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UE Blocking Probability Model for Planning 5G
Guaranteed Bit Rate (GBR) RAN Slices

Oscar Adamuz-Hinojosa, Pablo Ameigeiras, Pablo Muñoz, and Juan M. Lopez-Soler

Abstract—Modeling the probability of blocking User Equip-
ment (UE) sessions is key for planning in advance the amount
of radio resources required by a Guaranteed Bit Rate (GBR)
slice. This task is challenging since the amount of these resources
depends on factors such as the channel quality of each UE,
the packet scheduler discipline, and the GBR requirements.
Under this context, we propose an analytical model to evaluate
the UE blocking probability for a GBR slice. A key aspect
of the proposed model is considering as input the distribution
of the average Signal-to-Interference-plus-Noise Ratio (SINR)
experienced by the UE, therefore allowing to capture the radio
conditions in the cell. Our model builds a multi-dimensional
Erlang-B system which meets the reversibility property. This
involves our model is insensitive to the holding time distribution
for the UE sessions. The reversibility property also involves
the state transition probabilities have product form, so that the
computational complexity of our model is low. Furthermore, the
proposed model captures the SINR gain provided when the base
station implements a channel-aware packet scheduler to allocate
radio resources to the UE sessions. We validate the proposed
model, demonstrating an estimation error for the UE blocking
probability below 1.5%.

Index Terms—Blocking probability, GBR service, Erlang-B,
Channel-aware scheduler, RAN slicing.

I. INTRODUCTION

The emergence of Fifth Generation (5G) mobile networks
will boost a wide variety of unprecedented communication
services with stringent requirements in terms of performance
and functionalities [1]. Considering each communication ser-
vice separately and building a Radio Access Network (RAN)
accordingly would be unfeasible in terms of cost. RAN slicing
is a technological solution to economically provide separate
communication services over a common wireless infrastructure
[2]. It consists of the provision of multiple logical networks,
denominated RAN slices, each adapted to the requirements of
a specific communication service.

One of the main standard developing organizations on net-
work slicing is the Global System for Mobile Communications
Association (GSMA). It has defined the Generic Network
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Slice Template (GST), which allows the Mobile Network
Operator (MNO) to unambiguously interpret the Quality of
Service (QoS) requirements of a RAN slice and negotiate the
Service Level Agreement (SLA) accordingly [3]. In this paper,
we focus on RAN slices which rely on data transmissions
with strict Guaranteed Bit Rate (GBR) requirements. In this
aspect, one of the main GST’s attributes is the uplink/downlink
throughput per User Equipment (UE). This parameter specifies
the target GBR for each active uplink/downlink data session.
Other key QoS attribute is the service availability, which
represents the percentage of time the end-to-end communi-
cation service is delivered. To measure this attribute, one of
the Key Performance Indicators (KPIs) is the service request
success rate. This KPI represents the probability an UE data
session request is successful. For a GBR service, an UE data
session request can be admitted only if the MNO can ensure
such session an average data rate equal to the target GBR.
Otherwise, the data session is blocked.

To fulfill the SLA, the MNO must guarantee: i) the prob-
ability of blocking an UE session, and ii) the throughput per
UE. To ensure these values before deploying the RAN slice,
the MNO must rely on the RAN slice planning, which is a
key management task executed in the RAN slice preparation
phase [4]. This task mainly consists of deciding in advance the
feasibility of deploying requested RAN slices and the adequate
parameter configuration of the RAN to accommodate them [5].
The parameter configuration includes, among other things, the
amount of guaranteed radio resources, computing resources,
and networking resources for each RAN slice. In this work,
we specifically concentrate on the radio interface because of
the limited spectrum which the MNO has available, and in
particular we focus on the downlink.

Designing a strategy for planning RAN slices with GBR
requirements is challenging. For each RAN slice, the MNO
must consider the spatio-temporal variations in the number
of its active sessions as well as the bandwidth consumption
of each session. The later depends on factors such as (a) the
UE channel quality; (b) the scheduler1 discipline considered
by each serving cell in runtime; and (c) the target GBR.
Furthermore, the MNO must guarantee the target UE blocking
probability is below a certain threshold. Therefore, it is crucial
for the MNO to rely on a mathematical model which considers
all the previous aspects to accurately planning the amount of

1In our paper, the terms schedule and plan differ. The former is related
to the runtime radio resource allocation in each Transmission Time Interval
(TTI), i.e., in the order of one millisecond or hundreds of microseconds. The
latter is related to the estimation (before deploying the RAN slice) of the
number of required radio resources throughout its lifetime.
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reserved radio resources for each RAN slice. In this way, the
MNO would avoid the under-provisioning of radio resources,
i.e., its UE blocking probability for a RAN slice would be
much higher than the considered threshold, and vice-versa.

A. Related Works

The existing literature for modeling the UE blocking prob-
ability in a cell is vast. In [6], the authors provide an excellent
model which is based on a multi-class processor sharing queue
for a Code Division Multiple Access (CDMA)-High Data Rate
cell. Since the processor sharing discipline is insensitive to
the holding time distribution, arbitrary distributions can be
adopted for the UE session duration. This discipline also
forces an equal distribution of radio resources among the
UEs, therefore this model is applicable to Round Robin and
Proportional Fair (PF) scheduling disciplines. Considering
these disciplines involve those UE sessions with better channel
conditions could achieve a data rate equal or above the GBR,
whereas those UE sessions with worse channel conditions
could be rejected. This means this model is not appropriate
for providing a GBR service to any UE regardless its channel
conditions. In [7], this work was extended by including intra-
cell UE mobility. However this improvement involves loosing
the insensitivity property, thus only the exponential distribution
is valid for the UE session duration.

In both works, the authors build their model based on
two scenarios: (a) a single cell in isolation, and (b) multiple
cells following regular topologies. In the first scenario, the
authors consider the intra-cell interference is constant over the
considered cell. In the second scenario, the authors consider
the cells are placed either equidistantly in an infinite line or
following an hexagonal distribution. These assumptions easily
enable their model to capture an estimation of the average
channel quality within the considered cell by using a discrete
number of concentric rings. However, these assumptions limit
the accuracy for modeling the distribution of the average chan-
nel quality. For instance, two UEs located at the same distance
from an access node could not perceive the same channel
quality. The reason is there could be different obstacles and
geographical features between each UE and the serving access
node, involving a different impact of the channel effects such
as the shadowing.

Due to the simplicity of modeling the average channel
quality by using concentric rings, other authors have also
considered this approach in their models for the UE blocking
probability (e.g., [8]–[13]). In [8], the authors have proposed a
Markov chain-based model to compute the UE blocking prob-
ability. The main novelty of this model is the consideration
of UE mobility within a cell based on Wideband CDMA.
Using this model, the paper proposes an admission control
mechanism for UE sessions supporting voice and data calls
with a minimum data rate. In [9], the authors use a ring-
based model for modeling the coverage area of a base station
which implements Orthogonal Frequency-Division Multiple
Access (OFDMA). In addition to the UE mobility, this model
also considers the effect of handovers from adjacent cells.
Based on that, the model considers the equilibrium balance

equations for the UEs in each ring to compute the UE blocking
probability for a service with a constant data rate. In [10],
the authors propose an analytical model to capture the time-
varying capacity of an OFDMA cell. Based on a Markov chain,
this model also considers concentric rings to capture the data
rate achieved by each UE. Furthermore, their model captures
the UE mobility within the cell by assuming an exponential
distribution for moving an UE from one ring to another. Using
this model, the authors design an admission control mecha-
nism which considers the UE blocking probability. In [11],
the authors propose a Quality of Service-oriented resource
allocation strategy for streaming flows that require a constant
bit rate in a WiMaX cell. The proposed strategy considers
an analytical model to derive the UE blocking probability.
This model is based on a Markov chain which assumes a
set of concentric rings to model the channel quality within
the cell. Additionally, all the previous models present valuable
contributions which have been applied by others authors which
go beyond traditional mobile broadband services. For instance,
the authors of [12], [13] adapt their models to IPTV services
which requires GBR requirements.

Despite these works contribute significantly to the state-of-
the-art solutions for modeling the UE blocking probability for
GBR services, they present some drawbacks as the assumption
of an exponential distribution for the UE session duration
and/or the limited modeling of the UE channel quality within
the cell. These restrictions reduces the accuracy of their models
to estimate the UE blocking probability.

