The second numerical index of Banach spaces

(S. K. Kim, H. J. Lee, M. Martín, and J. Merí)

Seminario del Departamento de Análisis Matemático
Universidad de Valencia

March 27th, 2018
Where is contained?

S. K. Kim, H. J. Lee, M. Martín, and J. Merí
On a second numerical index for Banach spaces
Outline of the lecture

1 Introduction

2 The second numerical index
 - Relationship with absolute sums
 - Spaces with absolute norm and \(n'(X) = 1 \)
 - Vector valued spaces
 - Duality

3 An application to BPB-property for numerical radius

4 Open problems
Introduction

Section 1

1 Introduction
Some notation

\(X \) real or complex Banach space

\(B_X \) closed unit ball

\(S_X \) unit sphere

\(X^* \) topological dual

\(\mathcal{L}(X) \) Banach algebra of all bounded linear operators from \(X \) to \(X \)

\(\mathcal{L}(X,Y) \) Banach space of all bounded linear operators from \(X \) to \(Y \)

\(\Pi(X) = \{(x,x^*) \in S_X \times S_{X^*} : x^*(x) = 1\} \)
Definitions

Numerical range and numerical radius (Bauer, Lumer, early 60’s)

\(X \) Banach space, \(T \in \mathcal{L}(X) \)

\[
V(T) = \{ x^*(Tx) : (x, x^*) \in \Pi(X) \}
\]

\[
v(T) = \sup\{|\lambda| : \lambda \in V(T)\}
\]

\[
v(T) = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}
\]

Obviously one has \(v(T) \leq \|T\| \)

Numerical index (Lumer, 1968)

\(X \) Banach space

\[
n(X) = \inf\{v(T) : T \in S_{\mathcal{L}(X)}\} = \max\{k \geq 0 : k\|T\| \leq v(T)\}
\]

- \(0 \leq n(X) \leq 1 \);
- \(v \) and \(\| \cdot \| \) are equivalent norms iff \(n(X) > 0 \);
Some known results

- \(n(C(K)) = n(L_1(\mu)) = 1 \) (Duncan-McGregor-Pryce-White, 1970)
- \(n(X) = 1 \) iff \(\max_{|w|=1} \|\text{Id} + wT\| = 1 + \|T\| \forall T \in \mathcal{L}(X) \) (Duncan et al., 1970)
- \(\{n(X) : X \text{ is a complex Banach space}\} = [1/e, 1] \)
 \(\{n(X) : X \text{ is a real Banach space}\} = [0, 1] \) (Duncan et al., 1970)
- \(n(L_p(\mu)) = \inf\{n(\ell^m_p) : m \in \mathbb{N}\} \) for \(\mu \) so that \(\dim(L_p(\mu)) = \infty \) (Aksoy-Eddari-Khamsi, 2007)
- \(n(L_p(\mu)) > 0 \) for \(p \neq 2 \) (Martín-Merí-Popov, 2011)

Let \(\{X_\lambda : \lambda \in \Lambda\} \) be an arbitrary family of Banach spaces. Then

\[
\begin{align*}
n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{c_0} &= n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{\ell_1} = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{\ell_\infty} = \inf\{n(X_\lambda) : \lambda \in \Lambda\} \\
n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{\ell_p} &\leq \inf\{n(X_\lambda) : \lambda \in \Lambda\}
\end{align*}
\]

(Martín-Payá, 2000)
Some known results

- Let X be a Banach space, L locally compact Hausdorff, K compact Hausdorff, Ω completely regular Hausdorff, and μ positive measure. Then
 \[
 n\left(C_0(L, X)\right) = n\left(C_b(\Omega, X)\right) = n\left(L_1(\mu, X)\right) = n(X) \quad \text{(Martín-Payá, 2000)}
 \]
 \[
 n\left(L_\infty(\mu, X)\right) = n(X) \quad \text{(Martín-Villena, 2003)}
 \]
 \[
 n\left(C_w(K, X)\right) = n(X) \quad \text{(López-Martín-Merí, 2007)}
 \]

- $n(\cdot)$ is continuous with respect to the Banach-Mazur distance (Finet-Martín-Payá, 2003)

