Slicely Countably Determined Banach spaces

Miguel Martín

http://www.ugr.es/local/mmartins

Seoul (Republic of Korea), November 2012
Most of the results of the talk appeared in...

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska
Slicely Countably Determined Banach spaces

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska
Slicely Countably Determined Banach spaces
Introduction

Section 1
Basic notation

- X real or complex Banach space.
- S_X unit sphere, B_X closed unit ball, \mathbb{T} modulus-one scalars.
- X^* dual space, $L(X)$ bounded linear operators from X to X.
- $\text{conv}(\cdot)$ convex hull, $\overline{\text{conv}}(\cdot)$ closed convex hull,
- A slice of $A \subset X$ is a (nonempty) subset of the form

$$S(A, x^*, \alpha) = \{x \in A : \text{Re} x^*(x) > \sup \text{Re} x^*(A) - \alpha\} \quad (x^* \in X^*, \alpha > 0)$$
Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930’s)
- X has the RNP iff the Radon-Nikodým theorem is valid for X-valued measures;
- Equivalently [1960’s], every bcc subset contains a denting point (i.e. a point belonging to slices of arbitrarily small diameter).

X Asplund $\iff X^* \text{ RNP}$

Asplund spaces (1960’s)
- X is an Asplund space if every continuous convex real-valued function defined on an open subset of X is F-differentiable on a dense subset;
- Equivalently [1970’s], every separable subspace has separable dual.
Introduction

The road map of the talk

The property

We introduce an isomorphic property for (separable) Banach spaces, the so-called

slicely countably determination (SCD)

such that

- it is satisfied by RNP spaces
 (actually, by strongly regular spaces – PCP in particular–);
- it is satisfied by Asplund spaces
 (actually, by spaces not containing ℓ_1).

We also present examples and stability properties.

The applications

- We apply SCD to get results for the Daugavet property, the alternative Daugavet property and spaces with numerical index 1.
- We present SCD operators and applications.
Outline

1. Introduction
2. Slicely Countably Determined sets and spaces
3. Applications
4. SCD operators
5. Open problems
Section 2

2 Slicely Countably Determined sets and spaces
 - SCD sets
 - SCD spaces
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subseteq X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$, then $A \subseteq \overline{\text{conv}}(B)$,
- given $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in S_n \ \forall n \in \mathbb{N}$, $A \subseteq \overline{\text{conv}}(\{x_n : n \in \mathbb{N}\})$,
- every slice of A contains one of the S_n’s,

Remarks

- A is SCD iff \overline{A} is SCD.
- If A is SCD, then it is separable.
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
- If $B \cap S_{n,m} \neq \emptyset \implies a_n \in \overline{B}$.
- Therefore, $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}}(\overline{B}) = \overline{\text{conv}}(B)$.

Example

In particular, A RNP separable $\implies A$ SCD.

Corollary

- If X is separable LUR $\implies B_X$ is SCD.
- So, every separable space can be renormed such that $B(X, |\cdot|)$ is SCD.
Example

If \(X^* \) is separable \(\implies A \) is SCD.

Proof.

- Take \(\{x_n^* : n \in \mathbb{N}\} \) dense in \(S_{X^*} \).
- For every \(n, m \in \mathbb{N} \), consider \(S_{n,m} = S(A, x_n^*, 1/m) \).
- It is easy to show that any slice of \(A \) contains one of the \(S_{n,m} \).

Example

\(B_{C[0,1]} \) and \(B_{L_1[0,1]} \) are not SCD.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \] where \(\lambda_k \geq 0, \sum \lambda_k = 1, S_k \) slices.

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

\(A \) has small combinations of slices iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.

Example

If \(A \) has small combinations of slices + separable \(\implies \) \(A \) is SCD.

Particular case

\(A \) strongly regular (in particular, PCP) + separable \(\implies \) \(A \) is SCD.
SCD sets: Further examples II

Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence of relative weak open subsets: the set A is SCD iff there is a sequence $\{V_n : n \in \mathbb{N}\}$ of relative weak open subsets of A such that every slice of A contains one of the V_n’s.

π-bases

A π-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i’s.

Proposition

If $(A, \sigma(X, X^*))$ has a countable π-base $\implies A$ is SCD.
Theorem

A separable without \(\ell_1 \)-sequences \(\implies (A, \sigma(X, X^*)) \) has a countable \(\pi \)-base.

