Introducción Teoremas básicos Errores Propagación del error Condicionamiento y Estabilidad Normas de computación para el curso

Tema 1 Preliminares

Departamento de Matemática Aplicada. Cálculo Numérico

E.T.S.I. Informática

Indice

- Introducción
- 2 Teoremas básicos
- 3 Errores
 - Fuentes usuales de error
 - Representación de números
 - Tipos de errores
- Propagación del error
- 5 Condicionamiento y Estabilidad
- 6 Normas de computación para el curso

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

 Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

Problemas que aborda:

Finito-dimensionales

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios
- Infinito-dimensionales

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios
- Infinito-dimensionales
 - Derivación numérica.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios
- Infinito-dimensionales
 - Derivación numérica.
 - Integración numérica.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios
 - Infinito-dimensionales
 - Derivación numérica.
 - Integración numérica.
 - Resolución numérica de E.D.O. y E.D.P.

Cálculo numérico (Análisis Numérico, Métodos Numéricos):

- Nace con el hombre, pero se desarrolla junto con las máquinas de cálculo.
- Estudia métodos numéricos para resolver problemas matemáticos de las ciencias, técnicas e ingeniería.

- Finito-dimensionales
 - Resolución de ecuaciones y sistemas de ecuaciones
 - Interpolación y Aproximación
 - Cálculo de valores y vectores propios
 - Infinito-dimensionales
 - Derivación numérica.
 - Integración numérica.
 - Resolución numérica de E.D.O. y E.D.P.

Introducción Teoremas básicos Errores Propagación del error Condicionamiento y Estabilidad Normas de computación para el curso

Introducción

Objetivo

Objetivo

Obtener la solución, exacta o con aceptable aproximación, con el menor esfuerzo/tiempo posible.

Ejemplo1

Ejemplo1

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$

Ejemplo1

Método numérico (método iterativo) para calcular $\sqrt{5}$:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$

Aplicación: (con 10 cifras)

Ejemplo1

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$
 Aplicación: (con 10 cifras)
$$x_0 = 2,$$

$$x_0 = 2$$
,

Ejemplo1

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$
Aplicación: (con 10 cifras)
$$x_0 = 2,$$

$$x_1 = 2.25.$$

Ejemplo1

$$x_{n+1} = rac{1}{2} \left(x_n + rac{5}{x_n}
ight).$$
 Aplicación: (con 10 cifras) $x_0 = 2,$ $x_1 = 2.25,$ $x_2 = 2.236111111,$

Ejemplo1

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$
 Aplicación: (con 10 cifras) $x_0 = 2,$ $x_1 = 2.25,$ $x_2 = 2.236111111,$ $x_3 = 2.236067978,$

Ejemplo1

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$
 Aplicación: (con 10 cifras)
$$x_0 = 2,$$

$$x_1 = 2.25,$$

$$x_2 = 2.236111111,$$

$$x_3 = 2.236067978,$$

$$x_4 = 2.236067977.$$

Ejemplo1

Método numérico (método iterativo) para calcular $\sqrt{5}$:

$$x_{n+1} = rac{1}{2} \left(x_n + rac{5}{x_n}
ight).$$
 Aplicación: (con 10 cifras) $x_0 = 2,$ $x_1 = 2.25,$ $x_2 = 2.2361111111,$ $x_3 = 2.236067978,$ $x_4 = 2.236067977.$

El valor exacto de $\sqrt{5}$ es 2.2360679774997896964...

Prerrequisitos de la materia:

Prerrequisitos de la materia:

• Algebra lineal:

Prerrequisitos de la materia:

• Algebra lineal: espacios vectoriales,

Prerrequisitos de la materia:

• Algebra lineal: espacios vectoriales, base,

Prerrequisitos de la materia:

• Algebra lineal: espacios vectoriales, base, dimensión,

Prerrequisitos de la materia:

 Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal,

Prerrequisitos de la materia:

 Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal, matrices,

Prerrequisitos de la materia:

 Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal, matrices, sistemas de ecuaciones lineales,

Prerrequisitos de la materia:

 Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal, matrices, sistemas de ecuaciones lineales, valores propios.

