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Abstract—The Open Radio Access Network (O-RAN)-
compliant solutions lack crucial details to perform effective
control loops at multiple time scales. In this vein, we propose
ORANUS, an O-RAN-compliant mathematical framework to
allocate radio resources to multiple ultra Reliable Low Latency
Communication (uRLLC) services. In the near-RT control loop,
ORANUS relies on a novel Stochastic Network Calculus (SNC)-
based model to compute the amount of guaranteed radio resources
for each uRLLC service. Unlike traditional approaches as queue-
ing theory, the SNC-based model allows ORANUS to ensure the
probability the packet transmission delay exceeds a budget, i.e.,
the violation probability, is below a target tolerance. ORANUS
also utilizes a RT control loop to monitor service transmission
queues, dynamically adjusting the guaranteed radio resources
based on detected traffic anomalies. To the best of our knowledge,
ORANUS is the first O-RAN-compliant solution which benefits
from SNC to carry out near-RT and RT control loops. Simulation
results show that ORANUS significantly improves over reference
solutions, with an average violation probability 10× lower.

Index Terms—Multi-scale-time, O-RAN, Real-Time RIC,
Stochastic Network Calculus, uRLLC.

I. INTRODUCTION

In the Sixth Generation (6G) networks, a pivotal scenario
to address is the coexistence of multiple ultra-Reliable Low
Latency Communication (uRLLC) services. They place strin-
gent demands on latency and reliability, requiring deterministic
guarantees to ensure their seamless operation [1]. Moreover,
a key driving factor in 6G networks is the virtualization
of the Radio Access Network (RAN) [2]. This entails the
deployment of virtualized RANs (vRANs) instances, wherein
each vRAN comprises a set of fully-configurable virtualized
Base Stations (vBSs) designed to cater the requirements of
individual services. In this context, the Open RAN (O-RAN)
Alliance proposed a novel architecture [3] embracing and
promoting the 3rd Generation Partnership Project (3GPP)
functional split, where each vBS is divided across multiple
network nodes: Centralized Unit (CU)-Control Plane (CP),
CU-User Plane (UP), Distributed Unit (DU) and Radio Unit
(RU). Furthermore, the O-RAN architecture considers two
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RAN Intelligent Controllers (RICs), which provide a central-
ized abstraction of the network, allowing the Mobile Network
Operator (MNO) to perform autonomous actions between vBS
components and their controllers. Specifically, the non-Real
Time (RT) RIC supports large timescale optimization tasks
(i.e., in the order of seconds or minutes), including policy
computation and Machine Learning (ML) model management.
Such functionalities are carried out by third-party applications
denominated rApps. Additionally, the near-RT RIC performs
RAN optimization, control and data monitoring tasks in near-
RT timescales (i.e., from 10ms to 1s). Such functionalities
can also be performed by third-party applications denominated
xApps. For more details about O-RAN, we recommend [4].

Despite the ongoing standardization efforts, there are still
open challenges toward a successful implementation of the O-
RAN architecture: limiting the execution of control tasks in
both RICs prevents the use of solutions where decisions must
be made in real-time, i.e., below 10 ms [5]. For example,
uRLLC Medium Access Control (MAC) scheduling requires
making decisions at sub-millisecond timescales [6]. Unfor-
tunately, the near-RT-RIC might struggle to accomplish this
procedure due to limited access to low-level information (e.g.,
transmission queues, channel quality, etc.). The potential high
latency involved in obtaining this information further exacer-
bates the problem. This calls for a RT control loop to monitor
and orchestrate the decision of MAC schedulers. Addressing
the current mention of RT control loop standardization as a
study item [5], in this paper we provide the basis for future
research activities towards an RT orchestration framework.

In this context, an important yet unaddressed challenge
lies in coordinating different control loops, which operate at
different time scales [4]. The need for seamless and reliable
coexistence of diverse uRLLC services demands, effective
coordination schemes between the near-RT and non-RT control
loops, as well as requires mechanisms to align the deci-
sions made by different control loops while optimizing the
resource allocation and avoiding conflicts. In this paper, we
advocate for the adoption of Stochastic Network Calculus
(SNC) to model the complex dynamics of O-RAN systems
and analyze the performance of communications in terms of
violation probability, i.e., the probability of a packet being
transmitted exceeding a delay bound, while considering the
uncertainties and variability in traffic patterns and channel
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conditions. Several works [7]–[9] already leveraged SNC to
estimate delay bounds in the radio interface for given target
tolerance and specific resource allocation in single uRLLC
services. Conversely, in [10] the authors extend the application
of SNC to resource planning of multiple uRLLC services.
However, their approach assumes dedicated RBs per service,
leading to potential resource wastage. Regarding the Resource
Block (RB) allocation at RT scale, the existing literature is
vast. However, to the best of our knowledge, there are no RT
solutions that benefit from SNC models.

Contributions. In this work, we focus our mathematical
discussion and empirical evaluation on the downlink (DL)
operation of a single cell supporting multiple uRLLC services,
each one with specific requirements in terms of packet delay
budget and violation probability. However, our solution can
be readily applied to extended scenarios, such as Uplink (UL)
transmissions and multiple cells. The main contributions are:

(C1) We propose ORANUS, an O-RAN-compliant mathemat-
ical framework to carry out the multi-time-scale control
loops for the radio resource allocation to multiple uRLLC
services, focusing on near-RT and RT scales.

(C2) To perform the near-RT control loop, ORANUS relies on
a novel SNC-based controller to compute the amount of
guaranteed RBs for each uRLLC service, which ensures
them the violation probability is below a target tolerance.
Additionally, the proposed SNC-based controller can di-
rectly use real metrics of the incoming traffic and channel
conditions to capture their statistical distributions.

(C3) Considering the amount of guaranteed RBs computed
at near-RT scale, we propose a RT control loop to
monitor the transmission queue of each service. If traffic
anomalies are detected, the proposed control loop adapts
accordingly the amount of guaranteed RBs for the corre-
sponding services, as to mitigate the violation probability.