In an attempt to consider a more precise characterization
of the average channel quality within the cell, the authors
of [14] consider several zones distinguished by the strength
of the received signal. Specifically, they use a combination
of indicators such as the Reference Signal Received Power,
the Reference Signal Received Quality, the Received Signal
Strength Indication and the Signal-to-Interference-plus-Noise
Ratio (SINR) of each UE to compute the UE blocking
probability in a scenario with intra-cell UE mobility. These
indicators are taken as input for a Markov chain-based model.
Despite this improvement, the authors assume a reduction of
the data rate for each UE when the total required bandwidth
exceed the available bandwidth in the cell, thus this model
considers the GBR is not met for all the UEs. Furthermore, this
work assume the UE session duration follows an exponential
distribution.

Finally, the state-of-the-art proposals which model the UE
blocking probability for GBR services do not consider the
impact on the channel gain when a packet scheduler dynami-
cally allocates radio resources to the active UE sessions. In the
literature, there exists a wide range of channel-aware strategies
to schedule radio resources for GBR services. We recommend
the readers to review the comprehensive survey presented in
[15], where the most representative scheduling strategies for
GBR services are analyzed.

B. Contributions

In this article, we assume a single 5G-New Radio (NR)
OFDMA cell implements a RAN slice which provides an
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arbitrary communication service with GBR requirements and
without strict requirements in terms of latency. This means
(i) the cell only admits those data sessions for which it can
guarantee an specified average data rate and (ii) the remaining
data sessions are rejected. We also consider the UEs served
by this RAN slice generate data sessions following a Poisson
distribution. It is well known the sum of a large number of UEs
generating data sessions, each UE with an arbitrary distribution
of renewal time, will tend to a Poisson process [16]. In
addition, we consider the cell implements a channel-aware
scheduler to allocate radio resources in runtime to the admitted
data sessions. Under this context, the main contributions of this
article are:

• The proposal of an analytical model to predict the UE
blocking probability in a cell for a RAN slice based on
the amount of available radio resources for that slice.
This model is based on a Multi-dimensional Erlang-B
system. It meets the reversibility property which means
the proposed model allows the adoption of an arbitrary
distribution for the UE session duration. Additionally, this
property involves the solution for the state probabilities
has product form, thus it reduces the complexity for
their computation. Furthermore, the proposed model may
consider as input any distribution and geometry for the
average SINR which an arbitrary UE session could per-
ceive within the cell. Unlike the state-of-the-art proposals,
this approach allows a more precise characterization of
the UEs’ channel quality. For example, our model may
use as input a probabilistic distribution of the average
SINR obtained by either experimental measurements in
a real cell or simulation.

• The mathematical formulation to capture the behavior of
a channel-aware scheduler in the proposed model for the
UE blocking probability. In this work, we take a key step
forward with respect to the first version of our model [17],
where we considered the scheduler was channel-agnostic.
To that end, the mathematical formulation in this work
captures the channel gain perceived by a UE session when
the serving cell implements a channel-aware scheduler
to assign UEs the radio resources which provide it a
better instantaneous SINR. Specifically, this formulation
relates the average data rate by an admitted UE session
and the probability of allocating radio resources for such
session. Additionally, using this formulation, we can
establish the conditions which must be met to admit
an UE data session. For comprehensibility purposes, we
have considered a representative channel-aware scheduler
based on the alpha-fair metric [18]. However, this does
not detract the proposed model from considering any
other channel-aware scheduler by following the proposed
formulation.

In the provided results, we first validate the proposed multi-
dimensional Erlang-B model by means of simulation, demon-
strating that it exhibits an estimation error for the UE blocking
probability below 1.5%. Then, based on the proposed model,
we show the benefits of using a channel-aware scheduler to
reduce the UE blocking probability.

The remainder of this article is organized as follow. Section
II describes the system model. In Section III, we present the
proposed UE blocking probability model. Then, we describe
how the channel-aware scheduler meets the GBR requirements
of each admitted UE session in Section IV. In Section V,
we define the experimental setup, and based on that, we
validate the proposed model and evaluate the impact of using
a channel-aware scheduler on the UE blocking probability.
Finally, Section VI draws the main conclusions.

II. SYSTEM MODEL

In this work, we focus on the downlink operation of a
single OFDMA cell. It implements a RAN slice providing
a GBR service to their UEs, which dynamically request and
release data sessions. This cell also implements a channel-
aware scheduler which considers the channel quality perceived
by the active UE sessions to dynamically allocate them radio
resources. Based on this scenario, we first describe the model
for the radio resources in a OFDMA cell. Then, we define
the channel model. Later, we present the characteristics of
the offered traffic. Finally, we define the characteristic of the
channel-aware scheduler.

A. Radio Resource Model

We assume a serving OFDMA cell i ∈ I with a total
bandwidth Wi. This bandwidth is divided into N OFDM sub-
carriers. In turn, these sub-carriers are arranged in groups
of NSC sub-carriers. Each group of sub-carriers defines a
Resource Block (RB), which is the smallest unit of resources
that can be allocated to a single UE. The number of available
RBs during a time slot is given by Eq. (1). The parameter ∆f
is the bandwidth between sub-carriers whereas OH denotes
the overhead factor due to control plane data.

NRB
i =

⌊
Wi

NSC∆f
(1−OH)

⌋
(1)

If the cell i employs a small sub-carrier spacing ∆f and a
large bandwidth Wi, the number of available RBs in a time slot
could be too high. For instance, in a 5G New Radio (5G-NR)
cell, the maximum number of available RBs could be 273 units
[19] [20]. From the perspective of radio resource allocation, it
becomes advantageous to reduce the management complexity
by grouping the RBs into resource chunks, which are allocated
to the UEs as indivisible units [21]. This can be done through
the concept of Resource Block Group (RBG) defined in [22].
A RBG is a collection of consecutive RBs that can be allocated
to a specific UE. The size of the RBG NRBG

size (i.e., number of
consecutive RBs) can be used for establishing the minimum
allocation unit size. Increasing NRBG

size may serve to reduce
the signaling overhead at the expense of a loss of flexibility.
Based on that, we can compute the available RBGs on a time
slot in the cell i as NRBG

i =
⌊
NRB

i /NRBG
size

⌋
.

B. Channel Model

In this work, we adopt the SINR as the metric to measure the
channel quality within the cell i. Specifically, we define in Eq.
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(2) the instantaneous SINR γu,n (m) for the UE u in the RBG
n and the time slot m [23]. The parameter Xi,u,n (m) denotes
the fading component which is random and varies for each
time slot m and RBG n. We adopt the well-known Rayleigh-
fading model for the fading component Xi,u,n (m), leading to
an exponential distribution with unit mean, i.e., E [Xi,u,n] = 1.
The parameters P i,u,n and P j,u,n denote the average received
powers (i.e., without considering fast-fading) from the serving
cell i ∈ I and the neighbor cell j ∈ I\{i}, respectively.
Finally, PN is the noise power measured in one RBG.

γu,n (m) =
P i,u,nXi,u,n (m)∑

j∈I\{i} P j,u,nXj,u,n (m) + PN

(2)

The average received power P i,u,n from cell i depends on
the path-loss h

PL

i,u , the shadowing h
SH

i,u and the transmission

power per RBG Pi,n, i.e., P i,u,n = h
PL

i,u · hSH

i,u · Pi,n.

We consider h
PL

i,u and h
SH

i,u remain constant throughout the
duration of the UE data session. It is valid in scenarios where
the UEs have reduced mobility within the cell (e.g., semi-
static people in live events such as sport events or concerts,
IoT sensors, or equipment for industry 4.0). Furthermore,
we consider the cell transmits the same constant power for
each RBG, i.e., Pi,n = Pi,m ∀n ∈ NRBG, ∀m ∈ NRBG.
Hereinafter, we omit the subscript n for the transmitted power
and the average received power, i.e., Pi instead of Pi,n; and
P i,u instead of P i,u,n.

