Numerical index theory

Miguel Martín
http://www.ugr.es/local/mmartins

Mini-course

Kent State University, Spring 2012
Schedule of the talk

1. Basic notation
2. Numerical range of operators
3. Two results on surjective isometries
4. Numerical index of Banach spaces
5. The alternative Daugavet property
6. Lush spaces
7. Slicely countably determined spaces
8. Remarks on the containment of c_0 and ℓ_1
9. Numerical index of L_p-spaces
10. Extremely non-complex Banach spaces
Basic notation

Basic notation I

- **K** base field (\mathbb{R} or \mathbb{C}):
 - T modulus-one scalars,
 - $\text{Re } z$ real part of z ($\text{Re } z = z$ if $K = \mathbb{R}$).
- **H** Hilbert space: $(\cdot | \cdot)$ denotes the inner product.
- **X** Banach space:
 - S_X unit sphere, B_X unit ball,
 - X^* dual space,
 - $L(X)$ bounded linear operators,
 - $W(X)$ weakly compact linear operators,
 - $\text{Iso}(X)$ surjective linear isometries,
- **X** Banach space, $T \in L(X)$:
 - $\text{Sp}(T)$ spectrum of T.
 - $T^* \in L(X^*)$ adjoint operator of T.
Basic notation (II)

X Banach space, $B \subset X$, C convex subset of X:

- B is *rounded* if $\mathbb{T}B = B$,
- $\text{co}(B)$ convex hull of B,
- $\overline{\text{co}}(B)$ closed convex hull of B,
- $\text{aconv}(B) = \text{co}(\mathbb{T}B)$ absolutely convex hull of B,
- $\overline{\text{aconv}}(B) = \overline{\text{co}}(\mathbb{T}B)$ absolutely convex hull of B,
- $\text{ext}(C)$ extreme points of C,
- *slice* of C:

$$S(C, x^*, \alpha) = \{x \in C : \text{Re } x^*(x) > \sup \text{Re } x^*(C) - \alpha\}$$

where $x^* \in X^*$ and $0 < \alpha < \sup \text{Re } x^*(C)$.

Notation
Basic notation (II)

X Banach space, **B** ⊂ **X**, **C** convex subset of **X**:
- **B** is *rounded* if \(\mathbb{T}B = B \),
- \(\text{co}(B) \) convex hull of **B**,
- \(\overline{\text{co}}(B) \) closed convex hull of **B**,
- \(\text{aconv}(B) = \text{co}(\mathbb{T}B) \) absolutely convex hull of **B**,
- \(\overline{\text{aconv}}(B) = \overline{\text{co}}(\mathbb{T}B) \) absolutely convex hull of **B**,
- \(\text{ext}(C) \) extreme points of **C**,
- *slice* of **C**:

\[
S(C, x^*, \alpha) = \{ x \in C : \text{Re} \, x^*(x) > \sup \text{Re} \, x^*(C) - \alpha \}
\]

where \(x^* \in X^* \) and \(0 < \alpha < \sup \text{Re} \, x^*(C) \).
Numerical range of operators

2 Numerical range of operators
 • Definitions and first properties
 • Numerical range
 • Numerical radius
 • The Bohnenblust-Karlin theorem
 • The numerical index

F. F. Bonsall and J. Duncan

Numerical Ranges. Vol I and II.

Hilbert space numerical range (Toeplitz, 1918)

- A \(n \times n \) real or complex matrix
 \[
 W(A) = \{(Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1\}.
 \]

- \(H \) real or complex Hilbert space, \(T \in L(H) \),
 \[
 W(T) = \{(Tx \mid x) : x \in H, \|x\| = 1\}.
 \]
Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

- A $n \times n$ real or complex matrix
 \[
 W(A) = \{(Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1\}.
 \]
- H real or complex Hilbert space, $T \in L(H)$,
 \[
 W(T) = \{(Tx \mid x) : x \in H, \|x\| = 1\}.
 \]

Remark

- Given $T \in L(H)$ we associate
 - a sesquilinear form $\varphi_T(x, y) = (Tx \mid y)$ $(x, y \in H)$,
 - a quadratic form $\widehat{\varphi}_T(x) = \varphi_T(x, x) = (Tx \mid x)$ $(x \in H)$.
- Then, $W(T) = \widehat{\varphi}_T(S_H)$.
Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

- A \(n \times n \) real or complex matrix

\[
W(A) = \{(Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1\}.
\]

- \(H \) real or complex Hilbert space, \(T \in L(H) \),

\[
W(T) = \{(Tx \mid x) : x \in H, \|x\| = 1\}.
\]

Remark

★ Given \(T \in L(H) \) we associate

- a sesquilinear form \(\varphi_T(x,y) = (Tx \mid y) \) \((x,y \in H) \),
- a quadratic form \(\widehat{\varphi}_T(x) = \varphi_T(x,x) = (Tx \mid x) \) \((x \in H) \).

★ Then, \(W(T) = \widehat{\varphi}_T(S_H) \). Therefore:

- \(\widehat{\varphi}_T(B_H) = [0,1]W(T) \),
- \(\widehat{\varphi}_T(H) = \mathbb{R}^+W(T) \).
- But we cannot get \(W(T) \) from \(\widehat{\varphi}_T(B_H) \)!

Some properties

H \in \text{Hilbert space}, T \in L(H): (Toeplitz-Hausdorff) \quad W(T) is convex.

T, S \in L(H), \alpha, \beta \in K:

W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)

W(U^* T U) = W(T) for every T \in L(H) and every U unitary.

Sp(T) \subseteq W(T).

If T is normal, then W(T) = \text{co Sp}(T).