- $n(X^*) \leq n(X)$ holds for every Banach space X and the inequality can be strict (Boyko-Kadets-Martín-Werner, 2007)

- X real with $\dim(X) = \infty$ and $n(X) = 1 \implies \ell_1 \subset X^*$ (Avilés-Kadets-Martín-Merí-Shepelska, 2010)
Spear operators (Ardalani, 2014)

\(\mathcal{L}(X, Y) \) is a spear operator iff
\[
\max_{|w|=1} \|G + wT\| = 1 + \|T\| \quad \forall T \in \mathcal{L}(X, Y).
\]

Some examples:
- \(\text{Id}_X \) when \(n(X) = 1 \),
- the Fourier transform,
- the inclusion \(A(\mathbb{D}) \hookrightarrow C(\mathbb{T}) \).

Some consequences:
- \(G : X \rightarrow Y \) real spear with infinite rank \(\Rightarrow X^* \supset \ell_1 \),
- \(G : X \rightarrow Y \) real spear, infinite rank, \(X \) RNP \(\Rightarrow Y \supset c_0 \) or \(Y \supset \ell_1 \),
- \(G : X \rightarrow Y \) spear, \(\dim(X) > 1 \)
 \(\Rightarrow X^* \) not strictly convex nor smooth, \(B_X \) does not contain WLUR points.

References

V. Kadets, M. Martín, J. Merí, A. Pérez
Spear operators between Banach spaces
Lecture Notes of Mathematics 2205 (2018)
Possible extension II: numerical index with respect to an operator

Numerical range and radius with respect to G (Ardalani, 2014)

$G \in \mathcal{L}(X, Y)$ with $\|G\| = 1$, $T \in \mathcal{L}(X, Y)$

$$V_G(T) = \bigcap_{\delta > 0} \{ y^*(Tx) : x \in S_X, y^* \in S_{Y^*}, \Re y^*(Gx) > 1 - \delta \}$$

$$v_G(T) = \sup \{ |\lambda| : \lambda \in V_G(T) \}$$

★ $v_{\text{Id}}(T) = v(T) \ \forall T \in \mathcal{L}(X)$

Numerical index with respect to G

$$n_G(X, Y) = \inf \{ v_G(T) : T \in S_{\mathcal{L}(X, Y)} \} = \max \{ k \geq 0 : k\|T\| \leq v_G(T) \}$$

★ $n_{\text{Id}}(X, X) = n(X)$.

Work in progress...
Section 2

2. The second numerical index

- Relationship with absolute sums
- Spaces with absolute norm and $n'(X) = 1$
- Vector valued spaces
- Duality
The base field does matter for the numerical index

(Bohnenblust-Karlin, Glickfeld-1970)

\[n(X) \geq \frac{1}{e} \text{ for every complex Banach space } X \]

Examples in the real case

- \(n(H) = 0 \) for \(H \) real Hilbert space with \(\dim(H) \geq 2 \)
- \(n(X_\mathbb{R}) = 0 \) for \(X \) complex Banach space
- But there is \(X \) such that \(n(X) = 0 \) and \(v \) is a norm \hspace{1cm} (Martín-Payá, 2000)

In the first two cases there is \(T \in \mathcal{L}(X) \setminus \{0\} \) with \(v(T) = 0 \):

- \((x_1, x_2, x_3, \ldots) \mapsto (-x_2, x_1, 0, \ldots) \),
- \(x \mapsto ix \)

Observation

\[v(T) = 0 \iff \exp(\rho T) \text{ is an onto isometry for every } \rho \in \mathbb{R} \]
The second numerical index

Lie Algebra

Let X be a real Banach space.

$$\mathcal{Z}(X) := \{ S \in \mathcal{L}(X) : v(S) = 0 \}$$

(it is a closed subspace of $\mathcal{L}(X)$)

Then, for all $T + \mathcal{Z}(X) \in \mathcal{L}(X)/\mathcal{Z}(X)$ we may consider two norms:

$$\| T + \mathcal{Z}(X) \| := \inf \{ \| T - S \| : S \in \mathcal{Z}(X) \}$$

$$v(T + \mathcal{Z}(X)) := \inf \{ v(T - S) : S \in \mathcal{Z}(X) \} = v(T)$$

It is immediate that $v(T) \leq \| T + \mathcal{Z}(X) \|$ for every $T \in \mathcal{L}(X)$