To the best of our knowledge, ORANUS is the first O-RAN-
based solution which uses SNC to perform the RB allocation to
multiple uRLLC services at near-RT scale while a RT control
loop adapts such allocation in response to traffic anomalies.

The remainder of this paper is organized as follows. Sec-
tion II defines ORANUS. Then, we present the proposed SNC
model in Section III. In Section IV, we explain how ORANUS
performs the multi-time-scale control loops. Section V evalu-
ates the performance of ORANUS. Section VI discusses the
related works. Finally, Section VII concludes this paper.

II. THE ORANUS FRAMEWORK

Following the O-RAN specifications [11], [12], Fig. 1
depicts the main functional blocks of ORANUS. Specifically,
ORANUS comprises five xApps and one dApp, as initially pro-
posed by [5]. The Cell Capacity Estimator, Traffic Estimator,
RB utilization Estimator and SNC-based Controller xApps are
located in the near-RT RIC and they are responsible for the RB
allocation of multiple uRLLC services in a near-RT scale. The
RT Controller dApp is located in a CU-CP, which is shared
by the uRLLC services deployed in the same cell1 and it is

1We interchangeably use the terms uRLLC service and vBS because we
assume each uRLLC service is deployed using a specific vBS within a cell.
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Fig. 1. Integration of ORANUS (i.e., green blocks) in the O-RAN architecture.

responsible for controlling the RB allocation at RT scale for
these services. We also assume the CU-UP and the DUs are
dedicated per service. Below is a brief summary of the tasks
performed by these Apps.

SNC-based Controller xApp: It obtains the guaranteed
amount of RBs Nmin

m for each service m ∈ M, which ensures
P [w > W th

m ] < εm, where w is the packet transmission
delay2, W th

m is the delay budget and εm is the target violation
probability. To this end, it operates every TOUT Transmission
Time Intervals (TTIs) and exchanges information with the
Traffic/Cell Capacity Estimator xApps and the RB utilization
Estimator xApp.

Traffic and Cell Capacity Estimator xApps: They analyze
each service m ∈ M and estimate the incoming traffic demand
in terms of the number of bits per TTI. Additionally, they
compute arrays of samples, each representing the number of
bits that each cell can accommodate for these services in an
arbitrary TTI, based on the chosen Modulation and Coding
Schemes (MCSs) for packet transmission. To that end, these
xApps collect these metrics from each DU via the O1 interface.

RB utilization Estimator xApp: It estimates the Probability
Mass Function (PMF) of the RB utilization. To that end, it
relies on a Neural Network (NN) based on Mixture Density
Network (MDN). It considers the following inputs: (a) the
incoming traffic demand in each TTI expressed in bits, (b) the
enqueued bits in each TTI and (c) the candidate number of
guaranteed RBs for the next TOUT TTIs. These metrics are
available from E2/O1 interfaces.

RT Controller dApp: It operates every TTI and is re-
sponsible for ensuring each DU MAC scheduler, one per
service m ∈ M, has available at least Nmin

m RBs. Note that∑
m∈M Nmin

m ≤ NRB
cell, where NRB

cell is the RBs available in
the cell. Focusing on a single TTI t, if a service m requires
a number of RBs Nt such as Nt < Nmin

m , this dApp will
allocate Nt RBs to such service. Otherwise, it will first check
if there are any available free RBs, i.e., those RBs that were
initially allocated to other services but have not been used in

2Packet transmission delay is the waiting time of a Transport Block (TB)
unit from entering the transmission buffer until it is fully transmitted.
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the current TTI. If free RBs are found, the dApp allocates
Nmin

m plus the available free RBs to the specified service.
Additionally, this dApp monitors the transmission buffers to
detect traffic anomalies. If so, it temporarily updates Nmin

m

∀m ∈ M to mitigate the violation probability.

III. LATENCY MODEL BASED ON SNC
To assess the packet transmission delay, we propose a SNC

model. In this section, we first provide some fundamentals on
SNC. Then, we describe the steps to compute the delay bound
W . Finally, we particularize them to our scenario.

A. Fundamentals on SNC

We use SNC to model the incoming and outgoing traffic
of a network node by stochastic arrival and service processes.
The arrival process A(τ, t) represents the cumulative number
of bits that arrive at this node, and the service process S(τ, t)
denotes the cumulative number of bits that may be served by
this node. Both measured over the time interval (τ, t].

SNC relies on the Exponentially Bounded Burstiness (EBB)
and the Exponentially Bounded Fluctuation (EBF) mod-
els [13]. They define an upper bound α(τ, t), denominated
arrival envelope, and a lower bound β(τ, t), denominated
service envelope, as Eqs. (1) and (2) show. The parameters
εA and εS are known as the overflow and deficit profiles.

P[A(τ, t) > α(τ, t)] ≤ εA. (1)

P [S(τ, t) < β(τ, t)] ≤ εS. (2)

A widely accepted practice in SNC consists of assuming
affine functions to define α(τ, t) and β(τ, t). These functions
are defined in Eqs. (3) and (4), where the parameters ρA > 0,
ρS > 0 and bA ≥ 0, bS ≥ 0 are the rate and burst
parameters for α(τ, t) and β(τ, t), respectively. Additionally,
[x]+ denotes max{0, x}. Finally, δ > 0 is a sample path
argument considered by the EBB and the EBF models [13].

α(τ, t) = (ρA + δ)[t− τ ] + bA. (3)

β(τ, t) = (ρS − δ) [t− τ − bS/ρS]+ . (4)

If we represent α(τ, t) and β(τ, t) over a t − τ axis, we
can compute the delay bound W as the horizontal deviation
between these envelopes. Specifically, this horizontal deviation
can be formulated as Eq. (5) shows. Note that this deviation
exists when the slope of β(τ, t) is greater than the slope of
α(τ, t). This results in the condition defined in Eq. (6).

W = bA+bS
ρS−δ . (5)

ρS − δ > ρA + δ. (6)

B. SNC Steps to Compute the Delay Bound

Below, we briefly summarize the steps proposed in [13,
Sections II.A and II.B] to obtain the arrival envelope, the
service envelope and the delay bound.