In the real case (\dim(H) > 1), there is T \in L(H), T \neq 0 with W(T) = \{0\}.

In the complex case, \sup\{|(Tx)|: x \in \mathcal{S}H\} \geq \frac{1}{2} \|T\|.

If T is actually self-adjoint, then \sup\{|(Tx)|: x \in \mathcal{S}H\} = \|T\|.
Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
Some properties

H Hilbert space, **T** ∈ **L**(H):

- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- **T, S** ∈ **L**(H), \(\alpha, \beta \in \mathbb{K} \):
Some properties

H Hilbert space, \(T \in L(H) \):
- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):
 - \(W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \);

Some properties

H Hilbert space, **T** ∈ **L**(H):
- (Toeplitz-Hausdorff) **W**(T) is convex.
- **T**, **S** ∈ **L**(H), **α**, **β** ∈ **I**:K:
 - **W**(α**T** + β**S**) ⊆ α**W**(T) + β**W**(S);
 - **W**(α**Id** + β**S**) = α + β**W**(S).
Some properties

H Hilbert space, *T* ∈ *L(H)*:

- (Toeplitz-Hausdorff) *W(T)* is convex.
- *T, S* ∈ *L(H)*, *α, β* ∈ *𝕂*:
 - *W(αT + βS) ⊆ αW(T) + βW(S)*;
 - *W(αId + βS) = α + βW(S)*.
- *W(U^*TU) = W(T)* for every *T* ∈ *L(H)* and every *U* unitary.
Some properties

\(H \) Hilbert space, \(T \in L(H) \):

- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):
 - \(W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \);
 - \(W(\alpha \text{Id} + \beta S) = \alpha + \beta W(S) \).
- \(W(U^*TU) = W(T) \) for every \(T \in L(H) \) and every \(U \) unitary.
- \(\text{Sp}(T) \subseteq \overline{W(T)} \).

Some properties

H Hilbert space, \(T \in L(H) \):

- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):
 - \(W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \);
 - \(W(\alpha \text{Id} + \beta S) = \alpha + \beta W(S) \).
- \(W(U^*TU) = W(T) \) for every \(T \in L(H) \) and every \(U \) unitary.
- \(\text{Sp}(T) \subseteq \overline{W(T)} \).
- If \(T \) is normal, then \(\overline{W(T)} = \overline{\text{coSp}(T)} \).
Some properties

\(H \) Hilbert space, \(T \in L(H) \):

1. (Toeplitz-Hausdorff) \(W(T) \) is convex.
2. \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):
 - \(W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \);
 - \(W(\alpha \text{Id} + \beta S) = \alpha + \beta W(S) \).
3. \(W(U^*TU) = W(T) \) for every \(T \in L(H) \) and every \(U \) unitary.
4. \(\text{Sp}(T) \subseteq \overline{W(T)} \).
5. If \(T \) is normal, then \(\overline{W(T)} = \overline{\text{co}\text{Sp}(T)} \).
6. In the real case (\(\dim(H) > 1 \)), there is \(T \in L(H), T \neq 0 \) with \(W(T) = \{0\} \).
Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + \beta S) = \alpha + \beta W(S)$.
- $W(U^* TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
- $\text{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)} = \overline{\text{coSp}(T)}$.
- In the real case ($\dim(H) > 1$), there is $T \in L(H)$, $T \neq 0$ with $W(T) = \{0\}$.
- In the complex case,
 \[
 \sup\{|(Tx \mid x)| : x \in S_H\} \geq \frac{1}{2} \|T\|.
 \]
 If T is actually self-adjoint, then
 \[
 \sup\{|(Tx \mid x)| : x \in S_H\} = \|T\|.
 \]
H complex Hilbert space, $T \in L(H)$, then

$$v(T) := \sup \{|(Tx \mid x)| : x \in S_H\} \geq \frac{1}{2} \|T\|.$$
Proving a result

For \(x, y \in S_H \) fixed, use the polarization formula:

\[
(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y) + i(T(x + iy) \mid x + iy) - i(T(x - iy) \mid x - iy) \right].
\]
H complex Hilbert space, $T \in L(H)$, then

$$v(T) := \sup \{|(Tx \mid x)| : x \in S_H\} \geq \frac{1}{2} \|T\|.$$

- For $x, y \in S_H$ fixed, use the polarization formula:

$$
(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y) \\
+ i (T(x + iy) \mid x + iy) - i (T(x - iy) \mid x - iy) \right].
$$

- $|(Tx \mid y)| \leq \frac{1}{4} v(T) [\|x + y\|^2 + \|x - y\|^2 + \|x + iy\|^2 + \|x - iy\|^2].$
Proving a result

For $x, y \in S_H$ fixed, use the polarization formula:

$$
(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y) \\
+ i (T(x + iy) \mid x + iy) - i (T(x - iy) \mid x - iy) \right].
$$

$$
| (Tx \mid y) | \leq \frac{1}{4} v(T) \left[\| x + y \|^2 + \| x - y \|^2 + \| x + iy \|^2 + \| x - iy \|^2 \right].
$$

By the parallelogram’s law:

$$
| (Tx \mid y) | \leq \frac{1}{4} v(T) \left[2\| x \|^2 + 2\| y \|^2 + 2\| x \|^2 + 2\| iy \|^2 \right] = 2v(T).
$$
Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$v(T) := \sup\{|(Tx \mid x)| : x \in S_H\} \geq \frac{1}{2} \|T\|.$$

- For $x, y \in S_H$ fixed, use the polarization formula:

 $$(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y)
 + i(T(x + iy) \mid x + iy) - i(T(x - iy) \mid x - iy) \right].$$

- $|(Tx \mid y)| \leq \frac{1}{4} v(T) \left[\|x + y\|^2 + \|x - y\|^2 + \|x + iy\|^2 + \|x - iy\|^2 \right].$

- By the parallelogram’s law:

 $$|(Tx \mid y)| \leq \frac{1}{4} v(T) \left[2\|x\|^2 + 2\|y\|^2 + 2\|x\|^2 + 2\|iy\|^2 \right] = 2v(T).$$

- We just take supremum on $x, y \in S_H$
Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator,...