To make the analysis mathematically tractable, we omit
the fast-fading component in each interference term from
Eq. (2), i.e.,

∑
j∈I\{i} P j,u,nXj,u,n ≈

∑
j∈I\{i} P j,u,n. This

means the sum of the interference terms can be regarded
as an additional source of noise [23]. Under such assump-
tion, the instantaneous SINR γu,n (m) follows an exponential
distribution with average γu. This results in the simplified
Probability Density Function (PDF) fγu,n

(γ) and Cumulative
Distribution Function (CDF) Fγu,n (γ) defined in Eqs. (3) and
(4), respectively. The average SINR γu is given by Eq. (5).
Since the average SINR does not depend on the RBG n, we
omit the subscript n for such parameter in the remainder of
this paper, i.e., γu instead of γu,n.

fγu,n
[γ] =

1

γu

exp
[
−γ

γu

]
(3)

Fγu,n [γ] = 1− exp
[
−γ

γu

]
(4)

γu = E

[
P i,uXi,u,n∑

j∈I\{i} P j,u + PN

]

=
P i,uE [Xi,u,n]∑

j∈I\{i} P j,u + PN

=
P i,u∑

j∈I\{i} P j,u + PN

(5)

If γu is measured for a considerable amount of active UEs,
it is possible to derive the PDF for the average SINR fγu

(γ)
to model the average channel quality within the cell. Let us
define the Geometry factor (G-factor) Gf as Eq. (6) shows
[24], where the ensemble averages over short-term fading, but
not shadowing. The G-factor allows to characterize the radio

environment in the cell, including aspects such as the cell
geometry or the propagation conditions [25]. The G-factor has
been used as a tool to predict cell performance indicators such
as cell capacity [26].

Gf =
E
[
P i,uXi,u,n

]
E
[∑

j∈I\{i} P j,uXj,u,n + PN

]
=

P i,uE [Xi,u,n]∑
j∈I\{i} P j,uE [Xj,u,n] + PN

=
P i,u∑

j∈I\{i} P j,u + PN

(6)

Under the assumption above that models other cell interfer-
ence as an additional source of additive white gaussian noise, it
can be seen that the average SINR γu defined in Eq. (5) equals
the G-factor defined in Eq. (6) [27]. Consequently, we follow
the same approach, and use the PDF of γu to characterize the
geometry and radio environment in the cell.

Since the PDF fγu
(γ) is a continuous function, we split

it into NZ regions to make it tractable. Depicted in Fig. 1,
each region z is defined as the set of values for the average
SINR such as γ ∈

[
γ(z−1), γz

)
. For simplicity, we assume the

session of an active UE takes place in one of these NZ regions
with probability πz , which is provided by Eq. (7). Note that∑NZ

z=1 πz = 1. Furthermore, we assume the UE sessions which
take place in a region z ∈ Z have an average SINR γz , which
is defined in Eq. (8).

πz =

∫ γz

γ(z−1)

fγu
[γ] dγ (7)

γz =
1

πz

∫ γz

γ(z−1)

γfγu
[γ] dγ (8)

Note that the range of values γ ∈
[
γ(z−1), γz

)
in the region

z does not necessarily have to be mapped to the values of
the average SINR perceived in a specific geographical region
within the cell (e.g., concentric rings in [8]–[13]).

ҧ𝛾0 ҧ𝛾1 ҧ𝛾2 ҧ𝛾3 ҧ𝛾4 ҧ𝛾(𝑁𝑍−3) ҧ𝛾(𝑁𝑍−2) ҧ𝛾(𝑁𝑍−1) ҧ𝛾𝑁𝑍

𝜋1 𝜋2 𝜋3 𝜋4 𝜋(𝑁𝑍−2) 𝜋(𝑁𝑍−1) 𝜋𝑁𝑍

region 1 region 𝑁𝑍
Average SINR ҧ𝛾

….

𝑓 ഥ 𝛾
𝑢
[
ҧ𝛾
]

Fig. 1: Splitting the PDF for the average SINR fγu
[γ] into

NZ regions
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C. Traffic Model

To model the traffic demands within a cell, we consider the
statistical distributions and the average values for the arrival
rate of UE sessions and the session duration.

For the generation process of UE sessions, we assume a
Poisson arrival process with an average of λ UE session
requests per unit time. It is well known that in many cases,
the sum of a large number of independent stationary renewal
processes (i.e., in our scenario, each individual UE generating
data sessions), each with an arbitrary distribution of renewal
time, will tend to a Poisson process [16]. Since a Poisson
process can be split into NZ independent process [28], we
can also express the average arrival rate for each region z as
λz = λπz . Note that λ =

∑NZ

z=1 λz .
With respect to the session duration tsessionu for each UE

u, we assume a random variable extracted from an arbitrary
distribution. Additionally, we define µ = 1/E

[
tsessionu

]
as the

average rate for releasing UE sessions per unit time. Note that
the release session rate is independent from the region z.

Considering the tuple (λ, µ) we can define the offered traffic
intensity as ρ = λ/µ. Since the UE sessions must get a
guaranteed average data rate DGBR, the cell only admits those
UE sessions which can achieve such average data rate in their
lifetimes. This means an UE session can be rejected with a
certain probability B. In Section III, we propose a model to
derive the blocking probability B. Furthermore, we provide in
Section IV the conditions that must be met for which a UE
session can get the average data rate DGBR and thus, it can
be admitted.

D. Channel-Aware Scheduler

In this paper, we focus on modeling the UE blocking prob-
ability B for a RAN slice with GBR requirements. For that
purpose, we assume the serving cell implements a channel-
aware scheduler to allocate radio resources to the admitted
UE sessions. The analysis of which channel-aware scheduler
provides optimum performance for such RAN slice would de-
serve further investigation and therefore it is beyond the scope
of this work. For this reason, we consider a representative
channel-aware scheduler as the one depicted in Fig. 2. In the
first step, the scheduler computes in each time slot m the
metric γ̂u,n defined in Eq. (9) for each UE u ∈ U in each
RBG n ∈ NRBG. In Eq. (9), γ̂u,n is based on the metric
proposed in [29] and analyzed in [18]. For simplicity, we
specifically consider in this metric the SINR instead of the
data rate for an UE u. The fairness factor α is an adjustable
parameter that controls the fairness of the RBG allocation. In
this work, for simplicity reasons we assume that α is known
and constant. The parameter γ̃u denotes the temporal average
SINR for the UE u. To obtain γ̃u, the instantaneous SINR
γu,n (m) is averaged in the last M time slots and over the cell
bandwidth as Eq. (10) shows. In this work, we approximate the
temporal average SINR γ̃u by the average SINR γzu defined
in Eq. (8), i.e., γ̃u ≈ γzu . The parameter zu defines the region
where the data session of the UE u was born.

γ̂u,n =
γu,n
(γ̃u)

α (9)

1

1. Compute ො𝛾𝑢,𝑛 ∀𝑛 ∈ 𝒩
2. Pre-allocate each RBG 𝑛 to 

the UE 𝑢 with the greater 
metric ො𝛾𝑢,𝑛 (i.e., computing 

𝑆𝑢,𝑛)

1 2 3 4 5 6 7 8 9

RBGs allocated to UE #1 RBGs allocated to UE #2

RBGs allocated to UE #3

3. ∀𝑛 ∈ 𝒩, decide with 
probability P𝑢 if the RBG 
𝑛 is finally allocated to 
the UE 𝑢.
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

P1 P1P1P2P3 P2 P1 P2P3

Unallocated RBGs

Fig. 2: Tasks performed by the channel-aware scheduler during
the time slot m. For simplicity, we show an illustrative
example with three UEs and nine RBGs.

γ̃u =
1

M ·NRB
i

NRB
i∑

n=1

τ−1∑
m=τ−M

γu,n (m) (10)

In this work we consider all the UE sessions require a
GBR equal to DGBR. However, the channel condition for each
UE session is different. This means each UE session needs a
specific amount of RBGs to meet its GBR requirements. Note
that if the MNO sets α = 1.0, the scheduler would implement
the PF criteria. It would involve all the UE sessions have the
same probability of being allocated with the same number of
RBGs [30]. In this case, those UEs which perceived a low
average SINR would have a lower data rate than those UEs
which perceived a higher average SINR. To avoid that, the
MNO could set α > 1.0 with the goal of increasing the
amount of allocated RBGs to those UEs which perceive a
lower average SINR. In Section V, we show the benefits of
considering this approach.

Based on γ̂u,n, the scheduler decides in the second step
to pre-allocate each RBG n to the UE u with the greatest
metric γ̂u,n as Eq. (11) shows2. In Eq. (11), Su,n is a binary
variable which defines with a value 1 if the RBG n is pre-
allocated to the UE u and 0 otherwise. Note that

∑
u∈U Su,n =

1, i.e., the RBG n is pre-allocated to one UE. Furthermore,∑
u∈U

∑NRBG
i

n=1 Su,n = NRBG
i , i.e., all the available RBGs in

the cell are pre-allocated to the set of UEs U .