Second numerical index

$$n'(X) := \inf \{ v(T) : T \in \mathcal{L}(X), \| T + \mathcal{Z}(X) \| = 1 \}$$

$$= \max \{ k \geq 0 : k\| T + \mathcal{Z}(X) \| \leq v(T) \ \forall T \in \mathcal{L}(X) \}$$

Obviously $0 \leq n'(X) \leq 1$
The second numerical index

Observations

- If $\mathcal{Z}(X) = \{0\}$ (in particular if $n(X) > 0$), then $n'(X) = n(X)$
- $n(X) \leq n'(X)$
- On $\mathcal{L}(X)/\mathcal{Z}(X)$, both $\| \cdot + \mathcal{Z}(X) \|$ and $v(\cdot)$ are norms

Some examples

- $n'(X) > 0$ when X is finite-dimensional
- But there is a Banach space X with $n(X) = 0$ and $n'(X) = 0$

Further observation

There is no third numerical index
Main example

Theorem

Let H be a Hilbert space. Then, $n'(H) = 1$.

Proof

Fixed $T \in \mathcal{L}(H)$ we have to show that

$$v(T) = \|T + \mathcal{Z}(H)\| = \left\| \frac{T + T^*}{2} \right\|$$

Facts

- $S \in \mathcal{Z}(H) \iff S = -S^*$
- $T = T^* \implies v(T) = \|T\|$
Absolute norm on \mathbb{R}^m and absolute sum of Banach spaces

Absolute norm

A norm $\| \cdot \|$ on \mathbb{R}^m is absolute if

- $\|(a_1, \ldots, a_m)\| = \|(|a_1|, \ldots, |a_m|)\|$ for every $(a_1, \ldots, a_m) \in \mathbb{R}^m$.
- $\|e_k\| = 1$ for every $k = 1, \ldots, m$ where $e_k = (0, \ldots, 0, 1_k, 0, \ldots, 0)$.

Absolute sum

Let E be \mathbb{R}^m endowed with an absolute norm. We write $[X_1 \oplus \cdots \oplus X_m]_E$ for the E-sum of the Banach spaces X_1, \ldots, X_m. That is, the space $X_1 \times \cdots \times X_m$ endowed with the complete norm $\|(x_1, \ldots, x_m)\| = \|(\|x_1\|, \ldots, \|x_m\|)\|_E$.

When E is \mathbb{R}^2 endowed with an absolute norm $\| \cdot \|_a$ we just write $X_1 \oplus_a X_2 = [X_1 \oplus X_2]_E$.
Relationship of n' with absolute sums

Proposition

Let $X = X_1 \oplus_a X_2$, where $\oplus_a \neq \oplus_2$ is an absolute sum. Then,

$$n'(X) \leq \min\{n'(X_1), n'(X_2)\}.$$

Corollary

Let $\{X_\lambda : \lambda \in \Lambda\}$ be a family of Banach spaces, $1 \leq p \leq \infty$ with $p \neq 2$. Then

$$n'(\left[\bigoplus_{\lambda \in \Lambda} X_\lambda \right]_{\ell_p}) \leq \inf\{n'(X_\lambda) : \lambda \in \Lambda\}.$$

Examples (equality does not hold)

$$n'(\ell_2^2 \oplus_\infty \mathbb{R}) \leq \frac{\sqrt{3}}{2} < 1 \quad \text{and} \quad n'(\ell_2^2 \oplus_1 \mathbb{R}) \leq \frac{\sqrt{3}}{2} < 1$$
Relationship of n' with absolute sums

Proposition

Let X_1, X_2 be Banach spaces and write $X = X_1 \oplus_\infty X_2$ or $X = X_1 \oplus_1 X_2$.