Example

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

$\text{Sp}(A) = \{0\}$,

$\text{Sp}(B) = \{0\}$.

$\text{Sp}(A + B) = \{\pm \sqrt{M \varepsilon}\} \subseteq W(A + B) \subseteq W(A) + W(B)$,

so the spectral radius of $A + B$ is bounded above by $\frac{1}{2}(|M| + |\varepsilon|)$.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator, etc.

Example

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix}$.

$\text{Sp}(A) = \{0\}$, $\text{Sp}(B) = \{0\}$.

$\text{Sp}(A + B) = \{\pm \sqrt{M \epsilon}\} \subseteq W(A + B) \subseteq W(A) + W(B)$, so the spectral radius of $A + B$ is bounded above by $\frac{1}{2} (|M| + |\epsilon|)$.

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

$\text{Sp}(A) = \{0\}$, $\text{Sp}(B) = \{0\}$.

$\text{Sp}(A + B) \subseteq \text{W}(A + B) \subseteq \text{W}(A) + \text{W}(B)$, so the spectral radius of $A + B$ is bounded above by $\frac{1}{2} (|M| + |\varepsilon|)$.

9 / 152

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

\[
\text{Sp}(A) = \{0\}, \quad \text{Sp}(B) = \{0\},
\]

\[
\text{Sp}(A + B) = \{\pm \sqrt{M\varepsilon}\} \subseteq W(A + B) \subseteq W(A) + W(B),
\]

so the spectral radius of $A + B$ is bounded above by $\frac{1}{2}(|M| + |\varepsilon|)$.

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.

Example

Consider \(A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 0 \\ \epsilon & 0 \end{pmatrix} \).

- \(\text{Sp}(A) = \{0\} \), \(\text{Sp}(B) = \{0\} \).
- \(\text{Sp}(A + B) = \{ \pm \sqrt{M\epsilon} \} \subseteq W(A + B) \subseteq W(A) + W(B) \),
- so the spectral radius of \(A + B \) is bounded above by \(\frac{1}{2}(|M| + |\epsilon|) \).

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator...
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]
\[V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Some properties

\[X \text{ Banach space, } T \in L(X). \]
- \(V(T) \) is connected but not necessarily convex.
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X),$

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}:$
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]
\[V(T) = \left\{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \right\} \]

Some properties

\[X \text{ Banach space, } T \in L(X). \]
- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \alpha, \beta \in \mathbb{K}: \)
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S); \)
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Some properties

Let X be a Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + \beta S) = \alpha + \beta V(S)$.

Sp$(T) \subseteq V(T)$.

Actually, $\text{co} \ Sp(T) \subseteq V(T)$.

$\text{co} \ Sp(T) = \bigcap \{ V_p(T) : p \text{ equivalent norm} \}$

where $V_p(T)$ is the numerical range of T in the Banach space (X, p).

$V(U^{-1}TU) = V(T)$ for every $T \in L(X)$ and every $U \in \text{Iso}(X)$.

10 / 152
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]
\[V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Some properties

\[X \text{ Banach space, } T \in L(X). \]

- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \alpha, \beta \in \mathbb{K} \):
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S); \)
 - \(V(\alpha \text{Id} + \beta S) = \alpha + \beta V(S). \)
- \(\text{Sp}(T) \subseteq \overline{V(T)}. \)
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X)$, $\alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + \beta S) = \alpha V(\text{Id}) + \beta V(S)$.
- $\text{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger–Crabb) Actually, $\overline{\text{co}(\text{Sp}(T))} \subseteq \overline{V(T)}$.
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\(X \) Banach space, \(T \in L(X) \),

\[
V(T) = \left\{ x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1 \right\}
\]

Some properties

\(X \) Banach space, \(T \in L(X) \).

- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \ \alpha, \beta \in \mathbb{K} \):
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S) \);
 - \(V(\alpha \text{Id} + \beta S) = \alpha + \beta V(S) \).
- \(\text{Sp}(T) \subseteq \overline{V(T)} \).
- (Zenger–Crabb) Actually, \(\overline{\text{co}}(\text{Sp}(T)) \subseteq \overline{V(T)} \).
- \(\overline{\text{co}} \text{Sp}(T) = \bigcap \{ \overline{V_p(T)} : p \text{ equivalent norm} \} \)
 where \(V_p(T) \) is the numerical range of \(T \) in the Banach space \((X, p) \).
Numerical range of operators
Definitions and first properties

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let \(X \) be a Banach space, \(T \in L(X) \), then

\[
V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}
\]

Some properties

Let \(X \) be a Banach space, \(T \in L(X) \).

- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \alpha, \beta \in \mathbb{K} \):
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S) \);
 - \(V(\alpha \text{Id} + \beta S) = \alpha + \beta V(S) \).
- \(\text{Sp}(T) \subseteq \overline{V(T)} \).
- (Zenger–Crabb) Actually, \(\overline{\text{co}(\text{Sp}(T))} \subseteq \overline{V(T)} \).
- \(\overline{\text{co} \text{Sp}(T)} = \bigcap \{ \overline{V_p(T)} : p \text{ equivalent norm} \} \)
 where \(V_p(T) \) is the numerical range of \(T \) in the Banach space \((X, p)\).
- \(V(U^{-1}TU) = V(T) \) for every \(T \in L(X) \) and every \(U \in \text{Iso}(X) \).
Numerical range: Banach spaces (II)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X),$

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$
Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

The numerical range as a derivative

X Banach space, $T \in L(X)$. Then

$$\sup \Re V(T) = \lim_{\alpha \to 0^*} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}$$

i.e. $\sup \Re V(T)$ is the derivative of the norm at Id in the direction of T.
Numerical range of operators
Definitions and first properties

Numerical range: Banach spaces (II)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]
\[V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

The numerical range as a derivative

\[X \text{ Banach space, } T \in L(X). \text{ Then} \]
\[\sup \operatorname{Re} V(T) = \lim_{\alpha \to 0^*} \frac{\| \text{Id} + \alpha T \| - 1}{\alpha} \]

\[\text{i.e. } \sup \operatorname{Re} V(T) \text{ is the derivative of the norm at Id in the direction of } T. \]

Consequence

\[X \text{ Banach space, } T \in L(X). \text{ Then } \overline{\operatorname{co}}(V(T)) = \overline{\operatorname{co}}(V(T^*)). \]
Numerical range: Banach spaces (II)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space and $T \in L(X)$. Then

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1\}$$

The numerical range as a derivative

Let X be a Banach space and $T \in L(X)$. Then

$$\sup \text{Re} \ V(T) = \lim_{\alpha \to 0^*} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}$$

i.e. $\sup \text{Re} \ V(T)$ is the derivative of the norm at Id in the direction of T.

Consequence

Let X be a Banach space and $T \in L(X)$. Then

$$\overline{\text{co}}(V(T)) = \overline{\text{co}}(V(T^*))$$

Stronger result (Bollobás, 1970)

Let X be a Banach space and $T \in L(X)$. Then

$$V(T) \subseteq V(T^*) \subseteq \overline{V(T)}.$$
Observation

The numerical range depends on the base field:

X complex Banach space $\implies X_{\mathbb{R}}$ real space underlying X.

$T \in \mathcal{L}(X) \implies T_{\mathbb{R}} \in \mathcal{L}(X_{\mathbb{R}})$ is T viewed as a real operator.

Then $V(T_{\mathbb{R}}) = \Re V(T)$.

Consequence:

X complex, then there is $S \in \mathcal{L}(X_{\mathbb{R}})$ with $\|S\| = 1$ and $V(S) = \{0\}$.
Observation

The numerical range depends on the base field:

- X complex Banach space $\Rightarrow X_\mathbb{R}$ real space underlying X.
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.

Consequence:

X complex, then there is $S \in L(X_\mathbb{R})$ with $\|S\| = 1$ and $V(S) = \{0\}$.
Some motivation for the numerical range

It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators, etc.

It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

It gives an easy and quantitative proof of the fact that \(\text{Id} \) is an strongly extreme point of \(B(X) \) (MLUR point).
Some motivation for the numerical range
Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
- It gives an easy and quantitative proof of the fact that \(\text{Id} \) is an strongly extreme point of \(B_{L(X)} \) (MLUR point).
Numerical radius: definition and properties

Let X be a real or complex Banach space, $T \in \mathcal{L}(X)$, and $v(T) = \sup \{ |\lambda| : \lambda \in \sigma(T) \}$,
where $\sigma(T)$ is the spectrum of T.

Elementary properties

- For every $T, S \in \mathcal{L}(X)$,
 $$v(T + S) \leq v(T) + v(S).$$
- For every $\lambda \in K$ and $T \in \mathcal{L}(X)$,
 $$v(\lambda T) = |\lambda| v(T).$$
- For every $U \in \text{Iso}(X)$,
 $$v(U^{-1} T U) = v(T).$$
- For every $T \in \mathcal{L}(X)$,
 $$v(T^*) = v(T).$$
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$,

\[v(T) = \sup \{|\lambda| : \lambda \in V(T)\} \]

\[= \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\} \]
Numerical radius: definition and properties

Numerical radius

\(X \) real or complex Banach space, \(T \in L(X) \),

\[
\nu(T) = \sup \{ |\lambda| : \lambda \in V(T) \} \\
= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}
\]

Elementary properties

\(X \) Banach space, \(T \in L(X) \)

- \(\nu(\cdot) \) is a seminorm, i.e.
 - \(\nu(T + S) \leq \nu(T) + \nu(S) \) for every \(T, S \in L(X) \).
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{|\lambda| : \lambda \in V(T)\}$$

$$= \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Elementary properties

Let X be a Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, and let $T \in L(X)$. The numerical radius of T is defined as

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

$$= \sup \{ |x^* (Tx)| : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1 \}$$

Elementary properties

Let X be a Banach space, and let $T \in L(X)$. The numerical radius $v(\cdot)$ satisfies the following properties:

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.
- $\sup |\text{Sp}(T)| \leq v(T)$.
Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

$$= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}, T \in L(X)$.

- $\sup \left| \text{Sp}(T) \right| \leq v(T)$.

- $v(U^{-1}TU) = v(T)$ for every $U \in \text{Iso}(X)$.

Numerical radius

X real or complex Banach space, **T** ∈ **L**(**X**),

\[v(T) = \sup \{ |\lambda| : \lambda \in V(T) \} \]

\[= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Elementary properties

X Banach space, **T** ∈ **L**(**X**)

- *v(·)* is a seminorm, i.e.
 - \(v(T + S) \leq v(T) + v(S) \) for every **T**, **S** ∈ **L**(**X**).
 - \(v(\lambda T) = |\lambda| v(T) \) for every \(\lambda \in \mathbb{K} \), **T** ∈ **L**(**X**).