Su,n =

1 γ̂u,n ≥ max
∀v∈U\{u}

{γ̂v,n}

0 otherwise
(11)

Considering this pre-allocation, the admitted UE sessions
achieve an average data rate equal or greater than DGBR.
Since we focus on a scenario where all the admitted UE ses-
sions only get the GBR DGBR, the channel-aware scheduler
must limit the amount of RBGs for those UE sessions with
an achievable data rate above the GBR. For this reason, this

2Once the RAN slice is deployed, the scheduler only needs to compute
in real time the metric given in Eq. (9) and apply Eqs. (10)-(11) to derive
the radio resource allocation for all its active UEs. Note that it is a slightly
modification of the well known Proportional Fair discipline. Specifically, they
only differ in the exponentiation operation (γ̃u)

α.
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scheduler decides in the third step which percentage Pu of
RBGs are finally allocated for each UE u. Based on that,
we define the probability P [Tu,n = 1] that the RBG n is
finally allocated to the UE u in Eq. (12). In this equation, the
parameter Tu,n is a binary variable which takes the value 1 if
the RBG n is finally allocated to the UE u and 0 otherwise.
P [Su,n = 1] denotes the probability that the RBG n is pre-
allocated in the second step to the UE u. Note that Pu and
P [Su,n = 1] are independent. Furthermore

∑
u∈U Tu,n ≤ 1,

i.e., the RBG n could be (or not) allocated to one UE. In
addition,

∑
u∈U

∑NRBG
i

n=1 Tu,n ≤ NRBG
i , i.e., all the available

RBs may not be scheduled in a time slot.

P [Tu,n = 1] = PuP [Su,n = 1] (12)

To derive P [Su,n = 1], we perform the operations described
in Eq. (13). The resulting expression depends on (a) the PDF
of the instantaneous SINR for the UE u; and (b) the CDFs of
the instantaneous SINR for the remaining UEs [31].

P [Su,n = 1] = P
[
γ̂u,n ≥ max

∀v∈U\{u}
{γ̂v,n} |γu,n = γ

]
=

∫ ∞

0

fγ̂u,n
[γ] ·

∏
∀v∈U\{u}

Fγ̂v,n
[γ] dγ

=

∫ ∞

0

(
γzu

)α
fγu,n

[(
γzu

)α · γ
]

·
∏

∀v∈U\{u}

Fγv,n

[(
γzv

)α · γ
]
dγ

(13)

Since all the UE sessions are distributed into Nz regions
where each region gathers Uz UE sessions (i.e., U1 + U2 +
... + UNz = |U|), we can rewrite P [Su,n = 1] as Eq. (14)
shows.

P [Su,n = 1] =

∫ ∞

0

(
γzu

)α
fγu,n

[(
γzu

)α · γ
]

·
(
Fγ1,n [(γ1)

α · γ]
)U1

· ... ·
(
Fγu,n

[(
γzu

)α · γ
])Uz−1

· ... ·
(
FγNz,n

[(
γNz

)α · γ
])UNz dγ

(14)

Considering the PDF and the CDF of the instantaneous
SINR defined in Eqs. (3) and (4), we can rewrite P [Su,n = 1]
as Eq. (15) shows. The definite integral described in this
equation has an analytical solution which depends on the
specific value of the fairness factor α and the number of active
UE sessions in each region (i.e., U1, U2, ..., UNz

). If these
values are known, such integral can be computed as described
in Appendix A. Note that we have removed the subscript n
since the PDF and the CDFs do not depend on the RBG
n. Furthermore, we have replaced the subscript u with z as
the computed probability is the same for all the UEs whose
data session has been born in the region z. This also involves

that Pu can be redefined as Pz and thus, the Eq. (12) can be
redefined as P [Tz = 1] = PzP [Sz = 1].

P [Sz = 1] =

∫ ∞

0

(γz)
α−1 exp

[
− (γz)

α−1 · γ
]

·
(
1− exp

[
− (γ1)

α−1 · γ
])U1

· ... ·
(
1− exp

[
− (γz)

α−1 · γ
])Uz−1

· ... ·
(
1− exp

[
−
(
γNz

)α−1 · γ
])UNz

dγ

(15)

We need to compute the average number of RBGs for each
UE u in a time slot. Since we assume each UE session is born
in a specific region z within the cell, the average number of
RBGs allocated for a single UE depends on the scheduling
probability P [Tz = 1]. In Eq. (16), we see P [Tz = 1] depends
on the state s = (U1, U2, ... , UNZ

) ∈ S ′. This state defines
the total amount of admitted UE sessions as well as their
distributions along the Nz regions. S ′ denotes the set of states
of the system.

NRBG
z,s =

⌈
P [Tz = 1]NRBG

i

⌉
(16)

Finally, the average number of RBGs obtained by a single
UE session which is born in region z must satisfy Eq. (17).
In this equation Tu

slots denotes the number of time slots
throughout the session duration.

NRBG
z,s =

1

Tu
slots

Tu
slots∑
t=1

NRBG
i∑
n=1

T (t)
u,n ∀u ∈ Uz (17)

III. UE BLOCKING PROBABILITY AND CAPACITY MODEL
OF AN OFDMA CELL

This section explains the proposed model, including the
methodology to derive the UE blocking probability, the av-
erage RBG utilization, and the cell capacity for a RAN slice
with GBR requirements.

A. Multi-dimensional Erlang-B model

Let us consider an OFDMA cell where the values of fγu
[γ]

for a single RAN slice are grouped into NZ regions. To model
this system, we employ a multi-dimensional Erlang-B model.
In this model, we assume each UE session takes place into
one region z, defined by the tuple (λz, µ). The offered traffic
intensity in each region becomes ρz = λz/µ, and the total
offered traffic intensity is ρ =

∑NZ

z=1 ρz .
To define the set of potential states of the system S, we take

into account (a) an active UE session in the region z consumes
NRBG

z,s RBGs on average; and (b) the available RBGs in the
cell are limited by NRBG

i . These statements are gathered by
Eq. (18), which provides the necessary condition to define a
state s ∈ S.

NRBG
i −

NZ∑
z=1

UzN
RBG
z,s ≥ 0 ∀s ∈ S (18)

Focusing on a single state s ∈ S, it could happen that the
GBR requirements could not be met for the UE sessions which
fall within one or more regions, i.e., their average data rates
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Fig. 3: State transition diagram for the proposed Nz-dimensional Erlang-B system. For comprehensibility purposes, only two
regions are represented, i.e., z = 1 and z = 2. Note that red and green states correspond to U1 = U cmax

1|U2
and U2 = U cmax

2|U1
,

respectively.

could be less than DGBR. This means the state s is not valid
and thus, one or more UE sessions should be rejected. For
this reason, we define the set S ′ = S \ Snf of feasible states.
Snf denotes those states belonging to S where at least one
UE session does not meet the GBR requirements. In Section
IV, we provide details about determining a valid state s ∈ S ′,
i.e., that one in which all the admitted UE sessions meet the
GBR requirements.

Considering the set S ′ of feasible states, we can build the
state transition diagram as Fig. 3 shows. Note that, for sim-
plicity, the represented diagram only shows two dimensions,
corresponding to the regions z = 1 and z = 2. In this diagram,
U cmax
z|Uy

denotes the maximum number of UE sessions in the
region z conditioned to the number of UE sessions in the
remaining regions (e.g., red states for region 1, and green states
for region 2). This means that considering the state s(t) =(
U1, U2, ... , U

cmax
z|Uy

, ... , UNz

)
∈ S ′ ∀y ∈ Z\{z} implies that

the state s(t+1) =
(
U1, U2, ... , U

cmax
z|Uy

+ 1, ... , UNz

)
/∈ S ′

∀y ∈ Z \ {z}. If the remaining regions have 0 UEs, we
can define the absolute maximum number of UE sessions
Uamax
z in region z. This means that considering the state

s(t) = (0, 0, ... , Uamax
z , ... , 0) ∈ S ′ implies that the state

s(t+1) = (0, 0, ... , Uamax
z + 1, ... , 0) /∈ S ′.

The resulting multi-dimensional Erlang-B system corre-
sponds to a reversible Markov process (see proof in appendix
B). This implies the proposed model is insensitive to the
distribution of the UE session duration, which means the state
probabilities depend only upon the mean service time [28].
Furthermore, the solution for the probability of being in a state

s ∈ S ′, i.e., ps [U1, U2, ... , UNZ
], has product form as Eq. (19)

shows. In this equation, p [Uz] is the one-dimensional truncated
Poisson distribution for traffic stream in region z and K is a
normalization constant.
ps [U1, U2, ... , UNZ

] =K · p [U1] · p [U2] · ... · p [UNZ
]

=K ·
NZ∏
z=1

ρUz
z

Uz!