1) We compute the Moment Generating Functions (MGFs)
for the arrival and service processes, i.e., MA(θ) and
MS(−θ). The MGF of a random process X is defined
as E

[
eθX

]
with free parameter θ. Note that searching a

lower bound for the service process is equivalent to using
the sign (−) for θ.

2) We define upper bounds for the MGFs as Eqs. (7) and
(8) show. They are characterized by the rate parameters
ρA and ρS , and the burst parameters σA and σS . Note that
ρA and ρS are the same as the ones defined in Eqs. (3)
and (4). If we replace the left side of Eqs. (7) and (8) by
the MGFs computed in the previous step, we can obtain
the parameters ρA, σA, ρS and σS .

MA(θ) ≤ exp [θ (ρA[t− τ ] + σA)] . (7)

MS(−θ) ≤ exp [−θ (ρS[t− τ ]− σS)] . (8)

3) The EBB and EBF models defined in Eqs. (1) and (2),
and the MGFs are directly connected by the Chernoff
bound [14]. Based on it, we can obtain bA and bS as Eqs.
(9) and (10) shows. Note that a common practice is to
equally distribute the target violation probability among
the overflow and deficit profiles, i.e., εA = εB = ε/2.

bA = σA − 1
θ [ln(εA) + ln (1− exp [−θδ])] . (9)

bS = σS − 1
θ [ln(εS) + ln (1− exp [−θδ])] . (10)

4) Using the previous results in Eq. (5), we can rewrite the
delay bound W as Eq. (11) shows. Then, we need to
search the values for θ and δ that minimize the expression
of Eq. (11) to estimate the delay bound.

W =
σA + σS − 2

θ

[
ln
(
ε
2

)
+ ln (1− exp [−θδ])

]
ρS − δ

. (11)

Below, we particularize the arrival process A(τ, t), the
service process S(τ, t) and the steps to estimate W for a
scenario where a cell implements an uRLLC service.

C. uRLLC Traffic Model

The arrival process Am(τ, t) is the cumulative DL traffic
of the service m, which is defined in Eq. (12). The variable
Nslot(τ, t) = (t− τ)/tslot represents the total number of TTIs
in (τ, t], and tslot denotes the duration of a TTI. The random
variable Dm(i) represents the number of bits that arrive to the
transmission buffer for service m in the i-th TTI.

Am(τ, t) =

Nslot(τ,t)∑
i=τ

Dm(i). (12)

We assume that the PMF of Dm(i) can be estimated
by using samples of the incoming bits per TTI in the last
TOBS TTIs. Specifically, we define the sample vector x⃗Dm =
{din

m,1, d
in
m,2 . . . din

m,TOBS
}, where din

m,i denotes the number of
bits that arrive to the transmission buffer in the TTI i for the
service m. Additionally, din

m,i =
∑Jin

m,i

j=1 lj , where J in
m,i is the

number of incoming packets for service m in the TTI i and
lj the size of the packet j. Note that the computation of x⃗Dm

is a task performed by the Traffic Estimator xApp. With these
assumptions, we can compute the MGF for Dm(i):

MDm
(θ) =

1

TOBS

TOBS∑
i=1

exp
[
θdin

m,i

]
. (13)
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Considering MDm
(θ), we can compute the MGF of the

arrival process Am(τ, t) as Eq. (14) shows.

MAm(θ) = e

[
ln
(

1
TOBS

∑TOBS
i=1 exp[θdin

m,i]
) (t−τ)

tslot

]
. (14)

Finally, by equaling the left and right sides of Eq. (7), we
obtain ρAm as Eq. 15 shows. Note that σAm = 0.

ρAm
=

ln
[

1
TOBS

∑TOBS

i=1 exp
[
θdin

m,i

]]
θtslot

. (15)

D. Service Model

The service process Sm(τ, t) represents the accumulated
capacity the cell may provide to the service m and can be
defined as

Sm(τ, t) =

Nslot(τ,t)∑
i=τ

Cm(i), (16)

where the random variable Cm(i) is the number of bits that
may be served by the cell for service m in the TTI i.

The negative MGF for Cm(i) is defined in Eq. (17). To that
end, we consider the PMF of Cm(i) can be estimated by (a)
using samples of the number of bits which may be transmitted
in the last TOBS TTIs and (b) considering the PMF of the
RB utilization. The latter captures the dynamics of the RT
Controller dApp. Specifically, we consider the sample vectors
x⃗Cm,n = {cn,out

m,1 , cn,out
m,2 . . . cn,out

m,Tm,n
} ∀n ∈ [0, Nadd] where

cn,out
m,i denotes the number of bits which may be transmitted

by the cell for service m in a single TTI, i.e., considering the
serving cell uses n+Nmin

m RBs for such service. Additionally,
Nadd = NRB

cell −Nmin
m , where Tm,n is the number of samples.

Additionally, we consider πm,n as the probability the service m
has available n+Nmin

m RBs in an arbitrary TTI, conditioned to
this service m needs more RBs than Nmin

m . The computation
of x⃗Cm,n, a task performed by the Cell Capacity Estimator
xApp, is detailed in Section IV-A.

MCm(−θ) =
Nadd∑
n=0

πm,n

Tm,n

Tm,n∑
i=1

exp
[
−θcn,out

m,i

]
. (17)

Considering MCm
(−θ), we can compute the negative MGF

of the service process Sm(τ, t) as

MSm(−θ) = e

[
ln
(∑Nadd

n=0

πm,n

Tm,n

∑Tm,n
i=1 exp[−θcn,out

m,i ]
)

(t−τ)
tslot

]
.
(18)

Finally, by equaling the left and right sides of Eq. (8), we
obtain ρSm

as Eq. 19 shows. Note that σSm
= 0.