- \(\sup |\text{Sp}(T)| \leq v(T) \).
- \(v(U^{-1}TU) = v(T) \) for every **U** ∈ Iso(**X**).
- \(v(T^*) = v(T) \).
Numerical radius: examples

Some examples

1. Let H be a real Hilbert space with dimension $\dim(H) > 1$. Then there exists $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. Let H be a complex Hilbert space with dimension $\dim(H) > 1$. Then $v(T) \geq \frac{1}{2}\|T\|$, where the constant $\frac{1}{2}$ is optimal.

3. Let $X = L^1(\mu)$, then $v(T) = \|T\|$ for every $T \in L(X)$.

4. Let $X^* \equiv L^1(\mu)$, then $v(T) = \|T\|$ for every $T \in L(X)$.

5. In particular, this is the case for $X = C(K)$.

15 / 152
Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$ implies that there exists $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. For $X = L^1(\mu)$, we have $v(T) = \|T\|$ for every $T \in L(X)$.

3. In particular, this is the case for $X = C(K)$.

15 / 152
Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples

1. \(H \) real Hilbert space \(\dim(H) > 1 \)
 \[\implies \exists T \in L(X) \text{ with } v(T) = 0 \text{ and } \|T\| = 1. \]

2. \(H \) complex Hilbert space \(\dim(H) > 1 \)
Some examples

1. H real Hilbert space $\dim(H) > 1$
 \implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2} \|T\|$,
Numerical range of operators
Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \Rightarrow exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2}\|T\|$,
 - the constant $\frac{1}{2}$ is optimal.
Numerical range of operators
Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2}\|T\|$,
 - the constant $\frac{1}{2}$ is optimal.

3. $X = L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$.

Numerical range of operators
Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2}\|T\|$,
 - the constant $\frac{1}{2}$ is optimal.

3. $X = L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$.

4. $X^* \equiv L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$.

In particular, this is the case for $X = C(K)$.

15 / 152
Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2} \|T\|$,
 - the constant $\frac{1}{2}$ is optimal.

3. $X = L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$.

4. $X^* \equiv L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$.

5. In particular, this is the case for $X = C(K)$.
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]
Proving a result

\[X = \mathcal{C}(K) \quad \Rightarrow \quad v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in S_{\mathcal{C}(K)} \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\| \).
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)). \) Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\|. \)

If \(f_0(\xi_0) \sim 1 \), then we were done. This our goal.
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : K \rightarrow [0, 1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : K \to [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|Tf_0(\xi_0)| \sim \|T\|\).

- Consider the non-empty open set
 \[V = \{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : K \rightarrow [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1 \), and
 \[\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)). \) Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\|. \)

- Consider the non-empty open set
 \[V = \{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : K \rightarrow [0, 1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1. \)

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi\omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1, \) and
 \[\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|[T(f_i)](\xi_0)| \sim \|T\|, \) but now \(|f_i(\xi_0)| = 1. \)
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)). \) Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|Tf_0(\xi_0)| \sim \|T\|. \)

- Consider the non-empty open set
 \[V = \left\{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \right\} \]
 and find \(\varphi : K \rightarrow [0, 1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1. \)

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1, \text{ and} \)
 \[\|f_0 - (\lambda f_1 + (1 - \lambda) f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|T(f_i)(\xi_0)| \sim \|T\|, \) but now \(|f_i(\xi_0)| = 1. \)

- Equivalently,
 \[|\delta_{\xi_0}(T(f_i))| \sim \|T\| \quad \text{and} \quad |\delta_{\xi_0}(f_i)| = 1, \]
 meaning that \(v(T) \sim \|T\|. \) \(\checkmark \)

If \(X = L_1(\mu) \), then \(X^* \cong C(\mathbb{R}^+). \) Therefore, \(v(T) = v(T^*) = \|T^*\| = \|T\|. \) Therefore, \(v(T) \sim \|T\|. \) \(\checkmark \)
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)). \) Find \(f_0 \in S_{C(K)} \) and \(\xi_0 \in K \) such that \(|[T f_0](\xi_0)| \sim \|T\|. \)

- Consider the non-empty open set
 \[V = \{ \xi \in K : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : K \to [0, 1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1. \)

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi) f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1 \), and
 \[\|f_0 - (\lambda f_1 + (1 - \lambda) f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|[T(f_i)](\xi_0)| \sim \|T\|, \) but now \(f_i(\xi_0) = 1. \)

- Equivalently,
 \[|\delta_{\xi_0}(T(f_i))| \sim \|T\| \quad \text{and} \quad |\delta_{\xi_0}(f_i)| = 1, \]
 meaning that \(\nu(T) \sim \|T\|. \)

\[\text{If } X = L_1(\mu), \text{ then } X^* \equiv C(K_\mu). \text{ Therefore, } \nu(T) = \nu(T^*) = \|T^*\| = \|T\|. \]

Differences between real and complex spaces

Example

X complex Banach space, define $T \in L(X)$ by $T(x) = ix$ ($x \in X$).

$\|T\| = 1$ and $v(T) = \emptyset$ if viewed in X_R.

$\|T\| = 1$ and $V(T) = \{i\}$, so $v(T) = 1$ if viewed in (complex) X.

Theorem (Bohnenblust-Karlin, 1955; Glickfeld, 1970)

X complex Banach space, $T \in L(X)$:

$v(T) \geq 1$ $e^{\|T\|}$.