(19)

To obtain the state probabilities, we need to derive K.
This normalization constant can be computed by summing
all the state probabilities (i.e., without being normalized) and
equaling the resulting expression to 1 as Eq. (20) shows.

K =
1∑

s∈S′

(∏NZ

z=1
ρUz
z

Uz !

) (20)

B. UE Blocking Probability
Assuming a new UE session is born in region z, it

will be blocked if there not exists a transition from the
current state s(t) = (U1, U2, ... , Uz, ... , UNZ

) to s(t+1) =
(U1, U2, ... , Uz + 1, ... , UNZ

). This happens when Uz + 1 >
U cmax
z|Uy

. We define SB
z as the set of states where a transition is

not possible in the region z. Based on that, we can compute
the UE blocking probability Bz conditioned to the region z
where the new UE session is born by Eq. (21).

Bz =
∑
s∈SB

z

ps

[
U1, U2, ... , U

cmax
z|Uy

, ... , UNz

]
(21)

Finally, the UE blocking probability B in the cell is defined
in Eq. (22). This is computed as the sum of the conditional
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blocking probabilities weighted by the probability of a UE
session is born in each region z.

B =

NZ∑
z=1

πzBz (22)

C. Mean number of consumed RBGs and Cell Capacity

Two key parameters derived from our model are the mean
number of RBGs consumed in a cell NRBG, and the cell
capacity Di for a RAN slice with GBR requirements.

The mean number of RBGs NRBG can be computed as Eq.
(23) defines. In this equation, we multiply the probability of
being in a state s ∈ S ′ by the amount of consumed RBGs in
this state.

NRBG =
∑
s∈S′

ps [U1, U2, ... , Uz, ... , UNz ]

Nz∑
z=1

UzN
RBG
z,s

(23)
The cell capacity Di is provided by Eq. (24). It is derived

as the product of the mean number of UEs Uz in each
region z multiplied by the data rate consumed by each
UE. We can compute Uz using Little’s theorem [28], i.e.,
Uz = (λz/µ) (1−Bz) = ρz (1−Bz).

Di =

NZ∑
z=1

UzDGBR (24)

IV. UE THROUGHPUT WITH A CHANNEL-AWARE
SCHEDULER

Considering the state s = (U1, U2, ... , Uz, ... , UNz
) ∈ S,

we compute in this section the expected throughput for a UE
session in each region z and thus determining if the state s is
feasible (i.e., s ∈ S ′) or not (i.e., s ∈ Snf ).

Based on the channel-aware scheduler described in Section
II-D, we define the expected throughput for the UE session
u as Eq. (25) shows [23]. In this equation, fγu,n|Tu,n=1 [γ]
denotes the PDF of the instantaneous SINR γu,n assuming
the RBG n is allocated for the UE u. Furthermore, C [γ] is
a function which provides the data rate achieved by an UE
when it perceives an instantaneous SINR γ.

Ru =

NRBG
i∑
n=1

∫ ∞

0

C [γ] fγu,n|Tu,n=1 [γ]P [Tu,n = 1] dγ (25)

In Eq. (25), we can define P [Tu,n = 1] in function
of P [Su,n = 1] and Pu. Furthermore, since Su,n = 1
when Tu,n = 1, we can replace fγu,n|Tu,n=1 [γ] with
fγu,n|Su,n=1 [γ]. Considering these changes, we can rewrite
the expected throughput Ru as

Ru =

NRBG
i∑
n=1

∫ ∞

0

C [γ] fγu,n|Su,n=1 [γ]P [Su,n = 1]Pudγ

(26)
We can consider the Bayes’ theorem, i.e., fγu,n|Su,n=1 [γ] =

fSu,n=1|γu,n [γ]fγu,n [γ]

P[Su,n=1] . Furthermore, with the aim of maintain-
ing the block error rate for the UE’s data below a certain
threshold, the cell adopts a link adaptation technique. This

technique enables the cell to adapt the UEs’ Modulation and
Coding Scheme (MCS) according to the experienced channel
effects. In our work, we consider a total of Nc MCSs. Hence,
the range of the instantaneous SINR is split into Nc intervals
[γi, γi+1]. In each interval, the achieved spectral efficiency
takes a specific value ci. Considering these statements, we
rewrite the expected throughput as Eq. (27) defines. Note that
Pu is out of the integral since it does not depend on the
instantaneous SINR.

Ru =PuNSC∆fN
RBG
size

·
NRBG

i∑
n=1

Nc∑
i=1

ci

∫ γi+1

γi

fSu,n=1|γu,n
[γ] fγu,n

[γ] dγ
(27)

To compute the PDF of the allocation of the RBG n for
UE u under the assumption of an instantaneous SINR γu,n,
i.e., fSu,n=1|γu,n

[γ], we make use of the scheduling criteria
defined in Eq. (9). Specifically, we perform the steps described
in Eq. (28) [31]. Note that Us denotes the set of UE sessions
considered in state s = (U1, U2, ... , Uz, ... , UNz

) ∈ S.

fSu,n=1|γu,n
[γ] = P

[
γ̂u,n ≥ max

∀v∈Us\{u}
{γ̂v,n} |γu,n = γ

]
= P

[
γ(

γzu

)α ≥ max
∀v∈Us\{u}

{γ̂v,n}

]

=
∏

∀v∈Us\{u}

Fγ̂v,n

[
γ(

γzu

)α
]

=
∏

∀v∈Us\{u}

Fγv,n

[(
γzv

)α
γ(

γzu

)α
]

(28)

If we include the result of Eq. (28) in Eq. (27), we obtain
the expected throughput as

Ru =PuNSC∆fN
RBG
size

NRBG
i∑
n=1

Nc∑
i=1

ci

∫ γi+1

γi

fγu,n
[γ]

·
∏

∀v∈Us\{u}

Fγv,n

[(
γzv

)α
γ(

γzu

)α
]
dγ

(29)

Since the set Us of UE sessions is split into Nz regions,
we define in Eq. (30) the expected throughput Rz for a UE
session which is born in the region z. Note that we have also
replaced Pu with Pz since this probability is the same for all
the UE sessions which are born in the same region z.

Rz =PzNSC∆fN
RBG
size

NRBG
i∑
n=1

Nc∑
i=1

ci

∫ γi+1

γi

fγu,n [γ]

·
(
Fγ1,n

[
(γ1)

α
γ

(γz)
α

])U1

· ... ·
(
Fγz,n

[γ]
)Uz−1

· ... ·

(
FγNz,n

[(
γNz

)α
γ

(γz)
α

])UNz

dγ

(30)

If we consider the exponential distribution for the instanta-
neous SINR as shown in Eqs. (3) and (4), we can rewrite the
expected throughput Rz for each region z as Eq. (31) defines.
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Since the expected throughput Rz must be the same for each
region z, we have Rz = DGBR. Furthermore, we can denote
as Iz (α, γi, γi+1, U1, U2, ... , UNz ) the definite integral in Eq.
(31). This integral has an analytical solution which depends
on the value for the fairness factor α and the set of UEs Us

defined by the state s = (U1, U2, ... , Uz, ... , UNz
). When α

and Us are known, it can be computed as Appendix A shows.

Rz = PzNSC∆fN
RBG
size NRBG

i

Nc∑
i=1

ci

∫ γi+1

γi

1

γz

exp
[
−γ

γz

]

·

(
1− exp

[
− (γ1)

α−1

(γz)
α γ

])U1

· ... ·
(
1− exp

[
− 1

γz

γ

])Uz−1

· ... ·

(
1− exp

[
−
(
γNz

)α−1

(γz)
α γ

])UNz

dγ

(31)

If we consider Eq. (31) for each region z, we can define
a system of Nz equations with Nz unknown variables, i.e.,
P1,P2, ... ,PNz

, as Eq. (32) shows. This equation system must
be solved for each potential state s ∈ S (see Section III-A).
If the equation system has solution, the potential state will be
valid, i.e., s ∈ S ′, i.e., all the admitted UE sessions in the state
s will get an average data rate equal to the GBR. And on the
contrary, if the equation system for a state s does not have a
solution, this state will not be valid, i.e., s /∈ S ′. Assuming
α is known and constant, the values for the probabilities Pz

∀z ∈ Z can be directly derived from Eq. (32). A potential
state s is feasible only if the values of all the probabilities are
equal or lower than 1.