Prerrequisitos de la materia:

- Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal, matrices, sistemas de ecuaciones lineales, valores propios.
- Cálculo infinitesimal e integral en una y dos variables

Introducción

Prerrequisitos de la materia:

- Algebra lineal: espacios vectoriales, base, dimensión, dependencia lineal, matrices, sistemas de ecuaciones lineales, valores propios.
- Cálculo infinitesimal e integral en una y dos variables

Teorema de Bolzano

Sea $f \in C[a, b]$ tal que f(a)f(b) < 0 entonces existe $c \in (a, b)$ tal que f(c) = 0.

Teorema de Bolzano

Sea $f \in C[a, b]$ tal que f(a)f(b) < 0 entonces existe $c \in (a, b)$ tal que f(c) = 0.

Teorema del valor intermedio

Sea $f \in C[a, b]$ y L un real comprendido entre f(a) y f(b).

Entonces existe $c \in [a, b]$ tal que f(c) = L.

Teorema de Rolle

Sea $f \in C^1[a, b]$ tal que f(a) = f(b). Entonces existe $c \in [a, b]$ tal que f'(c) = 0.

Teorema de Rolle

Sea $f \in C^1[a, b]$ tal que f(a) = f(b). Entonces existe $c \in [a, b]$ tal que f'(c) = 0.

Teorema del valor medio

Sea $f \in C^1[a, b]$. Entonces existe $c \in [a, b]$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Primer Teorema del valor medio del calculo integral

Sea $f \in C[a, b]$ entonces existe $c \in (a, b)$ tal que

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

Primer Teorema del valor medio del calculo integral

Sea $f \in C[a,b]$ entonces existe $c \in (a,b)$ tal que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Segundo Teorema del valor medio del calculo integral

Sean $f, g \in C[a, b]$ tal que $g(x) \ge 0$, para todo $x \in [a, b]$. Entonces existe $c \in (a, b)$ tal que

$$\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx.$$

Teorema de Taylor (formula de Taylor)

Sean $f \in C^{n+1}[a, b]$ y $x_0 \in [a, b]$ fijo. Entonces para todo $x \in [a, b]$ existe c = c(x) comprendido entre x_0 y x, tal que $f(x) = P_n(x) + R_n(x)$, donde

$$P_n(x) = \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k, \quad R_n(x) = \frac{f^{(n+1)}}{(n+1)!} (x - x_0)^{n+1}.$$

Teorema de Taylor (formula de Taylor)

Sean $f \in C^{n+1}[a, b]$ y $x_0 \in [a, b]$ fijo. Entonces para todo $x \in [a, b]$ existe c = c(x) comprendido entre x_0 y x, tal que $f(x) = P_n(x) + R_n(x)$, donde

$$P_n(x) = \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k, \quad R_n(x) = \frac{f^{(n+1)}}{(n+1)!} (x - x_0)^{n+1}.$$

Suma de series geometricas

Si r < 1 entonces $\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$, siendo divergente en caso contrario.

• Idealización:

• Idealización: rozamientos,

• Idealización: rozamientos, vientos,

• Idealización: rozamientos, vientos, atracciones,

• Idealización: rozamientos, vientos, atracciones, gravedad,

 Idealización: rozamientos, vientos, atracciones, gravedad, relatividad,

 Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre:

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos,

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias,

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano:

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.
- Discretización:

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.
- Discretización: aproximación de un proceso matemático infinito por uno finito.

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.
- Discretización: aproximación de un proceso matemático infinito por uno finito.
- Redondeo:

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.
- Discretización: aproximación de un proceso matemático infinito por uno finito.
- Redondeo: las máquinas tienen una precisión limitada.

- Idealización: rozamientos, vientos, atracciones, gravedad, relatividad, efectos "despreciables".
- Experimental-incertidumbre: lectura aparatos, interferencias, estimaciones estadísticas.
- Humano: equivocaciones aritméticas o de propagación.
- Discretización: aproximación de un proceso matemático infinito por uno finito.
- Redondeo: las máquinas tienen una precisión limitada.

