Spear operators and the numerical index with respect to an operator

Miguel Martín

UNIVERSIDAD DE GRANADA

(work in progress with V. Kadets, J. Merí, A. Pérez, and A. Quero)

Workshop on Functional Analysis and Operator Theory, Valencia 2018
Contents

1. A walk through the “classical” numerical index

2. Extending the concept of numerical range

3. Numerical index with respect to an operator: definition

4. Numerical index with respect to an operator: examples and properties

5. Spear operators

6. References
Some notation

\(X, Y \) real or complex Banach spaces

\(K \) base field, \(\mathbb{R} \) or \(\mathbb{C} \)

\(B_X \) closed unit ball

\(S_X \) unit sphere

\(X^* \) topological dual

\(L(X, Y) \) Banach space of all bounded linear operators from \(X \) to \(Y \)

\(L(X) \) Banach algebra of all bounded linear operators from \(X \) to \(X \)
A walk through the “classical” numerical index
Definitions

Numerical range for Hilbert spaces (Toeplitz, 1918)

H Hilbert space, $(\cdot | \cdot)$ inner product, $T \in L(H)$

$$W(T) = \{(Tx | x): x \in H, (x | x) = 1\}$$

- It is a convex subset of \mathbb{K}

Numerical range and numerical radius (Bauer, Lumer, early 1960’s)

X Banach space, $T \in L(X)$

$$V(T) = \{x^*(Tx): x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

$$v(T) = \sup\{|\lambda|: \lambda \in V(T)\}$$

$$= \sup\{|x^*(Tx)|: x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

- $V(T)$ is connected not necessarily convex,
- $\overline{V(T)}$ contains the spectrum of T,
- obviously, $v(T) \leq \|T\|$ for every $T \in L(X)$.
Numerical index (Lumer, 1968)

Let X be a Banach space. The numerical index $n(X)$ is defined as:

$$n(X) = \inf \{ v(T) : T \in S_{L(X)} \} = \max \{ k \geq 0 : k \|T\| \leq v(T) \}$$

- $0 \leq n(X) \leq 1$
- v and $\| \cdot \|$ are equivalent norms iff $n(X) > 0$

Possible values of the numerical index

- For complex Banach spaces: $[e^{-1}, 1]$
- For real Banach spaces: $[0, 1]$
Some known results

- H Hilbert space, $n(H) = 0$ in real case and $n(H) = 1/2$ in complex case.

- $n(C(K)) = n(L_1(\mu)) = 1$ (Duncan-McGregor-Pryce-White, 1970)

- $n(X) = 1$ iff $\max_{|w|=1} \|\text{Id} + wT\| = 1 + \|T\| \forall T \in L(X)$ (Duncan et al., 1970)

- Let $\{X_\lambda : \lambda \in \Lambda\}$ be an arbitrary family of Banach spaces. Then

$$n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{c_0} = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{l_1} = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{l_\infty} = \inf_{\lambda \in \Lambda} n(X_\lambda)$$

$$n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{l_p} \leq \inf_{\lambda \in \Lambda} n(X_\lambda)$$

(Martín-Payá, 2000)
Some known results

- X Banach space, K compact Hausdorff, μ positive measure

 \[n\left(C(K, X)\right) = n\left(L_1(\mu, X)\right) = n(X) \]
 \[n\left(L_\infty(\mu, X)\right) = n(X) \]
 (Martín-Payá, 2000)

 \[n\left(L_p(\mu)\right) = n(\ell_p) \text{ if } \dim L_p(\mu) = \infty \]
 (EdDari-Khamsi, 2006)

 \[n\left(L_p(\mu)\right) > 0 \text{ for } p \neq 2 \]
 (Martín-Merí-Popov, 2011)

- $n(X^*) \leq n(X)$

 and the inequality can be strict
 (Boyko-Kadets-Martín-Werner, 2007)

- X separable (WCG)

 \[\implies \{n(X, \lVert \cdot \rVert) : \lVert \cdot \rVert \text{ equivalent norm}\} \supseteq \begin{cases} [0, 1] & \text{real case} \\ [1/e, 1] & \text{complex case} \end{cases} \]
 (Finet-Martín-Payá, 2003)

- X real, $\dim(X) = \infty$, $n(X) = 1 \implies X^* \supseteq \ell_1$
 (Avilés, Kadets, Martín, Merí, Shepelska, 2010)
Extending the concept of numerical range
Spatial numerical range

Bauer–Lumer (spatial) Numerical range

X Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x \in S_X, x^* \in S_{X^*}, x^* (\text{Id} \cdot x) = 1 \}$$

$\star \ G \in L(X,Y)$ with $\|G\| = 1$, $T \in L(X,Y)$, how to define $V_G(T)$?

