The Bishop-Phelps-Bollobás modulus of a Banach space

Miguel Martín (Granada, Spain)
http://www.ugr.es/local/mmartins

International conference dedicated to the 120th anniversary of Stefan Banach
Lviv (Ukraine), September 17-21, 2012
The talk is based on the following paper

M. Chica, V. Kadets, M. Martín, S. Moreno, F. Rambla
The Bishop-Phelps-Bollobás modulus of a Banach space

In preparation
Outline of the talk

1. Introduction
 - Notation
 - The starting point

2. Definition and first properties
 - Definition
 - The upper bound of the modulus
 - Some properties

3. Examples

4. Spaces with the greatest possible value of the modulus

5. Open problems
Introduction

Section 1
Basic notation

X real or complex Banach space.

- S_X unit sphere
- B_X closed unit ball
- X^* dual space
- An element $f \in X^*$ **attains its norm** if

\[
\|f\| = \max\{|f(x)| : x \in B_X\},
\]

that is, there is $x_0 \in B_X$ such that $\|f\| = |f(x_0)|$.

- The above is equivalent to say that $\text{Re} f$ is a **supporting functional** of B_X at x_0.
- $\Pi(X) := \{(x, x^*) \in S_X \times S_{X^*} : x^*(x) = 1\}$
Three theorems and one definition

James, 1957
Let X be a Banach space. Then

$$X \text{ is reflexive} \iff \text{every element of } X^* \text{ attains its norm}$$

Bishop-Phelps, 1961
The set of norm-attaining functionals on a Banach space X is dense in X^*.

Bollobás, 1970 (known as Bishop-Phelps-Bollobás theorem)
Let X be a Banach space. Suppose $x \in S_X$ and $x^* \in S_{X^*}$ satisfy

$$|1 - x^*(x)| \leq \frac{\varepsilon^2}{2} \quad (0 < \varepsilon < 1/2).$$

Then there exists $(y, y^*) \in \Pi(X)$ (i.e. $y^*(y) = 1$) such that

$$\|x - y\| < \varepsilon + \frac{\varepsilon^2}{2} \quad \text{and} \quad \|x^* - y^*\| \leq \varepsilon.$$
Three theorems and one definition

Our idea

- Can the result below be improved for concrete Banach spaces?
- That is, for a Banach space X, we want to quantify how good or bad is the approximation in Bollobás’ theorem:

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^*.

Three theorems and one definition

James, 1957

Let X be a Banach space. Then

$$X \text{ is reflexive } \iff \text{ every element of } X^* \text{ attains its norm}$$

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^*.

Bishop-Phelps-Bollobás modulus

Let X be a Banach space. For every $\delta \in (0, 2)$ find the smaller $\varepsilon > 0$ such that whenever $x \in B_X$ and $x^* \in B_{X^*}$ satisfy

$$\Re x^*(x) > 1 - \delta,$$

there exists $(y, y^*) \in \Pi(X)$ (i.e. $y^*(y) = 1$) such that

$$\|x - y\| < \varepsilon \quad \text{and} \quad \|x^* - y^*\| < \varepsilon.$$
Section 2
Definition of the Bishop-Phelps-Bollobás modulus

Bishop-Phelps-Bollobás modulus of a Banach space X

It is the function $\Phi_X : (0, 2) \to \mathbb{R}$ defined as

$$\Phi_X(\delta) := \inf \{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \text{Re} x^*(x) > 1 - \delta, \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \}$$

- In other words: if for $\delta \in (0, 2)$ we write
 $$A_X(\delta) := \{(x, x^*) \in B_X \times B_{X^*} : \text{Re} x^*(x) > 1 - \delta\},$$
 it is clear that
 $$\Phi_X(\delta) = \sup_{(x, x^*) \in A_X(\delta)} \inf_{(y, y^*) \in \Pi(X)} \max\{\|x - y\|, \|x^* - y^*\|\}.$$
- Therefore,
 $$\Phi_X(\delta) = d_H\left(A_X(\delta), \Pi(X)\right) \quad (0 < \delta < 2)$$
 where d_H is the Hausdorff distance in $X \oplus_{\infty} X^*$.

Miguel Martín (Universidad de Granada)
A remark

\[\Phi_X(\delta) = \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \Re x^*(x) > 1 - \delta, \right. \]
\[\left. \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \right\} \]

\[= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \Re x^*(x) \geq 1 - \delta, \right. \]
\[\left. \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \right\} \]

\[= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \Re x^*(x) > 1 - \delta, \right. \]
\[\left. \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| \leq \varepsilon \text{ and } \|x^* - y^*\| \leq \varepsilon \right\} \]

\[= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \Re x^*(x) \geq 1 - \delta, \right. \]
\[\left. \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| \leq \varepsilon \text{ and } \|x^* - y^*\| \leq \varepsilon \right\} \]
Three observations

Observation 1
\[\Phi_X(\delta) \text{ is increasing in } \delta. \]

Observation 2
As a consequence of the Bishop-Phelps-Bollobás theorem, we have
\[\lim_{\delta \downarrow 0} \Phi_X(\delta) = 0 \]

Observation 3
The smaller is \(\Phi_X(\cdot) \), the better is the approximation in the space \(X \).
The upper bound of the modulus

Theorem

For every Banach space X and every $\delta \in (0, 2)$,

$$\Phi_X(\delta) \leq \sqrt{2\delta}$$

Some comments:

- We prove the result using a lemma by Phelps from 1974.
- Most of the technical main difficulties come from the fact that we approximate elements from B_X and functional from B_{X^*}.
- But, on the other hand, this gives a slightly improved version of Bollobás theorem:
The Bishop-Phelps-Bollobás revisited

Corollary

Let X be a Banach space.