Números en notación binaria

$$1563_{10} = \ 1 \times 10^3 + 5 \times 10^2 + 6 \times 10^1 + 3 \times 10^0$$

Números en notación binaria

$$1563_{10} = 1 \times 10^{3} + 5 \times 10^{2} + 6 \times 10^{1} + 3 \times 10^{0}$$

= 1 \times 2^{1}0 + 1 \times 2^{9} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0}

Números en notación binaria

$$\begin{array}{ll} 1563_{10} = & 1\times10^3 + 5\times10^2 + 6\times10^1 + 3\times10^0 \\ = & 1\times2^10 + 1\times2^9 + 1\times2^4 + 1\times2^3 + 1\times2^1 + 1\times2^0 \\ = & 11000011011_2. \end{array}$$

Números en notación binaria

$$\begin{array}{ll} 1563_{10} = & 1\times10^3 + 5\times10^2 + 6\times10^1 + 3\times10^0 \\ = & 1\times2^10 + 1\times2^9 + 1\times2^4 + 1\times2^3 + 1\times2^1 + 1\times2^0 \\ = & 11000011011_2. \end{array}$$

Algoritmo de conversión decimal-binario

Invértase el orden de la sucesión de restos de dividir por 2 reiteradamente.

Números en notación binaria

$$\begin{array}{ll} 1563_{10} = & 1\times10^3 + 5\times10^2 + 6\times10^1 + 3\times10^0 \\ = & 1\times2^10 + 1\times2^9 + 1\times2^4 + 1\times2^3 + 1\times2^1 + 1\times2^0 \\ = & 11000011011_2. \end{array}$$

Algoritmo de conversión decimal-binario

Invértase el orden de la sucesión de restos de dividir por 2 reiteradamente.

Números no enteros

$$1563.25_{10} = 11000011011.01_2$$

Números en notación binaria

$$\begin{array}{ll} 1563_{10} = & 1\times10^3 + 5\times10^2 + 6\times10^1 + 3\times10^0 \\ = & 1\times2^10 + 1\times2^9 + 1\times2^4 + 1\times2^3 + 1\times2^1 + 1\times2^0 \\ = & 11000011011_2. \end{array}$$

Algoritmo de conversión decimal-binario

Invértase el orden de la sucesión de restos de dividir por 2 reiteradamente.

Números no enteros

$$\begin{array}{l} 1563.25_{10} = 11000011011.01_2 \\ 0.7_{10} = 0.1\overline{0110}_2 \quad \mbox{(periódico en binario)}. \end{array}$$

Números en notación binaria

$$\begin{array}{ll} 1563_{10} = & 1\times10^3 + 5\times10^2 + 6\times10^1 + 3\times10^0 \\ = & 1\times2^10 + 1\times2^9 + 1\times2^4 + 1\times2^3 + 1\times2^1 + 1\times2^0 \\ = & 11000011011_2. \end{array}$$

Algoritmo de conversión decimal-binario

Invértase el orden de la sucesión de restos de dividir por 2 reiteradamente.

Números no enteros

$$\begin{array}{l} 1563.25_{10} = 11000011011.01_2 \\ 0.7_{10} = 0.1\overline{0110}_2 \quad \text{(periódico en binario)}. \end{array}$$

Otras bases usuales: 8, 16.

Fuentes usuales de error Representación de números Tipos de errores

Representación de números

Notación científica (Representación en punto flotante)

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2\ldots d_n)\beta^e.$$

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2\ldots d_n)\beta^e.$$

•
$$\sigma = \pm 1$$
 (signo),

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2...d_n)\beta^e.$$

- $\sigma = \pm 1$ (signo),
- $\beta \in \mathbb{N} \{0, 1\}$ (base),

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2\ldots d_n)\beta^e.$$

- $\sigma = \pm 1$ (signo),
- $\beta \in \mathbb{N} \{0,1\}$ (base),
- $e \in \Omega \subset \mathbb{Z}$,

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2...d_n)\beta^e.$$

- $\sigma = \pm 1$ (signo),
- $\beta \in \mathbb{N} \{0, 1\}$ (base),
- $e \in \Omega \subset \mathbb{Z}$,

•
$$0.d_1d_2\ldots d_n=\sum_{i=1}^n d_i\beta^{-i},\ d_i\in\mathbb{N},\ 0\leq d_i<\beta$$
 (mantisa).