- If $n(X_1) > 0$ and $n(X_2) > 0$, then $n'(X) = n(X) = \min\{n(X_1), n(X_2)\}$.
- If $n(X_1) > 0$ and $n(X_2) = 0$, then $n'(X) \geq \min\{n(X_1), \frac{n'(X_2)}{n'(X_2)+1}\}$.
- If $n(X_1) = 0$ and $n(X_2) = 0$, then

$$n'(X) \geq \min\left\{\frac{n'(X_1)}{n'(X_1)+1}, \frac{n'(X_2)}{n'(X_2)+1}\right\}.$$

Example

$$\frac{1}{2} \leq n'(\ell^2_2 \oplus_\infty \mathbb{R}) \leq \frac{\sqrt{3}}{2} \quad \text{and} \quad \frac{1}{2} \leq n'(\ell^2_2 \oplus_1 \mathbb{R}) \leq \frac{\sqrt{3}}{2}$$
A family of examples

Example
For every $\theta \in (0, 1/2]$, there is a four-dimensional Banach space X_θ such that $n(X_\theta) = 0$ and $n'(X_\theta) = \theta$.

Let Y_θ be a two-dimensional space with $n(Y_\theta) = \theta$ and take $X_\theta = Y_\theta \oplus \ell_2^\infty$. Then:

- $n(X_\theta) \leq n(\ell_2^2) = 0$
- $n'(X_\theta) \leq n'(Y_\theta) = n(Y_\theta) = \theta$
- $n'(X_\theta) \geq \min \left\{ n(Y_\theta), \frac{n'(\ell_2^2)}{n'(\ell_2^2) + 1} \right\} = \min \{ \theta, \frac{1}{2} \} = \theta$

More examples (low dimensions)
- $\dim(X) = 2$, $n(X) = 0 \implies n'(X) = 1$,
- $\{n'(X) : n(X) = 0, \dim(X) = 3\} \supset [1/e, 1/2]$ and it is NOT an interval,
- $\{n'(X) : n(X) = 0, \dim(X) = 4\} \supset (0, 1/2]$.
n' is not continuous with respect Banach-Mazur distance

Example

For $1 < p < \infty$, let $X_p = \ell_p^2 \oplus_p \ell_2^2$ (observe that $n(X_p) = 0$ for every p).

- Then $n'(X_p) \leq n'(\ell_p^2) = n(\ell_p^2)$ for $p \neq 2$
- Therefore $\lim_{p \to 2} n'(X_p) \leq \lim_{p \to 2} n(\ell_p) = 0$
- On the other hand $n'(X_2) = n'(\ell_2^4) = 1$

Another example

For $1 < p < \infty$, let $X_p = \ell_p^2 \oplus_1 \ell_2^2$ (observe that $n(X_p) = 0$ for every p).

- Then $n'(X_p) \leq n'(\ell_p^2) = n(\ell_p^2)$ for $p \neq 2$
- Therefore $\lim_{p \to 2} n'(X_p) \leq \lim_{p \to 2} n(\ell_p) = 0$
- On the other hand $\frac{1}{2} \leq n'(X_2) < 1$

Observation

Continuity of $n'(\cdot)$ holds if $\mathcal{Z}(X)$ does not change
Relationship of the indices with absolute sums (revisited)

Let E be \mathbb{R}^m endowed with an absolute norm, let X_1, \ldots, X_m be Banach spaces and $X = [X_1 \oplus \cdots \oplus X_m]_E$.

Diagonal operator

$S \in \mathcal{L}(X)$ is **diagonal** if $P_k S I_j = 0$ for $j, k \in \{1, \ldots, m\}$ with $j \neq k$.

If moreover $S \in \mathcal{Z}(X)$, it follows that

$$P_k S I_k \in \mathcal{Z}(X_k) \quad \forall k \in \{1, \ldots, m\}.$$

Positive elements and positive operators

- $a \in E$ is positive if $a_k \geq 0$ for every $k = 1, \ldots, m$.
- $U \in \mathcal{L}(E)$ is positive if $U(a)$ is positive for every positive $a \in E$.

Let E be \mathbb{R}^m endowed with an absolute norm, let X_1, \ldots, X_m be Banach spaces and $X = \left[X_1 \oplus \cdots \oplus X_m \right]_E$.