- Let $0 < \varepsilon < 2$ and suppose that $x \in B_X$ and $x^* \in B_{X^*}$ satisfy
 \[\text{Re } x^*(x) > 1 - \varepsilon^2 / 2. \]

 Then, there exists $(y, y^*) \in \Pi(X)$ such that
 \[\|x - y\| < \varepsilon \quad \text{and} \quad \|x^* - y^*\| < \varepsilon. \]

- Let $0 < \delta < 2$ and suppose that $x \in B_X$ and $x^* \in B_{X^*}$ satisfy
 \[\text{Re } x^*(x) > 1 - \delta. \]

 Then, there exists $(y, y^*) \in \Pi(X)$ such that
 \[\|x - y\| < \sqrt{2\delta} \quad \text{and} \quad \|x^* - y^*\| < \sqrt{2\delta}. \]
Some properties

Proposition

The function $\delta \mapsto \Phi_X(\delta)$ is continuous in $(0, 2)$

Proposition

\[
\Phi_X(\delta) \leq \Phi_{X^*}(\delta)
\]

- We do not know whether equality holds or not

Corollary

If X is reflexive, then $\Phi_X(\delta) = \Phi_{X^*}(\delta)$.
Examples

Section 3
The one dimensional case

Example

\[\Phi_{\mathbb{R}}(\delta) = \begin{cases} \delta & \text{if } 0 < \delta \leq 1 \\ \sqrt{\delta - 1} + 1 & \text{if } 1 < \delta < 2 \end{cases} \]
Example

Let H be a Hilbert space, $\dim(H) > 1$,

$$\Phi_H(\delta) \leq \sqrt{\delta} \quad \text{for } 0 < \delta < 2,$$

$$\Phi_H(\delta) = \sqrt{\delta} \quad \text{for } 1 \leq \delta < 2$$
Catching the maximum value of the modulus

Proposition

Suppose $X = Y \oplus_1 Z$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

Proposition

Suppose $X = Y \oplus_\infty Z$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

Examples

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

for X equals c_0, l_1, l_∞, $L_1[0,1]$, $L_\infty[0,1]$...
Catching the maximum value of the modulus II

Proposition

Suppose $X^* = Y \oplus_1 Z$ and Y, Z are NOT w^*-dense in X^*. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

Corollary

Suppose X contains two M-ideals J_1 and J_2 with $J_1 \cap J_2 = \{0\}$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

Examples

$$\Phi_X(\delta) = \sqrt{2\delta} \quad (0 < \delta < 1/2)$$

for X equals $C[0,1]$, $C_0(\mathbb{R})$, $C_b(\mathbb{R}^N)$...
A picture of the values of the modulus for some examples
Section 4
A necessary condition...

Theorem

Let X be a Banach space. Suppose there is $\delta_0 \in (0, 2)$ such that $\Phi_X(\delta_0) = \sqrt{2}\delta_0$. Then X^* contains an almost isometric copy of the real two-dimensional ℓ_∞.

Some comments:

- What we show: $\forall \varepsilon > 0$, $\exists x^*_\varepsilon, y^*_\varepsilon \in S_{X^*}$ with
 \[\|x^*_\varepsilon + y^*_\varepsilon\| = 2 \quad \text{and} \quad \|x^*_\varepsilon - y^*_\varepsilon\| \geq 2 - \varepsilon. \]

- The proof is rather technical. It is actually an analysis of techniques used in the proof of the Bishop-Phelps theorem, but studying what happens when they give the “worst” possible value.

- In the complex case, it is not possible to get an almost isometric copy of either ℓ_1^2 or ℓ_∞^2, since they are not isometric and both have the greatest possible Bishop-Phelps-Bollobás modulus.
Spaces with the greatest possible value of the modulus

...which is not sufficient

Example

There is a real three-dimensional space X whose dual contains an isometric copy of the two-dimensional ℓ_∞ space, but for which

$$\Phi_X(\delta) < \sqrt{2}\delta$$

for every $\delta \in (0, 2)$.
Open problems

Section 5
Open problems

Problem 1
Is $\Phi_X(\delta)$ equal to $\Phi_{X^*}(\delta)$ for every Banach space?

Problem 2
Calculate $\Phi_H(\delta)$ for a Hilbert space H of dimension greater than one. In particular, is $\Phi_H(\delta) = \sqrt{\delta}$?

Problem 3
Is $\Phi_X(\delta) \geq \sqrt{\delta}$ when $\dim(X) \geq 2$?

Problem 4
Characterize those Banach spaces for which $\Phi_X(\delta) = \sqrt{2\delta}$.