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2...d_n)\beta^e.$$

donde

- $\sigma = \pm 1$ (signo),
- $\beta \in \mathbb{N} \{0, 1\}$ (base),
- $e \in \Omega \subset \mathbb{Z}$,

•
$$0.d_1d_2\dots d_n=\sum_{i=1}d_i\beta^{-i},\ d_i\in\mathbb{N},\ 0\leq d_i (mantisa).$$

Normalización: $d_1 > 0$.

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2...d_n)\beta^e.$$

donde

- $\sigma = \pm 1$ (signo),
- ullet $eta \in \mathbb{N} \{0,1\}$ (base),
- $e \in \Omega \subset \mathbb{Z}$,

$$ullet$$
 $0.d_1d_2\dots d_n=\sum_{i=1}d_ieta^{-i},\ d_i\in\mathbb{N},\ 0\leq d_i (mantisa).$

Normalización: $d_1 > 0$.

 β , n y Ω son características de la máquina.

Notación científica (Representación en punto flotante)

$$z = \sigma(0.d_1d_2\ldots d_n)\beta^e.$$

donde

- $\sigma = \pm 1$ (signo),
- $\beta \in \mathbb{N} \{0, 1\}$ (base),
- $e \in \Omega \subset \mathbb{Z}$,

$$ullet$$
 $0.d_1d_2\dots d_n=\sum_{i=1}d_ieta^{-i},\ d_i\in\mathbb{N},\ 0\leq d_i (mantisa).$

Normalización: $d_1 > 0$.

 β , n y Ω son características de la máquina.

La precisión depende de n y de β .

Ejemplo 2

Sea una máquina con $\beta = 2$, n = 4, $e \in \{-3, -2, -1, 0, 1, 2, 3\}$.

Ejemplo 2

Sea una máquina con $\beta = 2$, n = 4, $e \in \{-3, -2, -1, 0, 1, 2, 3\}$.

Los números representables serían:

	exponentes							
mantisa	e = -3	e = -2	e = -1	e = 0	e = 1	e=2	e = 3	e = 4
0.1000_2	0.0625	0.125	0.25	0.5	1	2	4	8
0.1001_2	0.0703125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9
0.1010_2	0.078125	0.15625	0.3125	0.625	1.25	2.5	5	10
0.1011_2	0.0859375						5.5	11
0.1100_2								12
0.1101_{2}								13
0.1110_2								14
0.1111_2	0.1171875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15

Fuentes usuales de error Representación de número Tipos de errores

Tipos de errores

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Fuentes usuales de error Representación de número Tipos de errores

Tipos de errores

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Se define el error absoluto de tal representación como

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Se define el error absoluto de tal representación como

$$e_a = |x - x^*|$$

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Se define el error absoluto de tal representación como

$$e_{a}=|x-x^{*}|$$

y el error relativo como

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Se define el error absoluto de tal representación como

$$e_a = |x - x^*|$$

y el error relativo como

$$e_r = \frac{|x - x^*|}{|x|}.$$

Definición 1

Sea x^* la representación de $x \in \mathbb{R}$ en una máquina dada.

Se define el error absoluto de tal representación como

$$e_a = |x - x^*|$$

y el error relativo como

$$e_r = \frac{|x - x^*|}{|x|}.$$

El error relativo es más intuitivo y da mejor idea de la precisión.

Definición 2

Métodos de representación/operación:

200

Definición 2

Métodos de representación/operación:

• El error de truncatura aparece cuando se prescinde de las cifras de la mantisa a partir de una dada.