ρSm =
−ln

[∑Nadd

n=0
πm,n

Tm,n

∑Tm,n

i=1 exp
[
−θcn,out

m,i

]]
θtslot

. (19)

E. Delay Bound Estimation

Using the results from Sections III-C and III-D, we can
define Wm as a function of the free parameters θ and δ, as
written in Eq. 20. To estimate Wm, we need to solve the

Algorithm 1: Calculation Delay Bound Wm

1 Inputs: εm, x⃗Dm , x⃗Cm,n;
2 Initialization: θz = 1, δz , y, yz = 0, stop = False;
3 while stop == False do
4 Set θz = θz∆;
5 Compute ρAm(θz), ρSm(θz) [See Eqs. (15) and (19)];
6 if ρSm(θz) > ρAm(θz) then
7 Compute δz = (ρSm(θz)− ρAm(θz)) /2;
8 Compute yz = θzδz;
9 if yz > y then

10 Set y = yz , θopt = θz , δopt = δz;
11 Compute Wm(θopt, δopt). See Eq. (20);
12 else
13 stop = True;
14 end
15 end
16 end
17 return: θopt, δopt, Wm;

following optimization problem.
Problem DELAY_BOUND_CALCULATION:

min
θ,δ

2tslot
[
ln
(
εm
2

)
+ ln (1− exp [−θδ])

]
ln
[∑Nadd

n=0
πm,n

Tm,n

∑Tm,n

i=1 exp [−θcn,out
m,i ]

]
+ δθtslot

.

(20)
s.t.: θ, δ, ρAm , ρSm > 0, (21)

ρSm
− ρAm

> 2δ. (22)

The previous problem is defined by a non-convex objective
function over a non-convex region. It involves the existence
of multiple local minimums, thus performing an exhaustive
search to find the optimal solution is not computationally
tractable. For such reason, we propose the heuristic approach
described in Algorithm 1. This algorithm takes as inputs the
target violation probability εm for service m and the sample
vectors x⃗Dm

and x⃗Cm,n, and iteratively searches the values
of θ and δ which minimize Eq. (20), i.e., θopt and δopt. We
experimentally observed the rate parameter ρSm

, i.e., Eq. (19),
increases when θ decreases. Note that a greater ρSm reduces
the delay bound Wm as Eq. (11) shows. Additionally, the
numerator of Eq. (20) is monotonically increasing with the
product θδ. Based on that, Algorithm 1 first reduces the value
of θz, i.e., the candidate value of θopt, in each iteration (step
4). Such reduction is performed by the parameter ∆ ∈ (0, 1).
Refining ∆ towards 1 enhances the granularity of locating Wm,
albeit at the cost of requiring a larger number of iterations.
Then, Algorithm 1 computes the rate parameters ρAm(θz) and
ρSm

(θz) (step 5). If ρSm
(θz) > ρAm

(θz), i.e., from constraints
(21)-(22), the algorithm computes the candidate value of δ, i.e.,
δz (step 7). If the product θzδz (step 8) improves the product
computed in the previous iteration, Wm gets updated. In such a
case, the algorithm sets θopt and δopt (step 10), computes Wm

(step 11), and tries another iteration to reduce Wm. When the
product θzδz does not improve with respect to the result of the
previous iteration, the algorithm stops (step 13) and considers
the latter as the optimal solution.

IV. CONTROL LOOPS OF ORANUS
In this section, we explain how ORANUS performs the near-

RT and RT control loops. Specifically, we first describe how
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the samples of the cell capacity are computed as well as the
estimation of the probabilities πm,n. Then, we explain how
the SNC-based Controller xApp decides Nmin

m ∀m ∈ M for
the near-RT control loop. Finally, we describe how the RT
Controller dApp mitigates the violation probability.

A. Computation of the Cell Capacity Samples

The Cell Capacity Estimator xApp performs the following
steps to obtain a sample cn,out

m,i ∈ x⃗Cm,n.
1) For each transmitted packet j, it considers (a) the packet

size lj , and (b) the amount of RBs required to transmit
it, i.e., Npkt,j . Note that we are assuming that a unique
MCS value is adopted to transmit each packet. It means
this xApp can compute the number of bits transmitted
per RB as cRB,j = lj/Npkt,j . Based on that, it defines
a vector x⃗pkt,j = {cRB,j, cRB,j . . . , cRB,j}, where the
element cRB,j is repeated Npkt,j times.

2) Performing the previous step for all the transmitted pack-
ets, this xApp obtains a set of vectors x⃗pkt,j ∀j ∈ JOBS ,
where JOBS denotes the set of packets transmitted in
the last TOBS TTIs. Based on that, this xApp defines
x⃗con = {x⃗pkt,1, x⃗pkt,2 . . . x⃗pkt,|JOBS |} as a vector which
concatenates each measured vector x⃗pkt,j .

3) Based on x⃗con, this xApp groups its samples in set of
N set

m,n = n + Nmin
m consecutive samples. In turn, each

group of N set
m,n consecutive samples defines a vector

x⃗n,out
m,i , where i ∈ [1, Tm,n] represents the i-th vector. We

define Tm,n as the total number of built vectors. Note we
have one vector x⃗n,out

m,i per sample cn,out
m,i , i.e., see Eq. (17).

4) Finally, this xApp obtains the sample cn,out
m,i as the sum

of all the elements of the vector x⃗n,out
m,i , i.e., cn,out

m,i =∑Nset
m,n

z=1 x⃗n,out
m,i {z}.