Next, we evaluate the precision of the UE blocking prob-
ability and compare it with simulation results. Additionally,
we set different values of the fairness factor α and evaluate
the impact on the UE blocking probability, demonstrating the
suitability of the proposed model as a planning tool for RAN
slicing.

Note that the fairness factor α may be optimized if it is not
considered a constant value, e.g., considering a different value
for each region z and/or state s. However, such optimization
problem is out of the scope of this paper.

V. NUMERICAL RESULTS

The state-of-the-art models for computing the UE blocking
probability (see Section I-A) are not appropriate for RAN
slices with GBR requirements under our assumptions. Specif-
ically, our model may consider as input any distribution and
geometry for the average SINR which an arbitrary UE session
could perceive within the cell. Additionally, our model can
support arbitrary distributions for the duration of the UE
sessions. These differences hinder a fair comparison between
the state-of-the-art models and our proposal. For this reason,
in this paper we experimentally validate the proposed model
by means of simulation. We also evaluate the UE blocking
probability for different configurations of the channel-aware
scheduler described in Section II-D.

Specifically, we first evaluate the relative error for the
UE blocking probability with respect to the one obtained
by simulation. Then, we evaluate UE blocking probability,
the number of active UE sessions, and the radio resource
utilization when the MNO sets different values for the fairness
factor α considered by the channel-aware scheduler. These per-
formance indicators are also evaluated in a baseline scenario
where the cell implements a channel-agnostic scheduler as the
one we assumed in our previous work [17]. Finally, we analyze
the aspects that impact the execution time of our model.

A. Experimental Setup

To validate the proposed model, we use a Matlab-based
simulator that resembles the arrival and departure of UE
sessions for a RAN slice with GBR requirements in a single
cell. This simulator generates UE sessions following a Poisson
distribution. With respect to the UE session duration, we have
carried out all the experiments considering an exponential
distribution, an uniform distribution, and a constant duration.
For all the cases, the results are equal since our model is
insensitive to the holding time distribution. Focusing on a
single UE session, the simulator considers (a) the region z
where the session takes place and (b) the average number of
allocated RBGs NRBG

z,s for such session. To determine if a
new UE session can be admitted, the simulator first considers
s as the state where the new UE session is admitted. Then,
it checks if this state belongs to the set of feasible states,
i.e., s ∈ S ′. If true, the new UE session is admitted. Table I
summarizes the configuration parameters.

Regarding the access technology, we assume a 5G-NR cell
implementing an OFDMA scheme with ∆f = 15 KHz, and
NSC = 12. We also consider different scenarios where the
serving cell allocates 20, 25, 30, 35, 40 and 45 RBs for
the RAN slice. Additionally, we consider each UE session
consumes multiples of 2 RBs, i.e., the RBG size NRBG

size = 2.
With respect to fγu

(γ), we have derived it by using the
distribution of the G-factor experimentally measured in a
macro cell [26]. Additionally, we consider different values for
the number of regions for such distribution, from Nz = 4 to
Nz = 9. For the GBR service provided by the RAN slice,
we assume a data rate of DGBR = 0.8 Mbps for each active
UE session. We consider a low data rate since we assume the
UE sessions which are born in the region z′ with the worst
average SINR γz′ must require an average number of RBGs
less than the number of allocated RBGs for the RAN slice,
i.e., NRBG

z′,s ≤ NRBG
i ∀s ∈ S ′. With respect to the channel-

aware scheduler, we consider the constant values 1.0, 1.3, 1.5
and 1.7 for the fairness factor α.

Based on these configuration parameters, we have evaluated
the UE blocking probability in function of the offered traffic
intensity ρ ∈ (0.5, 2).

All the experiments have been carried out on a computer
with 16 GB RAM and an Intel core i7-7700HQ @ 2.80 GHz.

B. Model Validation

To validate our model, we have computed the relative error
as ϵr(%) = Bsim−Bmod

Bsim
· 100, where Bsim and Bmod denote
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
P1NSC∆fN

RBG
size NRBG

i

∑Nc

i=1 ciI1 (α, γi, γi+1, U1, U2, ... , UNz
) = DGBR

P2NSC∆fN
RBG
size NRBG

i

∑Nc

i=1 ciI2 (α, γi, γi+1, U1, U2, ... , UNz
) = DGBR

...
PNz

NSC∆fN
RBG
size NRBG

i

∑Nc

i=1 ciINz
(α, γi, γi+1, U1, U2, ... , UNz

) = DGBR

(32)

TABLE I: Configuration Parameters

Parameters Configuration Parameters Configuration

Access Technology 5G-NR
Regions for the average SINR,

i.e.,
[
γz−1, γz

)
(in dB)

Nz = 4: [-5, 1), [1, 7), [7, 13), [13, 19)
Nz = 5: [-5, -0.2), [-0.2, 4.6), [4.6, 9.4), [9.4, 14.2), [14.2 19)

Nz = 6: [-5, -1), [-1, 3), [3, 7), [7, 11), [11 15), [15 19)
Nz = 7: [-5, -1.574), [-1.574, 1.857), [1.857, 5.286), [5.286, 8.714), [8.714 12.143),

[ 12.143, 15.571), [15.571, 19)
Nz = 8: [-5, -2), [-2, 1), [1, 4), [4, 7), [7 10), [ 10, 13), [13, 16), [16, 19)
Nz = 9: [-5, -2.333), [-2.333, 0.333), [0.333, 3), [3, 5.667), [5.667 8.333),

[ 8.333, 11), [11, 13.667), [13.667, 16.333), [16.333, 19)

Subcarrier spacing
∆f (OFDMA) 15 KHz

Average SINR γz (in dB) and
probability πz in each region,

i.e., (γz , πz)

Nz = 4: [-0.907, 0.280), [3.636, 0.372), [9.496, 0.223), [15.157, 0.125)
Nz = 5: [-1.601, 0.186), [1.925, 0.337), [6.776, 0.232), [11.514, 0.151), [15.944, 0.095)
Nz = 6: [-2.112, 0.129), [0.944, 0.296), [4.813, 0.227), [8.907, 0.162), [12.832, 0.112),

[ 16.3364, 0.074)
Nz = 7: [-2.449, 0.094), [0.159, 0.253), [3.411, 0.217), [6.860, 0.163), [10.336 0.121),

[ 13.757, 0.094). [16.505, 0.058)
Nz = 8: [-2.981, 0.070), [-0.402, 0.210), [2.374, 0.210), [5.402, 0.162), [8.402 0.122),

[ 11.374, 0.101). [14.598, 0.080), [16.617, 0.046)
Nz = 9: [-3.037, 0.053), [-0.879, 0.179), [1.589, 0.193), [4.252, 0.159), [6.888, 0.126),

[ 9.383, 0.104), [12.271, 0.077), [15.0187, 0.071), [16.897, 0.038)
Sub-carriers per

RB NSC (OFDMA) 12 Service GBR DGBR 0.8 Mbps

Number of allocated
RBs NRB

i

20 RBs, 25 RBs, 30 RBs,
35 RBs, 40 RBs and 45 RBs

Distribution for the
UE session arrival Poisson

RBG Size NRBG
size 2 RBs Distribution for the

UE session duration Exponential, Uniform and Constant

Fast-fading distribution Rayleigh with unit mean Offered Traffic Intensity ρ ρ ∈ (0.5, 2)
PDF average SINR in

the cell: fγu
(γ)

Built using the distribution of the G-factor
measured in a macro cell [26] Fairness Factor α 1.0, 1.3, 1.5 and 1.7

the UE blocking probability extracted from the proposed
model and simulator, respectively. Aiming to get a reliable
measure of Bsim: i) we have simulated the generation of
approximately one million of UE data sessions3; and ii) we
have repeated four times each simulation, being Bsim the
mean of the UE blocking probabilities measured in these
simulations. Additionally, we have considered three scenarios
with a specific RB allocation for a RAN slice: 25 RBs, 30
RBs and 35 RBs. In all the scenarios, the number of regions
considered for fγu

(γ) is Nz = 6.
In Fig. 4(a), we depict the curves for the UE blocking

probability derived from our model and the simulator. The sim-
ulator curves are also provided with the 95 percent confidence
intervals, which are gathered in Table II. Note that the interval
widths is not perceptible in the simulation curves. Analyzing
this figure, we observe how the UE blocking probability
increases when (a) the available RBs for a RAN slice are
decreased and (b) the offered traffic intensity increases. This
graph is useful for MNOs to plan in advance the bandwidth of
each cell (i.e., NRB

i ) for RAN slices with GBR requirements
while a threshold for B is provided, given certain conditions
for the offered traffic intensity and the channel quality, i.e., a
specific fγu

(γ).
Due to the scale used for the vertical and horizontal axes

in Fig. 4(a), the error between the simulation and the model
cannot be observed. In Fig. 4(b), we represent the relative error
by a box-and-whisker plot. A specific pair of box and whiskers

3Note that one million of UE data sessions is much higher than the number
of feasible states, which is 5888 at most in our experimental setup (i.e., when
NRB

i = 35 RBs are available in the cell). It allows us to accurately estimate,
by means of simulation, the occurrence of each state (i.e., the probability of
being in each state).