The first idea (not working):

$$V_G(T) = \{ y^*(Tx) : x \in S_X, y^* \in S_{Y^*}, y^* (G \cdot x) = 1 \}$$

(Approximate spatial) Numerical range with respect to G (Ardalani, 2014)

X, Y Banach spaces, $G \in L(X,Y)$ with $\|G\| = 1$, $T \in L(X,Y)$

$$V_G(T) = \bigcap_{\delta > 0} \{ y^*(Tx) : x \in S_X, y^* \in S_{Y^*}, \text{Re} \ y^* (Gx) > 1 - \delta \}$$

For $G = \text{Id}$, by the Bishop–Phelps–Bollobás theorem

$$V_{\text{Id}}(T) = \overline{V(T)} \quad \text{for every } T \in L(X)$$
Intrinsic Numerical range

(Bonsall-Duncan, 1971)

Let X be a Banach space. Then for every $T \in L(X)$

$$\overline{co} \, V(T) = \{ \Phi(T) : \Phi \in L(X)^*, \|\Phi\| = \Phi(\text{Id}) = 1 \}.$$

Consequently, $v(T) = \max\{|\Phi(T)| : \Phi \in L(X)^*, \|\Phi\| = \Phi(\text{Id}) = 1\}$.

Intrinsic (or algebraic) numerical range

X Banach space, $T \in L(X)$,

$$\widetilde{V}(T) = \{ \Phi(T) : \Phi \in L(X)^*, \|\Phi\| = \Phi(\text{Id}) = 1 \}$$

Intrinsic numerical range with respect to G

X, Y Banach spaces, $G \in L(X, Y)$ with $\|G\| = 1$, $T \in L(X, Y)$

$$\widetilde{V}_G(T) = \{ \Phi(T) : \Phi \in L(X, Y)^*, \|\Phi\| = \Phi(G) = 1 \}$$
The relationship

Two possible numerical ranges

Let X, Y be Banach spaces, $G \in L(X, Y)$ with $\|G\| = 1$, $T \in L(X, Y)$.

\[
V_G(T) = \bigcap_{\delta > 0} \{y^*(Tx): x \in S_X, y^* \in S_{Y^*}, \Re y^*(Gx) > 1 - \delta\}
\]

\[
\tilde{V}_G(T) = \{\Phi(T): \Phi \in L(X, Y)^*, \|\Phi\| = \Phi(G) = 1\}
\]

Relationship (Martín, 2016)

Let X, Y be Banach spaces, $G \in L(X, Y)$ with $\|G\| = 1$, then

\[
\tilde{V}_G(T) = \text{co} V_G(T) \quad \text{for every } T \in L(X, Y)
\]

Both concepts produce the same numerical radius:

Numerical radius with respect to G

Let X, Y be Banach spaces, $G \in L(X, Y)$ with $\|G\| = 1$, $T \in L(X, Y)$.

\[
v_G(T) = \sup \{|\lambda|: \lambda \in V_G(T)\} = \sup \{|\lambda|: \lambda \in \tilde{V}_G(T)\}
\]
Numerical index with respect to an operator: definition
Numerical index with respect to an operator

Numerical index with respect to G

X, Y Banach spaces, $G \in L(X, Y)$ with $\|G\| = 1$,

$$n_G(X, Y) = \inf \{ v_G(T) : T \in S_{L(X, Y)} \} = \max \{ k \geq 0 : k \|T\| \leq v_G(T) \}$$

We recuperate the classical numerical index

$$n_{Id}(X, X) = n(X)$$

Characterization

For $k \in [0, 1]$, TFAE:

- $n_G(X, Y) \geq k$.
- $\inf_{\delta > 0} \sup \{ |y^*(Tx)| : x \in S_X, y^* \in S_{Y^*}, \Re y^*(Gx) > 1 - \delta \} \geq k \|T\| \ \forall T \in L(X, Y),$
- $\max_{|\theta|=1} \|G + \theta T\| \geq 1 + k \|T\| \ \forall T \in L(X, Y).$