B. Mixture Density Networks for estimating the RB utilization

The SNC-based Controller xApp relies on a MDN, which
is a NN architecture designed to model probability distri-
butions [15], to estimate πm,n. Typically, the NN’s output
layer produces a single value that represents the predicted
outcome. In an MDN, the output layer generates one or
more parameterized mixture models, each being a weighted
combination of several component distributions. In this paper,
we consider |M| Gaussian Mixture Models (GMMs), one per
service. It is proven the GMM accurately approximate any
arbitrary distribution in the context of wireless networks [16]–
[18]. Specifically, πm,n may not follow a single known statis-
tical distribution and perhaps more importantly, it may also
change over time. The GMM is described by the equation
depicted in Fig. 2, where Km denotes the number of Gaussian
distributions. In turn, the k-th distribution is characterized by
the weight wk,m, the mean µk,m and the standard deviation
σk,m. Note that

∑Km

k=1 wk,m = 1.
The considered MDN is summarized in Fig. 2. The inputs

parameters x⃗in are: (a) the RB utilization for each service,
and (b) the 25th, 50th and 75th percentiles of incoming and
enqueued bits. All of them measured in the last TOUT TTIs
for each service m ∈ M. Additionally, the MDN considers
as input the target number of guaranteed RBs for each service

Gaussian Mixture Models (GMMs)
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Fig. 2. Overview of the considered Mixture Density Network (MDN).

m ∈ M in the next TOUT TTIs. Based on them, the MDN
provides an estimation of the parameters wk,m, µk,m and σk,m.
Finally, we compute the πm,n as Eq. 23 shows. Specifically, we
split the GMM into Nadd regions (i.e., see Section III-D) and
compute πm,n as the probability of being in the n-th region.

πm,n =

Km∑
k=1

∫ n+0.5

n−0.5

wk,mN (x|µk,m, σk,m) dx. (23)

C. Near-RT Control Loop
The SNC-based Controller xApp aims to determine Nmin

m

∀m ∈ M such as the delay bound Wm is as close as possible
(or even below) to the target delay budget W th

m , given the
target violation probability εm. To that end, we formulate the
problem ORCHESTRATION_URLLC_SERVICES. It consists
of minimizing the maximum ratio Wm/W

th
m , i.e., considering

|M| services, as Eq. (24) shows. This problem is constrained
by Eq. (25), which ensures the sum of the amount of guar-
anteed RBs of all the services must be equal or less than the
available RBs.
Problem ORCHESTRATION_URLLC_SERVICES:

min.
Nmin

m

g(W⃗ ) = max
{
W1/W th

1 , . . . ,W|M|/W th
|M|

}
. (24)

s.t.:
|M|∑
m=1

Nmin

m ≤ NRB

cell. (25)

The objective function g(W⃗ ) depends on the computa-
tion of Wm ∀m ∈ M. Specifically, when a specific value
of Nmin

m is considered for each service, |M| sub-problems
as DELAY_BOUND_CALCULATION, i.e., see Eqs. (20)-(22),
must be solved. Since each sub-problem requires the optimiza-
tion of a non-convex function over a non-convex region, we
propose Algorithm 2 to solve this problem.

This algorithm considers as inputs the target delay budget
W th

m , the target violation probability εm and the sample vectors
x⃗Dm

, x⃗Cm,n. Additionally, it considers as starting point an
equal distribution of the available RBs among the services,
i.e., Nmin

m,z = ⌊NRB
cell/|M|⌋. Based on them, Algorithm 2

starts an iterative procedure to get Nmin
m ∀m ∈ M. In

each iteration, considering Nmin
m,z guaranteed RBs for each

service, it first estimates πm,n using the MDN described in
Section IV-B (step 4). Then, it uses the SNC-based model
(see Section III-E) to estimate the delay bound Wm,z for
the target Nmin

m,z (step 5). Then, it evaluates the objective
function, i.e., Eq. (24), considering Wm,z and Wm (step 6).
Based on that, it checks if the objective function has been
reduced with respect to the previous iteration (step 7). If so,
this algorithm updates the new values for Nmin

m and Wm (step
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Algorithm 2: Near-RT RB allocation
1 Inputs: W th

m , εm, x⃗Dm , x⃗Cm,n;
2 Initialization: Nmin

m,z = ⌊NRB
cell/|M|⌋, Wm = ∞,

Wm,z = ∞ stop = False;
3 while stop == False do
4 Estimate πm,n ∀m ∈ M ∀n ∈ [0, Nadd] [Section IV-B];
5 Estimate Wm,z ∀m ∈ M [See Algorithm 1];
6 Evaluate g(W⃗z) and g(W⃗ ) [See Eq. (24)];
7 if g(W⃗z) < g(W⃗ ) then
8 Update Nmin

m = Nmin
m,z ; Wm = Wm,z ∀m ∈ M;

9 Select m′|Wm′/W th
m′ ≥ Wm/W th

m ∀m ∈ M \ {m′};
10 Select m′′|Wm′′/W th

m′′ ≤ Wm/W th
m ∀m ∈ M\{m′′};

11 Compute Nmin
m′,z = Nmin

m′ + 1; Nmin

m′′,z = Nmin
m′′ − 1;

12 else
13 stop = True;
14 end
15 end
16 return: Nmin

m , Wm;

8) and tries to reduce the objective function. To that end, it
selects the service m′ with the best ratio Wm′/W th

m′ and the
service m′′ with the worst ratio Wm′′/W th

m′′ (steps 9-10). Next,
Algorithm 2 takes one guaranteed RB from the service m′′

to be assigned to the service m′ (step 11). Finally, a new
iteration of the algorithm starts if Nmin

m,z ∀m ∈ M improves
the objective function. Conversely, the iterative procedure ends
if the objective function can not be further improved (step 13).

D. RT Control Loop

Every TOUT TTIs, the RT Controller dApp receives the new
value of Nmin

m ∀m ∈ M from the SNC-based Controller xApp.
Based on them, the RT Controller dApp operates at each TTI
as follows. First, it tries to drain the transmission queue of
each service m by using Nmin

m RBs. After, a subset M′ ⊂ M
of services will have drained their queues, while the remaining
M′′ = M−M′ services may still have pending transmissions.
Assuming the |M′| services have not fully consumed Nfr

RBs, such spare resources can be used to for the remaining
|M′′| services. Specifically, the Nfr RBs will be allocated
among the |M′′| services following the Earliest Deadline First
(EDF) discipline [19] since it minimizes the number of packets
whose transmission delay is above the target delay budget.
Note that EDF does not consider the violation probability [20].
For this reason, the RT Controller dApp combines EDF with
the establishment of guaranteed RBs per service. Since the
latter are decided by the SNC-based Controller xApp, our
framework ensures P [w > Wm] ≤ εm ∀m ∈ M as long as
the traffic and channel conditions do not change with respect
to the samples x⃗Dm , x⃗Cm,n.