The constant 1 e is optimal: $\exists X$ two-dimensional complex, $\exists T \in L(X)$ with $\|T\| = e$ and $v(T) = 1$.
Example

X complex Banach space, define $T \in L(X_{\mathbb{R}})$ by

$$T(x) = i x \quad (x \in X).$$

- $\|T\| = 1$ and $v(T) = 0$ if viewed in $X_{\mathbb{R}}$.
- $\|T\| = 1$ and $V(T) = \{i\}$, so $v(T) = 1$ if viewed in (complex) X.

Theorem (Bohnenblust-Karlin, 1955; Glickfeld, 1970)

X complex Banach space, $T \in L(X_{\mathbb{R}})$:

$$v(T) \geq 1 e^{\|T\|}.$$

The constant $1 e^{\|T\|}$ is optimal:

$\exists X$ two-dimensional complex, $\exists T \in L(X_{\mathbb{R}})$ with $\|T\| = e$ and $v(T) = 1$.

Differences between real and complex spaces

Example

\(X \) complex Banach space, define \(T \in L(X_R) \) by

\[T(x) = ix \quad (x \in X). \]

- \(\|T\| = 1 \) and \(v(T) = 0 \) if viewed in \(X_R \).
- \(\|T\| = 1 \) and \(V(T) = \{i\} \), so \(v(T) = 1 \) if viewed in (complex) \(X \).

Theorem (Bohnenblust-Karlin, 1955; Glickfeld, 1970)

\(X \) complex Banach space, \(T \in L(X) \):

\[v(T) \geq \frac{1}{e} \|T\|. \]

The constant \(\frac{1}{e} \) is optimal:

\[\exists X \text{ two-dimensional complex}, \exists T \in L(X) \text{ with } \|T\| = e \text{ and } v(T) = 1. \]
The exponential function

Let X be a Banach space, $T \in L(X)$, define

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n.$$
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

The exponential function

X Banach space, $T \in L(X)$, define $\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$.

First properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\}$ one-parameter semigroup generated by T.
- $\|\exp(T)\| \leq e^{\|T\|}$ (we will improve this inequality in the sequel).
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

The exponential function

X Banach space, $T \in L(X)$, define $\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$.

First properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\}$ one-parameter semigroup generated by T.
- $\|\exp(T)\| \leq e^\|T\|$ (we will improve this inequality in the sequel).

Exponential formula

X Banach, $T \in L(X)$, then $\|\exp(\zeta T)\| \leq e^{\|\zeta\|v(T)}$ for every $\zeta \in \mathbb{K}$.
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

The exponential function

\[\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n. \]

First properties

\[X \text{ Banach, } T, S \in L(X), \quad TS = ST \Rightarrow \exp(T+S) = \exp(T) \exp(S). \]

\[\exp(T) \exp(-T) = \exp(0) = \text{Id} \Rightarrow \exp(T) \text{ surjective isomorphism.} \]

\[\{ \exp(\rho T) : \rho \in \mathbb{R}^+ \} \text{ one-parameter semigroup generated by } T. \]

\[\|\exp(T)\| \leq e\|T\| (\text{we will improve this inequality in the sequel}). \]

Exponential formula

\[X \text{ Banach, } T \in L(X), \text{ then } \|\exp(\zeta T)\| \leq e^{\|\zeta\|v(T)} \text{ for every } \zeta \in \mathbb{K}. \]
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

For $\alpha > 0$ and $T \in L(X)$,

$$ e^{1/\alpha} \| \exp(T) \| = \left\| \exp \left(\frac{1}{\alpha} \text{Id} + T \right) \right\| \leq \exp \left(\left\| \frac{1}{\alpha} \text{Id} + T \right\| \right). $$

Exponential formula

X Banach, $T \in L(X)$, then $\| \exp(\zeta T) \| \leq e^{\| \zeta \| v(T)}$ for every $\zeta \in \mathbb{K}$.
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

Proof

- For \(\alpha > 0 \) and \(T \in L(X) \),

 \[
 e^{1/\alpha} \| \exp(T) \| = \left\| \exp \left(\frac{1}{\alpha} \Id + T \right) \right\| \leq \exp \left(\left\| \frac{1}{\alpha} \Id + T \right\| \right).
 \]

- Therefore,

 \[
 \| \exp(T) \| \leq \exp \left(\frac{\| \Id + \alpha T \| - 1}{\alpha} \right).
 \]

Exponential formula

- For every \(\zeta \in \mathbb{K} \) and \(T \in L(X) \),

 \[
 \| \exp(\zeta T) \| \leq e^{\| \zeta \| \nu(T)} \]
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

Proof

- For $\alpha > 0$ and $T \in L(X)$,

 \[e^{1/\alpha} \| \exp(T) \| = \left\| \exp \left(\frac{1}{\alpha} \operatorname{Id} + T \right) \right\| \leq \exp \left(\left\| \frac{1}{\alpha} \operatorname{Id} + T \right\| \right). \]

- Therefore,

 \[\| \exp(T) \| \leq \exp \left(\frac{\| \operatorname{Id} + \alpha T \| - 1}{\alpha} \right). \]

- Taking limit with $\alpha \to 0^+$, we get

 \[\| \exp(T) \| \leq \exp \left(\sup \Re V(T) \right) \leq e^{v(T)} \]

 and the result follows.

Exponential formula

For X Banach, $T \in L(X)$, then

\[\| \exp(\zeta T) \| \leq e^{\| \zeta \| v(T)} \]

for every $\zeta \in \mathbb{K}$.