(a) UE Blocking Probability: Model vs Simulation

(b) Relative error

Fig. 4: Evaluation of the UE Blocking Probability for different
cell bandwidths.

gathers the relative errors obtained for different values of the
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TABLE II: Reliability Analysis of Simulation Points

NRRB
i = 25 RBs NRRB

i = 30 RBs NRRB
i = 35 RBs

ρ
Mean
Value

95 % Confidence
Interval

Mean
Value

95 % Confidence
Interval

Mean
Value

95 % Confidence
Interval

0.500 2.711 [2.683 2.738] 0.935 [0.915 0.955] 0.189 [0.183 0.195]
0.556 3.201 [3.173 3.229] 1.169 [1.151 1.182] 0.249 [0.236 0.262]
0.611 3.694 [3.671 3.718] 1.405 [1.391 1.419] 0.326 [0.311 0.340]
0.667 4.199 [4.157 4.240] 1.655 [1.620 1.691] 0.406 [0.396 0.416]
0.722 4.704 [4.649 4.760] 1.924 [1.887 1.961] 0.507 [0.496 0.518]
0.778 5.212 [5.184 5.239] 2.226 [2.201 2.251] 0.613 [0.591 0.636]
0.833 5.711 [5.679 5.743] 2.543 [2.531 2.555] 0.739 [0.729 0.749]
0.889 6.227 [6.184 6.270] 2.847 [2.822 2.871] 0.881 [0.866 0.896]
0.944 6.728 [6.687 6.764] 3.178 [3.156 3.200] 1.019 [1.006 1.032]
1.000 7.225 [7.197 7.253] 3.525 [3.479 3.570] 1.184 [1.166 1.202]

offered traffic intensity ρ when the cell has allocated a specific
number of RBs. Specifically, the bottom and the top of the
box represent the first and third quartiles for the measured
relative errors, respectively, while the red line represents the
50th percentile. Focusing on the whiskers, the lowest and the
highest lines represent the minimum and maximum measured
relative errors. Observing this figure, we can conclude the
relative error is below 1.2% for at least the 75% of the
evaluated scenarios and it is always below 1.5% for any case.

C. Evaluation of the UE Blocking Probability with a Channel-
Aware Scheduler

In this experiment, we have evaluated the UE blocking
probability for different scenarios where the channel-aware
scheduler sets a specific value for the fairness factor α.
Specifically, we have considered α takes the values 1.0, 1.3,
1.5 and 1.7 for each scenario, respectively. In addition, we
have compared these scenarios with the case of implementing
a channel-agnostic scheduler as the one we considered in our
previous work [17]. For all the scenarios, we have assumed
there are 35 RBs allocated for a RAN slice. Furthermore, we
have set Nz = 6 as the number of regions for fγu

(γ).
We show these results in Fig. 5. It can be seen that the

UE blocking probability B is usually lower when the cell
implements a channel-aware scheduler. This is because the
channel-aware scheduler improves the resource utilization by
allocating RBGs to the UE sessions which are less affected by
the fast-fading effect, as the metric defined in Eq. (9) describes.
This improvement depends on how the MNO configures the

Fig. 5: UE Blocking Probability when the cell implements a
scheduler with a specific configuration.

fairness factor α in the channel-aware scheduler. Below, we
show how setting different values for the fairness factor α
impacts the UE blocking probability.

Setting α = 1.0 (i.e., using the PF criteria) may not be an
appropriate option because in the second step of the channel-
aware scheduler (see Fig. 2) all the RBGs are pre-allocated
with the same probability for each UE session regardless
their average SINRs. Then, some RBGs may not be finally
allocated after the third step (see Fig. 2) in the regions which
have the best average SINRs. This means that, after the
scheduler operation, there could be free RBGs for admitting
more UE sessions in the regions with the lowest average
SINRs. However, these RBGs cannot be used for the UE
sessions which have the worst average SINRs due to the equal
RBG distribution of the PF criteria. To avoid this issue, the
MNO must increase the fairness factor α. In this way, the
UE sessions located in the regions which have lowest average
SINRs receive a greater probability for being scheduled with
more RBGs. This means more UEs sessions could be admitted
and thus, the UE blocking probability would decrease. For
instance, we observe this fact in Fig. 5 when the MNO sets
α = 1.3. In this case, the UE blocking probability is the lowest
for all the values of the offered traffic intensity.

However, if we follow increasing the fairness factor α,
for instance α = 1.5, more RBGs are scheduled for those
UE sessions which were born in the regions with the lowest
average SINRs. This involves more UE sessions in the regions
with the greatest average SINRs are rejected. Thus the cell is
using more RBGs for admitting a less amount of UE sessions
and the UE blocking probability increases. Note that the UE
blocking probability is very sensitive to small increments of α
since this parameter is used as exponent of the average SINRs
as Eq. (9) defines.

If this parameter is not properly configured, the MNO
could not leverage the advantages of using a channel-aware
scheduler. For instance, if we set α = 1.7, the achieved UE
blocking probability is greater than the one achieved by using
a channel-agnostic scheduler.

D. Evaluation of the number of active UE sessions with a
Channel-Aware Scheduler

In this experiment, we have evaluated the number of active
UE sessions in a RAN slice. To that end, we have considered
the same scenarios presented in Section V-C. Based on them,
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(a) Traffic Intensity ρ = 1.0

(b) Traffic Intensity ρ = 1.5

(c) Traffic Intensity ρ = 2.0

Fig. 6: CCDFs of the number of active UE sessions

Fig. 6 depicts the Complementary Cumulative Distribution
Functions (CCDFs) for the number of active UE sessions when
the traffic intensity ρ varies from ρ = 1 to ρ = 2. It can
be observed that increasing ρ yields a greater probability that
more UE sessions are active, i.e., the CCDFs are right-shifted.
This means the UE blocking probability increases as Fig. 5
depicts.

If we focus on the CCDFs for a specific value of the traffic
intensity ρ, we observe the probability that the number of
active UE sessions is higher than a specific value (i.e., a x-
axis value) is greater when the channel-aware scheduler sets
the fairness factor α = 1.3. This probability decreases (i.e.,
less active UE sessions) when the fairness factor α takes other
values. For instance, when α = 1.3 it is more likely to have
more active UE sessions than the case of setting α with the
values 1.0, 1.5 and 1.7. This means it is more difficult to
reach a blocking state SB , thus the UE blocking probability
is lower when the channel-aware scheduler sets α = 1.3. The

worst case happens when the MNO sets the fairness factor
α = 1.7.

Note that the values of the CCDF below 10−17 have been
omitted because they are not significant.

E. Analysis of the Radio Resource Utilization

In this experiment, we have evaluated the radio resource
utilization for a RAN slice. To that end, we have considered
the same scenarios presented in Section V-C. To measure
the radio resource utilization, we consider the probabilities
Pz for each region z and for each valid state s ∈ S ′ (see
Eq. (32) and corresponding description). The reason is these
probabilities define the percentage of RBGs allocated for each
UE session after the scheduling criteria in Eq. (9) is applied by
the channel-aware scheduler in the steps 2-3 (see Fig. 2). These
probabilities are depicted in Fig. 7. Each point represents the
specific value of a probability Pz when there is a specific set of
active UE sessions in the system, i.e., a specific state s ∈ S ′.
For instance, the cyan points represent these probabilities for
all the UE sessions which was born in region z = 6, i.e., the
region where γ6 = 16.34 dB.

Fig. 7(a) represents these probabilities in the case the cell
implements a channel-aware scheduler with α = 1.0. This
means the scheduler uses the PF criteria and thus, the RBGs
are equally distributed among the UE sessions before applying
these probabilities in the step 2 (see Fig. 2). If we focus
on a specific amount of UE sessions (i.e., see x-axis), the
probability in the region z = 1 (i.e., γ = −2.11 dB) is always
the greatest. Thus, the channel-aware scheduler has to allocate
a higher percentage of RBGs for a UE (i.e., step 3) with respect
to the amount of RBGs assigned following the PF criteria
(i.e., step 2) in the region with the worst average SINR. As
explained before, this means that using in a first attempt the
PF criteria is not efficient because the percentage of RBGs
which are not finally allocated for a UE in a region with a
higher average SINR (for instance the region z = 3, where
γ = 4.81 dB) could be used to admit more UE sessions in
regions which have a worst average SINR (for instance the
region z = 1, where γ = −2.11 dB).