Definición 2

Métodos de representación/operación:

• El error de truncatura aparece cuando se prescinde de las cifras de la mantisa a partir de una dada.

$$(0.d_1 \dots d_n d_{n+1} \dots)^* = 0.d_1 \dots d_n.$$

Definición 2

Métodos de representación/operación:

 El error de truncatura aparece cuando se prescinde de las cifras de la mantisa a partir de una dada.

$$(0.d_1 \ldots d_n d_{n+1} \ldots)^* = 0.d_1 \ldots d_n.$$

 El error de redondeo aparece cuando se corta la sucesión de decimales de la mantisa mediante el redondeo de la última cifra:

Definición 2

Métodos de representación/operación:

• El error de truncatura aparece cuando se prescinde de las cifras de la mantisa a partir de una dada.

$$(0.d_1 \dots d_n d_{n+1} \dots)^* = 0.d_1 \dots d_n.$$

• El error de redondeo aparece cuando se corta la sucesión de decimales de la mantisa mediante el redondeo de la última cifra:

$$(0.d_1 \dots d_n d_{n+1} \dots)^* = \left\{ egin{array}{lll} 0.d_1 \dots d_n & ext{si} & d_{n+1} < rac{eta}{2}, \\ 0.d_1 \dots d_n + eta^{-n} & ext{si} & d_{n+1} \geq rac{eta}{2}. \end{array}
ight.$$

Propiedad 1

El error relativo de repretación está acotado

Propiedad 1

El error relativo de repretación está acotado

por truncatura:

Propiedad 1

El error relativo de repretación está acotado

• por truncatura: por β^{-n+1} ,

Propiedad 1

El error relativo de repretación está acotado

- por truncatura: por β^{-n+1} ,
- por redondeo:

Propiedad 1

El error relativo de repretación está acotado

• por truncatura: por β^{-n+1} ,

• por redondeo: por $\frac{\beta^{-n+1}}{2}$.

Propiedad 1

El error relativo de repretación está acotado

• por truncatura: por β^{-n+1} ,

• por redondeo: por $\frac{\beta^{-n+1}}{2}$.

Ejemplo 3

Con
$$\beta = 10$$
 y $n = 5$,

Propiedad 1

El error relativo de repretación está acotado

- por truncatura: por β^{-n+1} ,
- por redondeo: por $\frac{\beta^{-n+1}}{2}$.

Ejemplo 3

Con
$$\beta = 10$$
 y $n = 5$,

•
$$\left(\frac{\pi}{10}\right)^* = 0.31415$$
 mediante truncatura, con error < 0.0001,

Propiedad 1

El error relativo de repretación está acotado

- por truncatura: por β^{-n+1} ,
- por redondeo: por $\frac{\beta^{-n+1}}{2}$.

Ejemplo 3

Con
$$\beta = 10$$
 y $n = 5$,

- $\left(\frac{\pi}{10}\right)^* = 0.31415$ mediante truncatura, con error < 0.0001,
- $\left(\frac{\pi}{10}\right)^* = 0.31416$ mediante redondeo, con error < 0.00005.

Definición 3

Si d es el mayor entero para el cual

Definición 3

Si d es el mayor entero para el cual

$$\frac{|x-x^*|}{|x|}<\frac{\beta^{-d+1}}{2}$$

Definición 3

Si d es el mayor entero para el cual

$$\frac{|x-x^*|}{|x|} < \frac{\beta^{-d+1}}{2}$$

se dice que x^* aproxima a x con d dígitos significativos.

Definición 3

Si d es el mayor entero para el cual

$$\frac{|x-x^*|}{|x|}<\frac{\beta^{-d+1}}{2}$$

se dice que x^* aproxima a x con d dígitos significativos.

Ejemplos

1.
$$\beta = 10$$
, $x = 3.141592$, $x^* = 3.14$,

Definición 3

Si d es el mayor entero para el cual

$$\frac{|x-x^*|}{|x|} < \frac{\beta^{-d+1}}{2}$$

se dice que x^* aproxima a x con d dígitos significativos.