If the traffic and/or channel conditions change, the prob-
ability the packet transmission delay w is greater than the
estimated delay budget Wm may be greater than the violation
probability, i.e., P [w > Wm] ≥ εm. To avoid it whenever
possible, the RT Controller dApp executes Algorithm 3.

This algorithm monitors the waiting time of the first packet
of each service in the transmission queue. Then, if the waiting
time is close to the delay budget, the algorithm increases (if
possible) the amount of guaranteed RBs for the corresponding
service. To this end, Algorithm 3 relies on a finite-state

Algorithm 3: Mitigating w > W th
m at TTI i

1 Inputs: Nmin
m , QU

T,m, QL
T,m, s⃗i−1;

2 Compute qi,m ∀m ∈ M;
3 Update states s⃗i and Nreq

m,i according to Fig. 3;
4 v⃗d =

{
m′

}
∀m′ |s⃗i{m′} = A ;

5 v⃗b =
{
m′′

}
∀m′′ |s⃗i{m′′} = B ∪ C;

6 if v⃗d ̸= ∅ then
7 Set Nite =

∑
m′′ N

req

m′′,i and Nmin
m,i = Nmin

m ∀m ∈ M;
8 Set jd = 0 and jb = 0;
9 for u from 1 to Nite do

10 Determine n′ = v⃗d{j} and n′′ = v⃗b{j};
11 Update Nmin

n′,i = Nmin

n′,i − 1; Nmin

n′′,i = Nmin

n′′,i + 1;
12 Update jd = jd + 1 and jb = jb + 1;
13 if jd == |v⃗d| then
14 jd = 0
15 end
16 if jb == |v⃗b| then
17 jb = 0
18 end
19 end
20 end
21 return: Nmin

m,i , Nreq
m,i ;

machine of three states
{
A,B,C

}
based on two thresholds

QU
T,m and QL

T,m. The threshold QU
T,m = ηQT,m indicates

the waiting time of a packet is close to the delay budget,
whereas QL

T,m = τQT,m indicates the waiting time is far to
the delay budget. The parameter QT,m = ⌊W th

m /tslot⌋ is the
maximum number of TTIs that a packet can wait in the queue
before crossing the delay budget. Additionally, QU

T,m > QL
T,m.

Note that η ∈ (0, 1] and τ ∈ (0, 1] can be tuned by the
MNO. Regarding the states, the state A indicates the RT
Controller dApp allocates to the service m the amount of
guaranteed RBs decided by the SNC-based Controller dApp,
i.e., Nmin

m,i = Nmin
m . Note that we define Nmin

m,i as the amount
of guaranteed RBs decided by the RT Controller dApp in the
TTI i. The state B indicates the waiting time of the first
packet of service m is very close to the delay budget, thus the
RT Controller dApp may increase the amount of guaranteed
RBs for such service. Specifically, it may increase N req

m,i RBs.
In state B, N req

m,i increases by one RB with respect to the
previous TTI. The state C indicates the waiting time of the
first packet is lower than in state B, but not enough to go back
to Nmin

m,i = Nmin
m . In such case, Algorithm 3 keeps the same

value of N req
m,i with respect to the previous TTI. In Fig. 3 we

summarize the possible transitions among states. Considering
such transitions, we define s⃗i as a vector containing the state
for each service at TTI i.

Based on Nmin
m , QL

T,m, QU
T,m and s⃗i−1, Algorithm 3 initially

computes the state of the first packet of each service as qi,m =
wpkt

m /tslot (step 2). Note that wpkt
m is the waiting time of such a

packet. Then, it updates the states s⃗i and N req
m,i according to the

transitions depicted in Fig. 3 (step 3). Later, Algorithm 3 needs
to check if the amount of RBs defined in N req

m,i can be allocated,
in addition to Nmin

m , to the corresponding services. The policy
considered by Algorithm 3 is that only the services whose
state is A can donate RBs to those which require more RBs.
Considering this policy, Algorithm 3 iteratively re-allocates the
amount of guarantees RBs from services in state A to services
in states B or C (steps 4-20).
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Fig. 3. Transitions of the finite-state machine to control the RB allocation for
service m.

V. PERFORMANCE EVALUATION

We perform an exhaustive simulation campaign to validate
ORANUS, and evaluate its performances through a Python-
based simulator running on a computing platform with 16 GB
RAM and a quad-core Intel Core i7-7700HQ @ 2.80 GHz.
The simulator considers a single cell using an Orthogonal
Frequency-Division Multiple Access (OFDMA) scheme with
NRB

cell ∈ [50, 100] RBs and tslot = 1 ms. Regarding the
incoming traffic and cell capacity of each uRLLC service,
we consider realistic traces collected over an operational
RAN using the FALCON tool [21]. The tool allows decoding
the Physical Downlink Control Channel (PDCCH) of a base
station, revealing the number of active users and their sched-
uled resources. We make the traces public to foster research
on the topic and favor reproducibility3. Fig. 4 depicts the
incoming bits per TTI measured by FALCON, as well as
the corresponding PMF (i.e., upper plots). To emulate the
incoming traffic of three different uRLLC services, we order
the active User Equipments (UEs) and split them into equally-
sized groups, considering their aggregated traffic demand. The
resulting PMFs are also displayed in Fig. 4 (lower plots).

For these services, we set a delay budget W th
m =

{
5, 10, 15

}
ms and target violation probability εm =

{
10−5, 10−4, 10−3

}
[22]–[24].

3FALCON traces. Online available: https://nextcloud.neclab.eu/index.php/
s/tTqCfRHbgx8Xwtj. Password: ORANUS INFOCOM24
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Fig. 5. Validation SNC-based model.