Proposition (Martín-Merí-Popov-Randrianantoanina, 2011)

$$n(X) \leq \min\{n(X_1), \ldots, n(X_m)\}$$

Proposition

Suppose that every $S \in \mathcal{Z}(X)$ is diagonal. Then,

$$n'(X) \leq \min\{n'(X_1), \ldots, n'(X_m)\}$$
The second numerical index

Relationship of the indices with positive operators on E

Let E be \mathbb{R}^m endowed with an absolute norm, let X_1, \ldots, X_m be Banach spaces and $X = [X_1 \oplus \cdots \oplus X_m]_E$.

Proposition

For every positive operator $U \in \mathcal{L}(E)$ one has

$$n(X) \leq \frac{v(U)}{\|U\|}$$

Proposition

Suppose that every $S \in \mathcal{Z}(X)$ is diagonal. Let $U \in \mathcal{L}(E)$ be a positive operator so that there is $a \in E$ satisfying $\|Ua\| = \|U\|$ and $\text{supp}(Ua) \cap \text{supp}(a) = \emptyset$. Then,

$$n'(X) \leq \frac{v(U)}{\|U\|}$$
Spaces with absolute norm and $n'(X) = 1$

Theorem

Let X be \mathbb{R}^m endowed with an absolute norm. Suppose that $n(X) = 0$ and $n'(X) = 1$. Then, X is a Hilbert space.

Observation

The result is more general and it can be extended to Banach spaces with (long) one-unconditional basis.

Sketch of the proof

- As $n(X) = 0$ and X has an absolute norm, we may use a result of Rosenthal (80’s) to obtain:
 - There are $\ell \in \mathbb{N}$, Hilbert spaces H_1, \ldots, H_ℓ, and $E = (\mathbb{R}^\ell, | \cdot |_a)$ such that $X = \left[H_1 \oplus \cdots \oplus H_\ell \right]_E$ and
 - $\dim(H_1) \geq 2$
 - Every $S \in \mathcal{Z}(X)$ is diagonal (with respect to this decomposition)
- Suppose for contradiction that $\ell \neq 1$.
Spaces with absolute structure and $n'(X) = 1$

Sketch of the proof

- For $k \in \{2, \ldots, \ell\}$ let $E_{1,k}$ be the linear span of $\{e_1, e_k\}$ in E. Using that $n'(X) = 1$, it is possible to prove that $E_{1,k} = \ell_2^2$.

- Fix $j \in \{2, \ldots, \ell\}$ and show that the positive operator $U \in \mathcal{L}(E)$ given by $U = e_1^* \otimes e_j$ satisfies

$$\|U\| = 1 \quad \text{and} \quad v(U) < 1.$$

- Therefore $n'(X) \leq \frac{v(U)}{\|U\|} < 1$ which gives the desired contradiction.
Vector valued spaces

Proposition

Let X be a Banach space, L locally compact Hausdorff, K compact Hausdorff, Ω completely regular Hausdorff, and μ positive measure. Then

- $n'(C_0(L, X)) \leq n'(X)$
- $n'(C_w(K, X)) \leq n'(X)$
- $n'(C_b(\Omega, X)) \leq n'(X)$
- $n'(L_1(\mu, X)) \leq n'(X)$
- $n'(L_\infty(\mu, X)) \leq n'(X)$

Example

Let K be a compact Hausdorff topological space with at least two points. Then

$$n'(C(K, \ell_2^2)) \leq \frac{\sqrt{3}}{2} < 1.$$
Duality

Observation

Let X be a Banach space. If every element in $Z(X^*)$ is the transpose of an element in $Z(X)$ then $n'(X^*) \leq n'(X)$

Proposition

Suppose that one of the following holds

- The norm of X^* is Fréchet-smooth on a dense set (e.g. $X = \ell_\infty$);
- B_X is the closed convex hull of the $w-\| \cdot \|$ continuity points of Id (in particular, X RNP, X CPCP, X LUR, X has a Kadec norm, $X = X_1 \widehat{\otimes}_\pi X_2$ where X_1, X_2 RNP, or $X = L(R)$ where R is reflexive);
- $X^* \nsubseteq \ell_1$;
- X is isomorphic to a subspace of a separable L-embedded space;
- X is the (unique) predual of a von Neumann algebra.