Proof.

- We see \((A, \sigma(X, X^*)) \subset C(T)\) where \(T = (B_{X^*}, \sigma(X^*, X))\).
- By Rosenthal \(\ell_1 \) theorem, \((A, \sigma(X, X^*))\) is a relatively compact subset of the space of first Baire class functions on \(T\).
- By a result of Todor\'čević, \((A, \sigma(X, X^*))\) has a \(\sigma\)-disjoint \(\pi\)-base.
- \(\{V_i : i \in I\}\) is \(\sigma\text{-disjoint}\) if \(I = \bigcup_{n \in \mathbb{N}} I_n\) and each \(\{V_i : i \in I_n\}\) is pairwise disjoint.
- A \(\sigma\)-disjoint family of open subsets in a separable space is countable. ✓

Main example

A separable without \(\ell_1 \)-sequences \(\implies A \) is SCD.
SCD spaces: definition and examples

SCD space

\(X \) is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. \(X \) separable strongly regular. In particular, RNP, PCP spaces.
2. \(X \) separable \(X \not\supset \ell_1 \). In particular, if \(X^* \) is separable.

Examples of NOT SCD spaces

1. \(C[0,1], L_1[0,1] \)
2. Actually, every \(X \) containing (an isomorphic copy of) \(C[0,1] \) or \(L_1[0,1] \).
3. There is \(X \) with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.
Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

If \(\ell_1 \cong Y \subset X \), then \(X/Y \) contains a copy of \(\ell_1 \).

If \(\ell_1 \cong Y_1 \subset X \), then there is \(\ell_1 \cong Y_2 \subset X \) with \(Y_1 \cap Y_2 = 0 \).

Corollary

\[X_1, \ldots, X_m \text{ SCD } \implies X_1 \oplus \cdots \oplus X_m \text{ SCD.} \]
SCD spaces: stability properties II

Theorem

X_1, X_2, \ldots SCD, E with unconditional basis.

- $E \not\subset c_0 \implies \left[\bigoplus_{n \in \mathbb{N}} X_n \right]_E$ SCD.
- $E \not\subset \ell_1 \implies \left[\bigoplus_{n \in \mathbb{N}} X_n \right]_E$ SCD.

Examples

1. $c_0(\ell_1)$ and $\ell_1(c_0)$ are SCD.
2. $c_0 \otimes \varepsilon c_0$, $c_0 \otimes \pi c_0$, $c_0 \otimes \varepsilon \ell_1$, $c_0 \otimes \pi \ell_1$, $\ell_1 \otimes \varepsilon \ell_1$, and $\ell_1 \otimes \pi \ell_1$ are SCD.
3. $K(c_0)$ and $K(c_0, \ell_1)$ are SCD.
4. $\ell_2 \otimes \varepsilon \ell_2 \equiv K(\ell_2)$ and $\ell_2 \oplus \pi \ell_2 \equiv \mathcal{L}_1(\ell_2)$ are SCD.
Applications

Section 3

Applications
- The DPr, the ADP and numerical index 1
- Lush spaces
- From ADP to lushness
The DPr, the ADP and numerical index 1

Definition of the properties

1. **Kadets-Shvidkoy-Sirotkin-Werner, 1997:**
 \(X \) has the **Daugavet property (DPr)** if
 \[
 \|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}
 \]
 for every rank-one \(T \in L(X) \).
 - Then every \(T \) not fixing copies of \(\ell_1 \) also satisfies (DE).

2. **Lumer, 1968:** \(X \) has **numerical index 1** \((n(X) = 1) \) if
 \[
 \max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\| \quad \text{(aDE)}
 \]
 for EVERY operator on \(X \).
 - Equivalently,
 \[
 \|T\| = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}
 \]
 for EVERY \(T \in L(X) \).