18 / 152
Proof of Bohnenblust-Karlin’s theorem. Preliminaries

Proof

- For $\alpha > 0$ and $T \in L(X)$,

 $$e^{1/\alpha} \| \exp(T) \| = \left\| \exp \left(\frac{1}{\alpha} \text{Id} + T \right) \right\| \leq \exp \left(\left\| \frac{1}{\alpha} \text{Id} + T \right\| \right).$$

- Therefore,

 $$\| \exp(T) \| \leq \exp \left(\frac{\| \text{Id} + \alpha T \| - 1}{\alpha} \right).$$

- Taking limit with $\alpha \to 0^+$, we get

 $$\| \exp(T) \| \leq \exp \left(\sup \Re V(T) \right) \leq e^{\nu(T)}$$

 and the result follows.

Exponential formula

- X Banach, $T \in L(X)$, then $\| \exp(\zeta T) \| \leq e^{\|\zeta\|\nu(T)}$ for every $\zeta \in \mathbb{K}$.

- Actually, $\| \exp(T) \| \leq e^{\sup \Re V(T)} \leq e^{\nu(T)}$.
Proof of Bohnenblust-Karlin’s theorem

Theorem

X complex Banach space, \(T \in L(X) \). Then \(\|T\| \leq e^{v(T)} \).
Proof of Bohnenblust-Karlin’s theorem

Theorem

X complex Banach space, $T \in L(X)$. Then $\|T\| \leq e^v(T)$.

Proof.
Proof of Bohnenblust-Karlin’s theorem

Theorem

X complex Banach space, $T \in L(X)$. Then $\|T\| \leq e^{v(T)}$.

Proof.
Consider $f(\zeta) = \exp(\zeta T)$ ($\zeta \in \mathbb{C}$) which is an entire function.
Proof of Bohnenblust-Karlin’s theorem

Theorem

\(X\) complex Banach space, \(T \in L(X)\). Then \(\|T\| \leq e^{v(T)}\).

Proof.

Consider \(f(\zeta) = \exp(\zeta T)\) (\(\zeta \in \mathbb{C}\)) which is an entire function.

- If \(v(T) = 0\), then \(\|f(\zeta)\| \leq \exp(|\zeta|v(T)) \leq 1\)

 [Liouville’s theorem] \(\implies f\) is constant, so \(T = f'(0) = 0\).
Proof of Bohnenblust-Karlin’s theorem

Theorem

\(X\) complex Banach space, \(T \in L(X)\). Then \(\|T\| \leq e^{v(T)}\).

Proof.

Consider \(f(\zeta) = \exp(\zeta T)\) \((\zeta \in \mathbb{C})\) which is an entire function.

- If \(v(T) = 0\), then \(\|f(\zeta)\| \leq \exp(\|\zeta\|v(T)) \leq 1\)

 [Liouville’s theorem] \(\implies f\) is constant, so \(T = f'(0) = 0\).

- Now, it is enough to show that \(v(T) = 1\) implies \(\|T\| \leq e\).
Proof of Bohnenblust-Karlin’s theorem

Theorem

X complex Banach space, $T \in L(X)$. Then $\|T\| \leq e^v(T)$.

Proof.

Consider $f(\zeta) = \exp(\zeta T)$ ($\zeta \in \mathbb{C}$) which is an entire function.

- If $v(T) = 0$, then $\|f(\zeta)\| \leq \exp(|\zeta|v(T)) \leq 1$ [Liouville’s theorem] $\implies f$ is constant, so $T = f'(0) = 0$.
- Now, it is enough to show that $v(T) = 1$ implies $\|T\| \leq e$.
- Indeed, by Cauchy integral formula

$$T = f'(0) = \frac{1}{2\pi i} \int_{C(0,1)} \frac{f(\zeta)}{\zeta^2} d\zeta.$$
Proof of Bohnenblust-Karlin’s theorem

Theorem

\(X \) complex Banach space, \(T \in L(X) \). Then \(\|T\| \leq e^{v(T)} \).

Proof.

Consider \(f(\zeta) = \exp(\zeta T) \) (\(\zeta \in \mathbb{C} \)) which is an entire function.

- If \(v(T) = 0 \), then \(\|f(\zeta)\| \leq \exp(|\zeta|v(T)) \leq 1 \)

 [Liouville’s theorem] \(\implies f \) is constant, so \(T = f'(0) = 0 \).

- Now, it is enough to show that \(v(T) = 1 \) implies \(\|T\| \leq e \).

- Indeed, by Cauchy integral formula

\[
T = f'(0) = \frac{1}{2\pi i} \int_{C(0,1)} \frac{f(\zeta)}{\zeta^2} d\zeta.
\]

- Therefore,

\[
\|T\| \leq \frac{1}{2\pi} \int_{C(0,1)} \|\exp(\zeta T)\| d\zeta \leq \frac{1}{2\pi} \int_{C(0,1)} e^{|\zeta|v(T)} d\zeta = e
\]

and we are done.
Numerical index: definition and properties

Let X be a real or complex Banach space. The numerical index $n(X)$ is defined by:

$$n(X) = \max \{ k \geq 0 : k \|T\| \leq v(T) \forall T \in \mathcal{L}(X) \} = \inf \{ v(T) : T \in \mathcal{L}(X), \|T\| = 1 \}.$$

Elementary properties

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $\frac{1}{e} \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:
 - $\{ n(X) : X$ complex Banach space $\} = \left[e^{-1}, 1 \right]$,
 - $\{ n(X) : X$ real Banach space $\} = \left[0, 1 \right]$.

Equivalent norms

- v norm on $\mathcal{L}(X)$ equivalent to the given norm $\iff n(X) > 0$.
- $v(T) = \|T\|$ for every $T \in \mathcal{L}(X) \iff n(X) = 1$.