Ejemplos

1.
$$\beta = 10$$
, $x = 3.141592$, $x^* = 3.14$,

$$\frac{|x - x^*|}{|x|} \approx 0.000507 < \frac{10^{-2}}{2}$$

Definición 3

Si d es el mayor entero para el cual

$$\frac{|x-x^*|}{|x|} < \frac{\beta^{-d+1}}{2}$$

se dice que x^* aproxima a x con d dígitos significativos.

Ejemplos

1.
$$\beta = 10$$
, $x = 3.141592$, $x^* = 3.14$,

$$\frac{|x - x^*|}{|x|} \approx 0.000507 < \frac{10^{-2}}{2}$$

luego x^* aproxima a x con 3 dígitos significativos.

• • •

2.
$$\beta = 10$$
, $x = 10^6$, $x^* = 999996$,

2.
$$\beta = 10$$
, $x = 10^6$, $x^* = 999996$,

$$\frac{|x - x^*|}{|x|} \approx 0.000004 < \frac{10^{-5}}{2}$$

• • •

2.
$$\beta = 10$$
, $x = 10^6$, $x^* = 999996$,

$$\frac{|x - x^*|}{|x|} \approx 0.000004 < \frac{10^{-5}}{2}$$

luego x^* aproxima a x con 6 dígitos significativos.

•

2.
$$\beta = 10$$
, $x = 10^6$, $x^* = 999996$,

$$\frac{|x - x^*|}{|x|} \approx 0.000004 < \frac{10^{-5}}{2}$$

luego x^* aproxima a x con 6 dígitos significativos.

3.
$$\beta = 10$$
, $x = 0.000012$, $x^* = 0.000009$,

2. $\beta = 10$. $x = 10^6$. $x^* = 999996$.

$$\frac{|x - x^*|}{|x|} \approx 0.000004 < \frac{10^{-5}}{2}$$

luego x^* aproxima a x con 6 dígitos significativos.

3. $\beta = 10$, x = 0.000012, $x^* = 0.000009$,

$$\frac{|x - x^*|}{|x|} \approx 0.25 < \frac{10^{-0}}{2}$$

•

2.
$$\beta = 10$$
, $x = 10^6$, $x^* = 999996$,

$$\frac{|x - x^*|}{|x|} \approx 0.000004 < \frac{10^{-5}}{2}$$

luego x^* aproxima a x con 6 dígitos significativos.

3.
$$\beta = 10$$
, $x = 0.000012$, $x^* = 0.000009$,

$$\frac{|x - x^*|}{|x|} \approx 0.25 < \frac{10^{-0}}{2}$$

luego x^* aproxima a x con 1 dígito significativo.

Definición 4

Si d es el mayor entero para el cual $|x-x^*|<\frac{\beta^{-d}}{2}$ se dice que x^* aproxima a x con d decimales.

Definición 4

Si d es el mayor entero para el cual $|x-x^*|<\frac{\beta^{-d}}{2}$ se dice que x^* aproxima a x con d decimales.

¿Con cuántos decimales se realizan las aproximaciones de los ejemplos anteriores?

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura.

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Sean a = 1001 y b = 1000. Entonces

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Sean
$$a = 1001$$
 y $b = 1000$. Entonces

$$a^2 - b^2 \approx 1002000 - 1000000 = 2000$$
,

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Sean
$$a=1001$$
 y $b=1000$. Entonces $a^2-b^2 \approx 1002000-1000000=2000$.

con error
$$\frac{2001 - 2000}{20001} \approx 5 \times 10^{-4}$$
.

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Sean
$$a = 1001$$
 y $b = 1000$. Entonces

$$a^2 - b^2 \approx 1002000 - 1000000 = 2000$$
,

con error
$$\frac{2001-2000}{20001} \approx 5 \times 10^{-4}$$
.

Pero

$$a^2 - b^2 = (a - b)(a + b) = a + b = 2001,$$

con error 0.