Consequence

$$n_G(X, Y) > 0 \iff G \text{ is a (geometrically) unitary element of } L(X, Y)$$
Numerical index with respect to an operator: examples and properties
Some interesting examples I

Set of values
There exists X (real and complex versions) such that
\[\left\{ n_G(X, X) : G \in L(X, X), \|G\| = 1 \right\} = [0, 1]. \]

Hilbert spaces
H_1, H_2 Hilbert spaces of dimension at least two,
- Real case: $n_G(H_1, H_2) = 0$ for all $G \in L(H_1, H_2)$ with $\|G\| = 1$,
- Complex case: $n_G(H_1, H_2) \in \{0, 1/2\}$ for all $G \in L(H_1, H_2)$ with $\|G\| = 1$.

Actually...
$G \in L(X, Y)$ with $\|G\| = 1$, if X or Y is a real Hilbert space
\[\implies n_G(X, Y) = 0. \]
★ There are more spaces with this property...
Some interesting examples II

\(\mathbb{L}_p \)-spaces

\(G \in \mathbb{L}(X, Y) \) with \(\|G\| = 1 \), if \(X \) or \(Y \) is a \(\mathbb{L}_p(\mu) \)-space (\(1 < p < \infty \)),

\[n_G(X, Y) \leq \begin{cases}
\sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} & \text{real case} \\
q^{-1/p} p^{-1/q} & \text{complex case}
\end{cases} \]

Spaces of integrable functions

\(\mu_1, \mu_2 \) \(\sigma \)-finite measures,

\(n_G(L_1(\mu_1), L_1(\mu_2)) \in \{0, 1\} \) for all \(G \in \mathbb{L}(L_1(\mu_1), L_1(\mu_2)) \) with \(\|G\| = 1 \).

Spaces of essentially bounded functions

\(\mu_1, \mu_2 \) \(\sigma \)-finite measures,

\(n_G(L_\infty(\mu_1), L_\infty(\mu_2)) \in \{0, 1\} \) for all \(G \in \mathbb{L}(L_\infty(\mu_1), L_\infty(\mu_2)) \) with \(\|G\| = 1 \).
Proposition

Let \(\{ X_\lambda : \lambda \in \Lambda \} \), \(\{ Y_\lambda : \lambda \in \Lambda \} \) be two families of Banach spaces and let \(G_\lambda \in L(X_\lambda, Y_\lambda) \) with \(\| G_\lambda \| = 1 \) for every \(\lambda \in \Lambda \). Let \(E \) be one of the Banach spaces \(c_0 \), \(\ell_\infty \) or \(\ell_1 \), let \(X = \bigoplus_{\lambda \in \Lambda} X_\lambda \) \(E \) and \(Y = \bigoplus_{\lambda \in \Lambda} Y_\lambda \) \(E \) and define the operator \(G : X \to Y \) by

\[
G \left[(x_\lambda)_{\lambda \in \Lambda} \right] = (G_\lambda x_\lambda)_{\lambda \in \Lambda}
\]

for every \((x_\lambda)_{\lambda \in \Lambda} \in \bigoplus_{\lambda \in \Lambda} X_\lambda \) \(E \). Then

\[
n_G(X, Y) = \inf_{\lambda} n_{G_\lambda}(X_\lambda, Y_\lambda).
\]

Moreover, for \(1 < p < \infty \)

\[
n_G \left(\bigoplus_{\lambda \in \Lambda} X_\lambda \ell_p , \bigoplus_{\lambda \in \Lambda} Y_\lambda \ell_p \right) \leq \inf_{\lambda} n_{G_\lambda}(X_\lambda, Y_\lambda).
\]
Composition operators

Theorem

Let X, Y be Banach spaces, and $G \in L(X,Y)$ with $\|G\| = 1$.