3. **M.-Oikhberg, 2004:** \(X \) has the **alternative Daugavet property (ADP)** if every rank-one \(T \in L(X) \) satisfies (aDE).
 - Then every weakly compact \(T \) also satisfies (aDE).
Relations between these properties

![Diagram showing the relations between Daugavet property (DPr), ADP, and numerical index 1]

Examples
- \(C([0, 1], K(\ell_2)) \) has DPr, but has not numerical index 1
- \(c_0 \) has numerical index 1, but has not DPr
- \(c_0 \oplus \infty C([0, 1], K(\ell_2)) \) has ADP, neither DPr nor numerical index 1

Remark

For RNP or Asplund spaces, \(\text{ADP} \implies \text{numerical index 1} \).
For C^*-algebras and preduals

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:
- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:
- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V_*})$.

The alternative Daugavet property of V_* is equivalent to:
- the atomic projections of V are central, or
- $|v(v_*)| = 1$ for $v \in \text{ext}(B_V)$ and $v_* \in \text{ext}(B_{V_*})$, or
- $V = C \oplus \infty N$, where C is commutative and N has no atomic projections.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w^*-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
A sufficient condition for numerical index 1: lushness

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is **lush** if given $x, y \in S_X$, $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that

$$x \in S = S(B_X, y^*, \varepsilon) \quad \text{dist} (y, \text{conv}(T S')) < \varepsilon.$$

Theorem (Boyko-Kadets-M.-Werner, 2007)

If X is lush, then X has numerical index 1

Example (Kadets-M.-Merí-Shepelska, 2009)

There is X with numerical index 1 which is not lush.
Applications

From ADP to lushness

Characterization of ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with
 \[
 \max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.
 \]
- Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X, and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and
 \[
 \overline{\text{conv}}(\mathbb{T} S(B_X, y^*, \varepsilon)) \cap S_n \neq \emptyset \quad (n \in \mathbb{N}).
 \]

Theorem

X ADP + B_X SCD \implies given $x \in S_X$ and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that

- $x \in S(B_X, y^*, \varepsilon)$ and $B_X = \overline{\text{conv}}(\mathbb{T} S(B_X, y^*, \varepsilon))$.
- This clearly implies lushness, and so numerical index 1 (i.e. $\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T).
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1.
- ADP + $X \not\subseteq \ell_1 \implies$ numerical index 1.

Corollary

X real + dim$(X) = \infty$ + ADP \implies $X^* \supseteq \ell_1$.

In particular,

Corollary

X real + dim$(X) = \infty$ + numerical index 1 \implies $X^* \supseteq \ell_1$.
Section 4

SCD operators
SCD operators

SCD operator

\[T \in L(X) \text{ is an SCD-operator if } T(B_X) \text{ is an SCD-set.} \]

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RNP,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

- \(X \text{ ADP } + T \text{ SCD-operator } \implies \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
- \(X \text{ DPr } + T \text{ SCD-operator } \implies \| \text{Id} + T \| = 1 + \| T \| \).

Main corollary

\(X \text{ ADP } + T \text{ does not fix copies of } \ell_1 \implies \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
HSCD-majorized operators (Kadets-Shepelska, 2010)

HSCD and HSDC-majorized operator

- \(T \in L(X,Y) \) is an **Hereditary-SCD-operator** if every convex subset of \(T(B_X) \) is an SCD-set.
- \(T \in L(X,Y) \) is an **HSCD-majorized operator** if there is \(S \in L(X,Z) \) HSCD-operator such that \(\|Tx\| \leq \|Sx\| \) for every \(x \in X \).

Proposition

The class of HSCD-majorized operators is a two-sided operator ideal.

Theorem

\(X \text{ DPr } T \in L(X) \text{ HSCD-majorized operator } \implies \|\text{Id} + T\| = 1 + \|T\| \).

Remark

The class of operators satisfying (DE) is not even a subspace.
Open problems

Section 5

Open problems
Open questions

1. Find more sufficient conditions for a set to be SCD.

2. Is SCD equivalent to the existence of a countable π-base for the weak topology?

3. E with (1)-unconditional basis. Is E SCD?

4. E with 1-unconditional basis, $\{X_n\}$ a family of SCD spaces. Is $[\bigoplus X_n]_E$ SCD?

5. X, Y SCD. Are $X \otimes_\varepsilon Y$ and $X \otimes_\pi Y$ SCD?

6. Find a good extension of the SCD property to the nonseparable case.

7. Clarify the relationship between SCD and the Daugavet property.

8. X ADP, $T \in L(X)$ HSCD-majorized, does T satisfies (aDE)?