Then $n'(X^*) \leq n'(X)$
Duality II

On the other hand,

Example
Given $0 \leq \alpha \leq \beta \leq 1/2$, there is a Banach space $X_{\alpha,\beta}$ with $n(X_{\alpha,\beta}) = 0$ such that

$$n'(X_{\alpha,\beta}) = \beta \quad \text{and} \quad n'(X_{\alpha,\beta}^*) = \alpha.$$
Section 3

3 An application to BPB-property for numerical radius
An application

Definition (Guirao-Kozhushkina, 2013; Kim-Lee-Martín, 2014)

Let X be a Banach space.

- X has the **Bishop-Phelps-Bollobás property for numerical radius** if for every $0 < \varepsilon < 1$, there is $\eta(\varepsilon) > 0$ such that whenever $T \in L(X)$ and $(x, x^*) \in \Pi(X)$ satisfy $v(T) = 1$ and $|x^*Tx| > 1 - \eta(\varepsilon)$, there exist $S \in L(X)$ and $(y, y^*) \in \Pi(X)$ such that

 $$v(S) = |y^*Sy| = 1, \quad \|T - S\| < \varepsilon, \quad \|x - y\| < \varepsilon, \quad \text{and} \quad \|x^* - y^*\| < \varepsilon.$$

- X has the **weak-Bishop-Phelps-Bollobás property for numerical radius** if for every $0 < \varepsilon < 1$, there is $\eta(\varepsilon) > 0$ such that whenever $T \in L(X)$ and $(x, x^*) \in \Pi(X)$ satisfy $v(T) = 1$ and $|x^*Tx| > 1 - \eta(\varepsilon)$, there exist $S \in L(X)$ and $(y, y^*) \in \Pi(X)$ such that

 $$v(S) = |y^*Sy|, \quad \|T - S\| < \varepsilon, \quad \|x - y\| < \varepsilon, \quad \text{and} \quad \|x^* - y^*\| < \varepsilon.$$
An application

Proposition (Kim-Lee-Martín,2014)

X Banach space with $n(X) > 0$. Then, the weak-Bishop-Phelps-Bollobás property for numerical radius implies the Bishop-Phelps-Bollobás property for numerical radius.

Actually...

X Banach space with $n'(X) > 0$. Then, the weak-Bishop-Phelps-Bollobás property for numerical radius implies the Bishop-Phelps-Bollobás property for numerical radius.

Proposition (Kim-Lee-Martín,2014)

X uniformly convex and uniformly smooth $\implies X$ has the weak-Bishop-Phelps-Bollobás property for numerical radius.

Corollary

Hilbert spaces have the Bishop-Phelps-Bollobás property for numerical radius.
Open problems

Section 4

4 Open problems
Some open problems

- Which is the set of values of \(n'(X) \) for Banach spaces \(X \) with \(n(X) = 0 \)? Does it cover the interval \([0, 1]\)?
 - We know that it covers the interval \([0, 1/2]\) and contains 1.
 - It can be done (except for the value cero) with four-dimensional spaces.
 - If \(\dim(X) = 2 \) and \(n(X) = 0 \) then \(X = \ell_2^2 \).
 - If \(\dim(X) = 3 \) and \(n(X) = 0 \) then \(X = \ell_2^2 \oplus_a \mathbb{R} \).
 - In this case we know that it is NOT an interval.

- Is \(n'(X \oplus_2 Y) \leq \min\{n'(Y), n'(W)\} \)?

- Let \(\mu \) be a positive measure, \(X \) a Banach space and \(1 < p < \infty \). Is it true that \(n'(L_p(\mu, X)) \leq n'(X) \)?

- Is \(n'(X^*) \leq n'(X) \) for every Banach space \(X \)?

- Are Hilbert spaces the unique Banach spaces \(X \) with \(n(X) = 0 \) and \(n'(X) = 1 \)?

- \(X \) complex, what is the meaning of \(n'(X_R) \)?

- \(X = \mathbb{C} \oplus_a \mathbb{C} \). What is the value of \(n'(X_R) \)?
 - \(\oplus_a = \oplus_2 \implies n'(X_R) = 1 \),
 - \(\oplus_a = \oplus_1 \implies \frac{1}{2} \leq n'(X_R) \leq \frac{\sqrt{3}}{2} \).