- K compact, consider $\tilde{G}: C(K,X) \rightarrow C(K,Y)$ given by $\tilde{G}(f) = G \circ f$; then

 $$n_{\tilde{G}}(C(K,X),C(K,Y)) = n_G(X,Y).$$

- μ measure, consider $\tilde{G}: L_1(\mu,X) \rightarrow L_1(\mu,Y)$ given by $\tilde{G}(f) = G \circ f$; then

 $$n_{\tilde{G}}(L_1(\mu,X),L_1(\mu,Y)) = n_G(X,Y).$$

- μ σ-finite, consider $\tilde{G}: L_\infty(\mu,X) \rightarrow L_\infty(\mu,Y)$ given by $\tilde{G}(f) = G \circ f$; then

 $$n_{\tilde{G}}(L_\infty(\mu,X),L_\infty(\mu,Y)) = n_G(X,Y).$$

Besides, for vector-valued L_p-spaces one inequality holds:

$$n_{\tilde{G}}(L_p(\mu,X),L_p(\mu,Y)) \leq n_G(X,Y)$$

for $1 < p < \infty$, \tilde{G} defined analogously.
Spear operators
Examples of spear operators

Spear operator (Ardalani, 2014; Kadets, Martín, Merí, Pérez, 2018)

\[G \text{ spear operator} \iff n_G(X,Y) = 1 \iff \max_{|\theta|=1} \|G + \theta T\| = 1 + \|T\| \quad \forall T \in L(X,Y). \]

Some interesting examples of spear operators

- Fourier transform (for example, \(\mathcal{F} : L_1(\mathbb{R}) \rightarrow C_0(\mathbb{R}) \));
- The inclusion \(A(\mathbb{D}) \hookrightarrow C(\mathbb{T}) \);
- The identity operator on \(C(K), L_1(\mu) \ldots \)
- \(G : X \rightarrow c_0 \) spear iff \(\left| x^{**}(G^*(e_n)) \right| = 1 \) for \(n \in \mathbb{N} \) and \(x^{**} \in \text{ext} (B_{X^{**}}) \);
- \(G : \ell_1 \rightarrow Y \) spear iff \(\left| y^*(G(e_n)) \right| = 1 \) for \(n \in \mathbb{N} \) and \(y^* \in \text{ext} (B_{Y^*}) \);
- If \(\dim(X) < \infty \), \(G \) spear iff \(\left| y^*(Gx) \right| = 1 \) for \(y^* \in \text{ext} (B_{Y^*}) \) and \(x \in \text{ext} (B_X) \);
- If \(\dim(Y) < \infty \), \(G \) spear iff \(\left| x^{**}(G^*(y^*)) \right| = 1 \) for \(x^{**} \in \text{ext} (B_{X^{**}}) \) and \(y^* \in \text{ext} (B_{X^*}) \);
Spear operator (Ardalani, 2014; Kadets, Martín, Merí, Pérez, 2018)

\[G \text{ spear operator } \iff n_G(X, Y) = 1 \iff \max_{|\theta|=1} \|G + \theta T\| = 1 + \|T\| \forall T \in L(X, Y). \]

Remark

To work with spear operators, two other concepts are introduced:
- lush operator,
- the alternative Daugavet property (aDP),

★ Both are geometric properties (related to \(G \))
★ They are related as follows:

\[
\begin{align*}
\text{lush operator} & \iff \text{spear operator} \iff \text{operator with aDP} \\
\text{SCD operator} & \\
(X \text{ RNP, } X \nsubseteq \ell_1, Y \text{ Asplund...})
\end{align*}
\]
Spear operators: consequences

Some isomorphic and isometric consequences

Let X, Y be Banach spaces, $G \in L(X,Y)$ a spear operator,

- If $\dim(G(X)) = \infty$, then $X^* \supset \ell_1$,
- If X^* is strictly convex, then $X = K$,
- If X^* is smooth, then $X = K$,
- If B_X contains a WLUR point, then $X = K$,
- If Y^* is strictly convex, then $Y = K$,
- If B_Y contains a WLUR point, then $Y = K$.

Norm attainment

- If G is lush, G attains its norm; actually:

\[B_X = \overline{\text{co}} \{ x \in S_X : \|Gx\| = 1 \}, \]

- There are examples of aDP operators which do not attain the norm,
- What about spear operators?
References
References

M. A. Ardalani
Numerical index with respect to an operator

M. Martín
On different definitions of numerical range

V. Kadets, M. Martín, J. Merí, and A. Pérez
Spear operators between Banach spaces

V. Kadets, M. Martín, J. Merí, A. Pérez, and A. Quero
On the numerical index with respect to an operator
Work in progress.