THE POSSIBLE CONTROL IMPLICATIONS OF THE INFERIOR OLIVE – DEEP CEREBELLAR NUCLEI PATHWAY IN A DISTRIBUTED PLASTICITY CEREBELLAR MODEL

Niceto R. Luque¹, Jesús A. Garrido², Richard R. Carrillo³, Eduardo Ros¹

¹Dept. Computer Architecture and Technology, University of Granada, Spain; ²Consorzio Interuniversitario per le Scienze Fisiche della Materia (CNISM), Pavia, Italy; ³Dept. of Computer Architecture and Electronics, University of Almería, Spain.

MOTIVATION

The cerebellum is involved in controlling and learning smooth coordinated movements, therefore an accurate understanding of how this control engine works should have a strong impact on the control of biomorphic robots.

- We have studied the possible control implications that the inferior olive - deep cerebellar nuclei cell connections (IO–DCN) may present in a distributed-synaptic-plasticity cerebellar model (activity conveyed by this connection seems to control plasticity at DCN synapses (Bengtsson & Hexaslow 2006) (Ruigrok & Voogd 2000)).
- The Marr and Abus model hypothesized that parallel fibers (PFs) presented LTD and LTP at PC and DCN connections. We have studied a model where the IO–DCN pathway plays a fundamental role by refining the cerebellar learning performance.
- We have developed a firing-rate cerebellar model (Garrido et al. 2012) with plasticity mechanisms at PF–PC and at DCN synaptic inputs (from Mossy Fibers (MFs), Purkinje Cells (PCs) and IO). Therefore, we present a model where the IO–DCN pathway plays a fundamental role by refining the cerebellar learning performance.

CEREBELLAR MODEL

Our cerebellar model includes the following plasticity mechanisms:

- **IO-driven LTD** at PC–DCN connections.
- **IO-driven LTP** at PF–PC connections.
- **IO-driven LTD** and **LTP** at PC–DCN connections.
- **PC-driven LTD** and **LTP** at MF–DCN connections.
- **PC-driven LTD** and **LTP** at MF–PC connections.

DIFFERENT CONTROL PATHWAYS DURING LEARNING PROCESS

CONTROL ARCHITECTURE

The adaptive cerebellar module delivers corrective add-on torque values to compensate for deviations in the inverse dynamic module when manipulating an object of mismatched weight.

RESULTS

The plasticity mechanisms that determine the synaptic strength in MF→DCN/PC→DCN/IO→DCN connections were driven by the activity from PCs which is responsible for the balance (homeostasis) between all these plasticity laws. This PC activity makes MF→DCN and PC→DCN synaptic strength increase while makes the IO→DCN synaptic strength decrease. During the first learning stages the IO→DCN corrective action predominates (Fig.5.C and 5.D). Afterwards, this corrective action is gradually decreased while the corrective action provided by MF→DCN and PC→DCN connections is gradually increased. The transition between these two control actions is regulated by the PC activity which in turn, is working in a constant range of frequencies thanks to MF→DCN and PC→DCN connections. We obtain a system able to self-adapt by means of a distributed learning where all the learning sites are complementary working together.

CONCLUSIONS

The results suggest that the cerebellar gain control is a consequence of the MF→DCN and PC→DCN synaptic plasticity working in balance with IO→DCN connection. Thus, this balance (homeostasis), which is implemented through different learning, enhances the cerebellar learning performance. IO→DCN connection ensures stability in the very early learning stages, that is, while the weights of MF→DCN and PC→DCN connections have yet to stabilize. Once the learning process is finished, the IO→DCN connection effect ceases.

ACKNOWLEDGMENTS

This work was supported in part by the EU project REALNET (IST-270434).