A. Validation of SNC model

In the first experiment, we consider a cell hosting a single
service m with the incoming traffic measured by FALCON
(i.e., blue plots in Fig. 4). Assuming a target violation proba-
bility εm = 10−3, we compute the delay bound Wmod

m using
the proposed SNC model and compare it with the real bound
W sim

m obtained by simulation while the SNC-based Controller
xApp (a) allocates Nmin

m ∈ [50, 100] RBs for such service, and
(b) uses TOBS ∈

{
1, 2, 3, 4, 5, 6

}
· 1000 TTIs to obtain x⃗Dm

and x⃗Cm,n.
The results are depicted in Fig. 5. On the left side, the

box-and-whisker plot represents the distribution of the relative
error ϵr = (Wmod

m − W sim
m )/W sim

m · 100 when considering a
variable TOBS . Note that we have used two boxes in those
scenarios which present negative relative errors. Specifically,
each box gathers either the positive relative errors or the
negative relative errors. We can notice the mean relative error
is always below 150%. Such value may appear large at first,
but is in fact acceptable, as the goal of our SNC-based model
is to accommodate complex arrival and service processes at
the expense of obtaining an exact match between the model
and simulator results. Instead, SNC promises an upper and
conservative estimation of Wm, which is of key importance to
meet uRLLC services’ requirements in real scenarios.

From the same picture, we can observe negative values for
ϵr when TOBS ≤ 3000 TTIs. This is due to the insufficient
number of samples in vectors x⃗Dm and x⃗Cm,n, which are not
enough to capture the PMFs for the incoming traffic and cell
capacity for the corresponding service. In our settings, the
proposed SNC model needs at least a period of TOBS = 4000
TTIs to effectively capture such PMFs and provide a mean-
ingful upper estimation of the delay bound.

On the right-hand side, the plot shows the execution time
distribution of the proposed SNC model. The time mono-
tonically increases with TOBS as more samples need to be
considered in Eqs. (15), (19) and (20). For the considered
scenarios, the average execution time is below 6 ms, making
the proposed model suitable for determining the amount of
guaranteed RBs for uRLLC services in a near-RT scale.

B. Validation of MDN

In Section IV-B, we propose a neural network model to
expedite the estimation of πm,n. To validate the proposed
MDN approach, we split the FALCON dataset according to
a 70/30 ratio for the purposes of training and testing, respec-
tively. Furthermore, the number of active UEs are grouped in a

https://nextcloud.neclab.eu/index.php/s/tTqCfRHbgx8Xwtj
https://nextcloud.neclab.eu/index.php/s/tTqCfRHbgx8Xwtj
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Fig. 6. Validation of the proposed MDN model.

uniform way to form the traffic demand of each service. In our
implementation, the MDN accounts for a 4-staged network,
characterized by 256, 256, 64, and 3·Km·|M| neurons, respec-
tively. We empirically select the Rectified Linear Units (ReLu)
as activation function to overcome the vanishing gradient prob-
lem and allow the model to learn faster. The kernel weights of
each layer are initialized exploiting the He Normal statistical
distribution. We also adopted kernel regularization techniques
to regularize the learning and improve the generalization of
the results. Finally, we adopt the Mean Squared Error (MSE)
metric to train the model and choose the Adam optimizer with
a learning rate 0.001 to optimize the loss function.

The model is trained with multivariate input including
incoming traffic demand, transmission queue size, and cur-
rently guaranteed PRBs over a monitoring time window of
TOBS = 4000 TTIs, aiming to estimate wk,m, µk,m and σk,m

∀k ∈ [0,Km] ∀m ∈ M. Fig. 6 depicts the resulting PDF
estimation assuming Km = 3. It can be noticed how the
MDN is able to estimate the continuous PDF distribution of
the expected available PRBs per service even in the presence
of heterogeneous shapes. Such curves are then discretized as
Eq. (23) shows to obtain the PMF πm,n ∀m ∈ M.

C. Performance Analysis of the SNC-based Controller xApp

In a third set of experiments, we focus on a single decision
period of the SNC-based Controller xApp. Specifically, we
assume it computes Nmin

m for the three services described at
the beginning of Section V. Under this scenario, we evaluate
the convergence of the heuristics proposed in Algorithm 2, the
computational complexity of such heuristics, and the accuracy
of the obtained solution with respect to the optimal.

Fig. 7 shows the convergence of Algorithm 2. Specifically,
it depicts the value of the objective function g(W⃗ ), i.e., purple
curve, as well as the values of the ratios Wm/W

th
m ∀m ∈ M,

i.e., orange, green and red curves, in each iteration. We observe
how the proposed heuristics iteratively reduces g(W⃗ ) until
reaching a suboptimal solution. In Fig. 8, we compare the
solution obtained by the proposed heuristics with respect to the
optimal one derived by brute force approach when considering
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Fig. 7. Convergence Analysis of Algorithm 2.
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

NRB
cell 60 70 80 90 100

Brute Force
(iterations) 1711 2346 3081 3916 4851

Algorithm 2
(iterations) 12 14 16 19 22

Ratio Algorithm 2
/ Brute Force 142.58 167.57 192.56 206.10 220.5

Avg. Execution Time per
iteration (ms) 184.62 179.09 176.39 173.76 171.85

NRB
cell ∈ [50, 100] RBs. The relative error between the two

curves is approximately 0.225%, indicating that the proposed
solution yields only a 0.225% increase in the worst ratio
Wm/W th

m (see Eq. (24)) compared to the brute force approach.
It is a reasonable deviation given the significant differences
in computational complexity among the two approaches as
Table I shows. Specifically, Table I summarizes the average
execution time, the number of iterations, and the resulting ratio
as a function of NRB

cell. We observe the number of iterations
monotonically increases with NRB

cell as the search space (i.e.,
combinations of RB allocation for each service) is greater,
whereas the average execution time for a single iteration
slightly decreases. Note that the tasks performed in a single
iteration are the same for both approaches. The execution time
per iteration decreases for larger NRB

cell values. This is due to
the fact that the estimation of Wm (i.e., when Algorithm 2 calls
Algorithm 1 in step 5) is faster if more RBs are considered for
each service. Specifically, we have experimentally observed
that less iterations are needed by Algorithm 1 when NRB

cell

increases, i.e., the value of θz (step 4) which minimizes Eq.
(20) is greater.

