S) = r
(

1− f∫
RN F

2(v)dv

)
f , then Γ becomes a logistic growing term Γ(ρ, S) = rρ(1− ρ):

∂tρ = −Dρ(−∆x)
γ+1
2 ρ− divx(ρχ(S)∇xS) + rρ(1− ρ), ∂tS = DS∆xS + βρ− µS,

which generalizes a cell kinetic model describing a pattern formation of moving and growing bacteria.

Taking R(f, S) =
(
a0 + a1

f∫
RN F

2(v)dv
− a2

∫
RN ρ dx

)
f , for constants a0, a1 ≥ 0, and a2 ∈ R, (6) becomes:

∂tρ = −Dρ(−∆x)
γ+1
2 ρ− divx(ρχ(S)∇xS) + ρ

(
a0 + a1ρ− a2

∫
RN

ρ dx
)
, ∂tS = DS∆xS + βρ− µS,

which describe a competitive system under chemotactic effects with non–local reaction terms. The
coefficient a0, sometimes also called Malthusian parameter, induces an exponential growth for low density
populations. At the time that the population grows, the competitive effect of the local term a1ρ

2 becomes
more influential. The non–local term ρ a2

∫
RN ρ dx describes the influence of the total mass of the species

in the growth of the population.

Optimal drift following the chemoattractant Finally, The choice T1(S, v, v′) = φ(v, v′, S)·Q(∇xS) , with a
smooth bounded flux functionQ : RN → RN , satisfying Q(0) = 0, and ∂yiQi > 0, produces a chemosensitive
term of the form H(ρ, S) = ρχ(S)Q(∇xS), where χ(S) is still given by the expression above. The model
then reads: {

∂tρ = −Dρ(−∆x)
γ+1
2 ρ− divx

(
ρχ(S)Q(∇xS)

)
+ Γ(ρ, S),

∂tS = DS∆xS + G(ρ, S).
(7)

So, we obtain a more general model of fractional Keller–Segel type, which includes the boundedness of the
chemotactic flux function. A typical example is:

Q(y) =


y, |y| ≤ y?,(

|y|−y?√
1+(|y|−y?)2

+ y?
)

y
|y|, |y| > y?,

where y? is a threshold parameter defining a small gradi-
ent value under which the system (7) reduces to the original
fractional Keller–Segel (6), whereas the effect of saturation
is felt at large gradient regimes only. Note finally that for y? = 0, the flux becomes a mean curvature type
function: Q(∇xS) = ∇xS√

1+|∇xS|2
.

Generalization of the result
We can generalize the convergence result for a more general class of relaxation (turning type) operators, fol-
lowing Ref. [4]. We the consider the following kinetic equation, still coupled with a macroscopic equation for
the chemical concentration S, (we omit the biological interactions R(f, S)):

∂tf + v ·∇xf =

L0(f )︷ ︸︸ ︷(
K(f )− ν(v)f (v)

)
+

turning︷ ︸︸ ︷(
L1(S, f )

)
, K(f ) :=

∫
RN
T0(v, v′)f (v′)dv′, ν(v) :=

∫
RN
T0(v′, v)dv′.

Assumptions: Detailed balance principle: T0(v, v′)F (v′) = T0(v′, v)F (v), ∀v, v′ ∈ RN , for a certain func-
tion F . In particular, K(F ) = ν(v)F (v). There exist β ≥ 0, γ, κ0, ν0 > 0, a positive function F0(v) and a
slow varying function l such that F (v) = F0(v)l(|v|), satisfying |v|N+γ+1F0 → κ0 and |v|−βν(v)→ ν0, as
|v| → ∞ +integrability, symmetry and positivity conditions

We can now define the scaling, m(ε) = εrl(ε
−1
1−β), where r = 1+γ−β

1−β = 1 + γ
1−β , and l is the slow varying

function given in the assumptions. In this case, the kinetic equation reads

m(ε)∂tfε + εv ·∇xfε = L0(fε) +
m(ε)

ε
L1(Sε, fε),

and the limit can be performed, obtaining

∂tρ + divxH(ρ, S) = −Dρ(−∆x)
r
2ρ, H(ρ, S) = ρ

∫
RN
vL1(S, F )

dv

ν(v)
, Dρ =

κ0ν0

1− β

∫
RN

(y1)2

ν2
0 + (y1)2

.
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