Considering the MNO sets α = 1.3 for all the valid states
S ′, Fig. 7(b) shows how in some states the probabilities for
region z = 6 (i.e., γ = 16.34 dB) are closer to the value 1 in
comparison with the probabilities obtained when the MNO sets
α = 1.0, i.e., the probabilities depicted in Fig. 7(a). However,
almost all the probabilities in region z = 1 (i.e., γ = 5 dB)
are greater than the probabilities in the remaining regions in
each single state. This phenomena can be observed in the left
side of Fig. 7(b). This involves some RBGs are not used in
the regions with a higher average SINR, and thus they could
be used for admitting UE sessions in other states.

When the MNO sets α = 1.7 for all the valid states S ′,
Fig. 7(c) shows how the values of these probabilities have
decreased in comparison with the values depicted in Fig. 7(b).
This means that increasing the value of the fairness factor α
involves that an excessive amount of RBGs are allocated for
the lowest regions (i.e., those which have the lowest average
SINRs). This involves not all the RBGs allocated for a UE
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(a) Channel-Aware Scheduler with α = 1.0

(b) Channel-Aware Scheduler with α = 1.3

(c) Channel-Aware Scheduler with α = 1.7

Fig. 7: Values of Pz per each region z and for each valid
state s ∈ S ′

session which falls in the worst region are used, thus these
RBGs are wasted and they are not used for admitting other
UE sessions in regions with a better average SINR.

F. Execution Time Evaluation

We have assessed the time complexity of our analytical
model in two scenarios. In the former, we have covered several
amount of radio resources allocated for a RAN slice from
20 RBs to 45 RBs, considering NZ = 6. In the latter, we
have considered different number of regions from NZ = 4 to
NZ = 9, with 35 RBs allocated for such RAN slice. In both

scenarios, the fairness factor α is set to 1.3 and the offered
traffic intensity ρ = 1. The results for both scenarios are shown
in Table III.

We observe the execution time grows exponentially with the
number of regions and the number of RBs. The reason is using
higher values for both parameters involves an increment in the
number of potential states S in the Markov chain as Eq. (18)
shows. This means, the Eq. (32) must be solved more times.
Specifically, one per state s ∈ S to check if this state is feasible
(i.e., s ∈ S ′) or not (i.e., s ∈ Snf ). Note that the number of
integrals in Eq. (32) is also equal to the number of regions.
Furthermore, since the set S ′ of feasible states will increase,
the computation time for Eqs. (19), (20), and (21) will also
increase. Additionally, although it is not shown in Table III, we
have experimentally verified that setting a different value for
the fairness factor could slightly change the number of states in
the Markov chain, thus the execution time could accordingly
increase or decrease. Note that the execution time does not
depend on the offered traffic intensity since it does not modify
the number of states in the Markov chain.

VI. CONCLUSIONS

RAN slicing is a solution for providing emerging communi-
cation services over a common wireless network infrastructure.
Implemented as RAN slices, some of these communication
services will rely on data transmission with GBR requirements.
This means all the active UE sessions require an average data
rate equal to a GBR throughout their lifetimes.

When the MNO plans a GBR service, a key parameter is
the probability of blocking an UE data session, i.e., a session
which cannot get an average data rate equal to a GBR. To
provide a certain service guarantee, the MNO must ensure the
UE blocking probability for a RAN slice is below an upper
bound throughout its lifetime.

Under this context, we propose an analytical model based
on a multi-dimensional Erlang-B system to evaluate the UE
blocking probability. The main novelty of our model is it may
consider as input any distribution and geometry for the average
SINR within the cell. Our model also meets the reversibility
property, thus it is valid for arbitrary distributions of the UE
session duration. This property also reduces the computation
complexity of the model because the solution for the state
probabilities has product form. Additionally, we formulate the
GBR achieved by an UE session when the cell implements a
channel-aware scheduler. This allows our model to consider
the impact of the scheduler channel gain on the UE blocking
probability.

The results show that our model exhibits an estimation error
for the UE blocking probability below 1.5%. Furthermore,
our model allows the MNO to determine how a channel-
aware scheduler must be configured to reduce the UE blocking

TABLE III: Execution Time

NZ = 6
NRB

i = 20 NRB
i = 25 NRB

i = 30 NRB
i = 35 NRB

i = 40 NRB
i = 45

1.802 s 3.652 s 7.451 s 13.939 s 28.125 s 47.851 s

NRB
i = 35

NZ = 4 NZ = 5 NZ = 6 NZ = 7 NZ = 8 NZ = 9
1.299 s 3.742 s 13.939 s 57.981 s 260.926 s 912.471 s
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probability when a GBR service supports a specific traffic
intensity ρ. Finally, we observe the execution time of our
model is suitable for a planning tool.

APPENDIX A
PRACTICAL COMPUTATION OF THE DEFINITE INTEGRAL

In this appendix, we provide the steps to solve the definite
integral I shown in Eq. (33).

I =

∫ t2

t1

w · exp [xt]
N∏

n=1

(1− exp [ynt])
zn dt (33)

The first step consists of expanding each nth term
(1− exp [ynt])

zn by using the binomial theorem as Eq. (34)
defines.

(1− exp [ynt])
zn =

zn∑
k=0

(−1)
k

(
zn
k

)
exp [kynt] (34)

For simplicity, we can define vcf,n =
{
(−1)

k (zn
k

)}
as a

row vector whose components are the coefficients resulting
from the binomial expansion. Note that they can be easily
derived by (i) selecting the (zn + 1)th row of the Pascal’s
triangle and (ii) switching the sign of the odd coefficients of
such row. Additionally, we can define varg,n = {kyn} as a row
vector whose components are the coefficients which multiply
the variable t within the exponential function.

The second step consists of performing the product of all the
binomial expansions. It results in a sum of L =

∏N
n=1(zn+1)

exponential functions, each one with a specific coefficient and
argument. To derive the coefficient and the argument of each
exponential function, we can use iteratively (i.e., ∀n ∈ [2, N ])
Eqs. (35) and (36). Note that rcf,1 = vcf,1 and rarg,1 = varg,1.
Furthermore, the operators ⊗ and (·)T denote the kronecker
product and the transpose of a matrix, respectively. In addition,
the operator rv [·] transforms a matrix into a row vector.

rcf,n = rv
[
(rcf,n−1)

T ⊗ vcf,n

]
(35)

rarg,n = rv
[
(rarg,n−1)

T
+ varg,n

]
(36)

Finally, the definite integral I can be computed as Eq.
(37) shows. Note that the expression within the summation
represents the integral of an exponential function evaluated in
the interval [t1, t2].

I =

L∑
l=1

(
w · rcf,N [l]

x+ rarg,N [l]
· exp [(x+ rarg,N [l]) t]

∣∣∣∣t=t2

t=t1

)
(37)

APPENDIX B
REVERSIBILITY IN A MARKOV PROCESS

To proof the reversibility property of the proposed model,
we follow the Kolmogorov cycle criteria [28]. This states that
a necessary and sufficient condition for reversibility of a multi-
dimensional Markov process is that for each dimension-pair,
the circulation flow among four neighboring states in a square
equals to zero (i.e., flow clockwise = flow counter-clockwise).

Considering four neighbor states from two arbitrary regions
z and x (i.e., z ̸= x): s1 = (U1, ... Uz, ... Ux, ... UNz

), s2 =

(U1, ... Uz, ... Ux + 1, ... UNz
), s3 = (U1, ... Uz + 1, ... Ux +

1, ... UNz ), and s4 = (U1, ... Uz+1, ... Ux, ... UNz ), we derive
the clockwise and counter clockwise flows fcw = λx · p1 ·λz ·
p2 · (Ux +1)µ · p3 · (Uz +1)µ · p4 and fccw = λz · p1 ·λx · p4 ·
(Uz +1)µ · p3 · (Ux +1)µ · p4, respectively. We denote py the
probability of state sy . If we compare both equations, we easily
check that the clockwise and the counter clockwise flows are
equal. Thus, the proposed Erlang-B model is reversible.
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