D. Performance Analysis of ORANUS framework
In the last experiment, we evaluated the performance of

ORANUS against three reference solutions. The reference
solution #1 consists of a single RT Controller using the
EDF discipline. The reference solution #2 only considers the
SNC-based Controller xApp. Note that this solution allocates
dedicated RBs per service without sharing. The reference
solution #3 considers the SNC-based Controller xApp and the
RT Controller dApp. However, the RT Controller dApp does
not use Algorithm 3.

To measure the performance of these solutions, we consider
the Complementary Cumulative Distribution Function (CCDF)
of the metric (w − W th

m )/W th
m . Note the random variable

w represents the transmission delay of an arbitrary packet.
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m . In ORANUS, we have set η = 0.75 and τ = 0.3.

Additionally, when this metric is equal to 0, the CCDF value
represents the violation probability. In Fig. 9 we observe that
the reference solution #2 provides the worst performance, i.e.,
a violation probability 11.46 and 178.30 times larger than
ORANUS for services 1 and 2. Note that this probability is
equal to 0 for scenario 3 when we consider ORANUS. These
results are due to the fact the reference solution #2 only consid-
ers dedicated RBs. The remaining solutions consider sharing
RBs among the services. Comparing them, the reference
solution #1 usually provides a greater violation probability
with respect to ORANUS. Although EDF ensures the packet
with the earliest deadline are transmitted first, e.g., we observe
for service 0 the CCDF is lower for reference solution #1 when
(w − W th

m )/W th
m ≤ 0, it does not provide any guarantees in

terms of violation probability. To consider such probability, the
ORANUS framework establishes guaranteed RBs in a near-
RT and allocates share free RBs among services using EDF
in a RT scale. It improves the performance with respect to the
remaining solutions. Specifically, ORANUS provides lower
violation probabilities for service #1 and service #2. Finally,
we observe the consideration of Algorithm 3 in ORANUS
improves the obtained violation probability if we compare
the results with respect to the ones obtained by the reference
solution #3. The improvement is most significant when the
metric (w−W th

m )/W th
m is higher. This is due to Algorithm 3

performing its actions when the waiting time of a packet in the
transmission queue is closer to the delay budget. We can also
observe the reference solution #3 has a similar behavior as
ORANUS for service 2. The reason is the packet transmission
delay never is above the delay budget for this service, as
happens for services 0 and 1.

VI. RELATED WORK

Several works addressed the radio resource allocation prob-
lem in the presence of multiple uRLLC services. Concerning
O-RAN based solutions, the authors of [25] propose a frame-
work based on the actor-critic algorithm to minimize the prob-
ability of Internet of Things (IoT) devices’ age of information
to exceed a predefined threshold. Despite its novelty, this work
does not consider the transmission delay in the air interface.
In [26], the authors propose an iterative algorithm to address
the joint radio resource and power allocation problem, while
the authors of [27] solve this problem by federated learning. In
spite of their significance, their findings focus on the average
delay as the key parameter. The authors of [28] analyze the

performance of Deep Reinforcement Learnning (DRL) agents
using a non-RT control loop that implements control actions
in O-RAN. Despite its novelty, this solution omits details on
the interactions of multi-time-scale control loops.

Focusing on non-RT and near-RT solutions, some works
rely on queuing theory to model the packet transmission
delay [29]–[31]. However, these models can only obtain
average values when complex distributions are considered
for the packet arrival rate and the channel capacity. Other
works such as [7]–[9] use SNC to estimate a bound W of
type P[w > W ] < ε, where w is the packet transmission
delay and ε a target tolerance. However, they do not as-
sume scenarios involving multiple uRLLC services nor their
cross-interference. In [10], the authors propose a SNC-based
controller for planning multiple uRLLC services. However, it
considers dedicated radio resources for each service, which
may result in resource wastage. Additionally, it is limited to
traffic arrivals that follow a Poisson process with batches.

Considering RT solutions, works like [19], [32], [33] use
schedulers based on EDF to assign priorities to packets based
on their deadlines. EDF ensures the packets with the earliest
deadline are transmitted first. However, EDF does not consider
the probability the packet transmission delay exceeds a delay
budget [34]. Other solutions such as [35]–[37] rely on ML
models. Although they are effective in managing scenarios
with intricate traffic patterns and channel conditions, their
performance is primarily reliant on the similarity between the
measured patterns and those used during training.

O-RAN specifications mention a RT control loop for opti-
mizing tasks such as packet scheduling or interference recog-
nition [38]. However, at the moment of writing this paper,
such a control loop has not been defined. In the same row, the
authors of [5] introduce the concept of dApps to implement
fine-grained RT control tasks. Despite implementing a proof-
of-concept, they omit to detail how multiple uRLLC services
can be orchestrated in a RT scale, and how the near-RT control
loop interacts with the dApps.

VII. CONCLUSIONS

In this paper, we addressed the need of effective multi-
time-scale control loops in O-RAN-based deployments for
uRLLC services. Specifically, we proposed ORANUS, an
O-RAN-compliant mathematical framework focused on the
radio resource allocation problem at near-RT and RT scales.
Focusing on the near-RT control loop, ORANUS relies on a
novel SNC model to compute the amount of guaranteed RBs
per service. Unlike traditional approaches as queueing theory,
the SNC model allows ORANUS ensuring the probability the
packet transmission delay exceeds a specific budget, i.e., the
violation probability, is below a target tolerance. Another key
novelty of ORANUS is the incorporation of a RT control
loop which monitors the transmission queue of each service
and dynamically adjusts the allocation of guaranteed RBs in
response to traffic anomalies. We evaluated our proposal by a
comprehensive simulation campaign, where ORANUS demon-
strated substantial improvements, with an average violation
probability 10× lower, in comparison to reference solutions.
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