Consideremos una máquina en la que $\beta=10$, n=6, mediante error de truncatura. Por tanto, el error relativo característico de representación es de $10^{-6+1}=10^{-5}$.

Sean
$$a = 1001$$
 y $b = 1000$. Entonces

$$a^2 - b^2 \approx 1002000 - 1000000 = 2000$$
,

con error
$$\frac{2001-2000}{20001} \approx 5 \times 10^{-4}$$
.

Pero

$$a^2 - b^2 = (a - b)(a + b) = a + b = 2001,$$

con error 0.

Luego procesos matemáticos equivalentes pueden no ser computacionalmente equivalentes.

Si
$$a = 1$$
, $b = 10^8$ y $c = -10^8$, entonces

Si
$$a = 1$$
, $b = 10^8$ y $c = -10^8$, entonces
• $a + (b + c) = 1$,

Si
$$a = 1$$
, $b = 10^8$ y $c = -10^8$, entonces

•
$$a + (b + c) = 1$$
,

•
$$(a+b)+c=0$$
.

Otro ejemplo:

Si
$$a = 1$$
, $b = 10^8$ y $c = -10^8$, entonces

•
$$a + (b + c) = 1$$
,

•
$$(a+b)+c=0$$
.

Por otro lado a + b = b, luego ¿es a = 0?.

Ejercicio

Se desea obtener $\sum_{i=1}^{n} a_i$ con n muy grande (miles de millones).

Ejercicio

Se desea obtener $\sum_{i=1}^{n} a_i$ con n muy grande (miles de millones).

¿Cuál es la mejor forma de ordenar los calculos?

Ejercicio

Se desea obtener $\sum_{i=1}^{n} a_i$ con n muy grande (miles de millones).

¿Cuál es la mejor forma de ordenar los calculos?

- 1. Si los a_i son todos del mismo signo y magnitudes parecidas,
- 2. Si los *a_i* son todos del mismo signo y magnitudes muy diversas,
- 3. Si los a_i son de cualquier signo y magnitudes parecidas,
- 4. Si los a_i son de cualquier signo y magnitudes muy diversas?

Advertencia

Las operaciones de sumar (absoluta), multiplicar y dividir introducen error relativo de magnitud igual al de representacion, pero la resta (absoluta) puede introducir un error relativo gigantesco.

Definición 5

Un proceso está bien condicionado si pequeñas variaciones en sus datos de entrada provocan pequeñas variaciones en la solución, y mal condicionado si las mismas condiciones provocan grandes variaciones en la solución.

Definición 5

Un proceso está bien condicionado si pequeñas variaciones en sus datos de entrada provocan pequeñas variaciones en la solución, y mal condicionado si las mismas condiciones provocan grandes variaciones en la solución.

Un proceso de cálculo es estable si los errores de representación y redondeo introducidos tanto a la entrada como durante las operaciones intermedias no provocan perturbación importante en los resultados; e inestable en caso contrario.

Definición 5

Un proceso está bien condicionado si pequeñas variaciones en sus datos de entrada provocan pequeñas variaciones en la solución, y mal condicionado si las mismas condiciones provocan grandes variaciones en la solución.

Un proceso de cálculo es estable si los errores de representación y redondeo introducidos tanto a la entrada como durante las operaciones intermedias no provocan perturbación importante en los resultados; e inestable en caso contrario.

Sólo si se tiene un problema bien condicionado y se resuelve con un proceso estable se puede tener garantía de precisión en el resultado.

Por ejemplo, es fácil demostrar por inducción que la sucesión de valores $\left\{\frac{1}{2^n}\right\}_{n\geq 0}$ puede generarse indistintamente a partir de los siguientes algoritmos:

Por ejemplo, es fácil demostrar por inducción que la sucesión de valores $\left\{\frac{1}{2^n}\right\}_{n\geq 0}$ puede generarse indistintamente a partir de los siguientes algoritmos:

(I)
$$s_0 = 1$$
, $s_n = \frac{1}{2}s_{n-1}$, $n \ge 1$.
(II) $s_0 = 1$, $s_1 = \frac{1}{2}$, $s_n = \frac{23}{2}s_{n-1} - \frac{11}{2}s_{n-2}$, $n \ge 2$.

Por ejemplo, es fácil demostrar por inducción que la sucesión de valores $\left\{\frac{1}{2^n}\right\}_{n\geq 0}$ puede generarse indistintamente a partir de los siguientes algoritmos:

(I)
$$s_0 = 1$$
, $s_n = \frac{1}{2}s_{n-1}$, $n \ge 1$.
(II) $s_0 = 1$, $s_1 = \frac{1}{2}$, $s_n = \frac{23}{2}s_{n-1} - \frac{11}{2}s_{n-2}$, $n \ge 2$.

Sin embargo, con el segundo (operando con 6 cifras de precisión) el decimosexto término es $s_{15}=-113$, frente al valor $\frac{1}{2^{15}}\simeq 0.00031$.

Por ejemplo, es fácil demostrar por inducción que la sucesión de valores $\left\{\frac{1}{2^n}\right\}_{n\geq 0}$ puede generarse indistintamente a partir de los siguientes algoritmos:

(I)
$$s_0 = 1$$
, $s_n = \frac{1}{2}s_{n-1}$, $n \ge 1$.

(II)
$$s_0 = 1$$
, $s_1 = \frac{1}{2}$, $s_n = \frac{23}{2}s_{n-1} - \frac{11}{2}s_{n-2}$, $n \ge 2$.

Sin embargo, con el segundo (operando con 6 cifras de precisión) el decimosexto término es $s_{15}=-113$, frente al valor $\frac{1}{2^{15}}\simeq 0.00031$.

Análogamente, la sucesión $\left\{\frac{1}{3^n}\right\}_{n\geq 0}$ puede generarse a partir del algoritmo

$$s_0 = 1, s_1 = \frac{1}{3}, s_n = \frac{10}{3}s_{n-1} - s_{n-2},$$

n > 2, que también es inestable.

 Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.

- Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.
- En particular, si se pide un resultado con 5 cifras decimales de precisión, NO se deben redondear los cálculos intermedios a 5 decimales.

- Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.
- En particular, si se pide un resultado con 5 cifras decimales de precisión, NO se deben redondear los cálculos intermedios a 5 decimales.
- Para procesos iterativos de aproximaciones sucesivas, se detendrá el proceso cuando se repitan:

- Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.
- En particular, si se pide un resultado con 5 cifras decimales de precisión, NO se deben redondear los cálculos intermedios a 5 decimales.
- Para procesos iterativos de aproximaciones sucesivas, se detendrá el proceso cuando se repitan:
 - Tantas cifras como la precisión requerida, si el proceso tiene asegurada una convergencia rápida (velocidad superior a la lineal, que ya se verá).

- Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.
- En particular, si se pide un resultado con 5 cifras decimales de precisión, NO se deben redondear los cálculos intermedios a 5 decimales.
- Para procesos iterativos de aproximaciones sucesivas, se detendrá el proceso cuando se repitan:
 - Tantas cifras como la precisión requerida, si el proceso tiene asegurada una convergencia rápida (velocidad superior a la lineal, que ya se verá).
 - Tantas cifras como la precisión requerida MAS DOS, si el proceso converge lentamente (velocidad lineal).

- Salvo indicación contraria, se debe trabajar con todas las cifras de la calculadora, incluso si se pide poca precisión.
- En particular, si se pide un resultado con 5 cifras decimales de precisión, NO se deben redondear los cálculos intermedios a 5 decimales.
- Para procesos iterativos de aproximaciones sucesivas, se detendrá el proceso cuando se repitan:
 - Tantas cifras como la precisión requerida, si el proceso tiene asegurada una convergencia rápida (velocidad superior a la lineal, que ya se verá).
 - Tantas cifras como la precisión requerida MAS DOS, si el proceso converge lentamente (velocidad lineal).
- Ojo a las funciones trigonomtricas: hay que poner siempre la calculadora en modo radianes.