- $n(X^*) \leq n(X)$.

Numerical index: definition and properties

Numerical index

Let X be a real or complex Banach space. The numerical index $n(X)$ is defined as:

$$ n(X) = \max \{ k \geq 0 : k \|T\| \leq \nu(T) \ \forall T \in L(X) \} $$

$$ = \inf \{ \nu(T) : T \in L(X), \|T\| = 1 \}. $$
Numerical index: definition and properties

Numerical index

X real or complex Banach space

\[
 n(X) = \max\{ k \geq 0 : k \|T\| \leq \nu(T) \forall T \in L(X) \}
\]

\[
= \inf \{ \nu(T) : T \in L(X), \|T\| = 1 \}.
\]

Elementary properties

X Banach space.

- In the real case, \(0 \leq n(X) \leq 1\).
- In the complex case, \(1/e \leq n(X) \leq 1\).
Numerical index: definition and properties

Numerical index

Let X be a real or complex Banach space. Then the numerical index $n(X)$ is defined as:

$$n(X) = \max \{ k \geq 0 : k \| T \| \leq \nu(T) \ \forall T \in L(X) \}$$

$$= \inf \{ \nu(T) : T \in L(X), \| T \| = 1 \}.$$

Elementary properties

Let X be a Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

$$\{ n(X) : X \text{ complex Banach space} \} = [e^{-1}, 1],$$

$$\{ n(X) : X \text{ real Banach space} \} = [0, 1].$$
Numerical index: definition and properties

Numerical index

Let X be a real or complex Banach space. Then the numerical index of X, denoted $n(X)$, is defined as:

$$n(X) = \max \{ k \geq 0 : k \|T\| \leq v(T) \quad \forall T \in L(X) \}$$

$$= \inf \{ v(T) : T \in L(X), \|T\| = 1 \}.$$

Elementary properties

Let X be a Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $$\{ n(X) : X \text{ complex Banach space} \} = [e^{-1}, 1],$$
 $$\{ n(X) : X \text{ real Banach space} \} = [0, 1].$$

- v norm on $L(X)$ equivalent to the given norm $\iff n(X) > 0$.

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \geq 0 : k \|T\| \leq v(T) \ \forall T \in L(X)\}$$

$$= \inf \{v(T) : T \in L(X), \|T\| = 1\}.$$

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $$\{n(X) : X \text{ complex Banach space}\} = [e^{-1}, 1],$$
 $$\{n(X) : X \text{ real Banach space}\} = [0, 1].$$

- v norm on $L(X)$ equivalent to the given norm $\iff n(X) > 0$.
- $v(T) = \|T\|$ for every $T \in L(X) \iff n(X) = 1$.
Numerical range of operators Definitions and first properties

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$n(X) = \max \{ k \geq 0 : k \| T \| \leq v(T) \ \forall T \in L(X) \}$$

$$= \inf \{ v(T) : T \in L(X), \| T \| = 1 \}.$$

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

$$\{ n(X) : X \text{ complex Banach space} \} = [e^{-1}, 1],$$

$$\{ n(X) : X \text{ real Banach space} \} = [0, 1].$$

- v norm on $L(X)$ equivalent to the given norm $\iff n(X) > 0$.
- $v(T) = \| T \|$ for every $T \in L(X) \iff n(X) = 1$.
- $n(X^*) \leq n(X)$.
Numerical index: examples

Some examples

1. Hilbert, \(\dim(H) > 1 \):
 - \(n(H) = \begin{cases} 0 & \text{real case}, \\ 1 & \text{complex case}. \end{cases} \)

2. Complex space \(X \):
 - \(n(X) \mathbb{R} = 0 \).

3. \(n(L^1(\mu)) = 1 \), \(\mu \) positive measure.

4. \(X^* \equiv L^1(\mu) \Rightarrow n(X) = 1 \).

5. In particular,
 - \(n(C(K)) = 1 \),
 - \(n(C_0(L)) = 1 \),
 - \(n(L^\infty(\mu)) = 1 \).

6. \(n(A(D)) = 1 \) and \(n(H_\infty) = 1 \).
Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases}
0 & \text{real case,} \\
\frac{1}{2} & \text{complex case.}
\end{cases}$$
Numerical range of operators
Definitions and first properties

Numerical index: examples

Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases}
0 & \text{real case,} \\
\frac{1}{2} & \text{complex case.}
\end{cases}$$

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

$H \odot L_1(\mu) \
\implies n(X_{\mathbb{R}}) = 1$.

In particular,

$\n(C(K)) = 1$,

$\n(C_0(L)) = 1$,

$\n(L_{\infty}(\mu)) = 1$.

$\n(A(D)) = 1$ and

$\n(H_{\infty}) = 1$.

21 / 152
Numerical index: examples

Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases}
0 & \text{real case,} \\
\frac{1}{2} & \text{complex case.}
\end{cases}$$

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.
Numerical index: examples

Some examples

1. H Hilbert, $\dim(H) > 1$:

 \[n(H) = \begin{cases}
 0 & \text{real case,} \\
 \frac{1}{2} & \text{complex case.}
 \end{cases} \]

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.
Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases} 0 &\text{real case,} \\ \frac{1}{2} &\text{complex case.} \end{cases}$$

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.

5. In particular,

$$n(C(K)) = 1, \quad n(C_0(L)) = 1, \quad n(L_\infty(\mu)) = 1.$$
Some examples

1. H Hilbert, $\dim(H) > 1$:
 \[
 n(H) = \begin{cases}
 0 & \text{real case,} \\
 \frac{1}{2} & \text{complex case.}
 \end{cases}
 \]

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.

5. In particular,
 \[
 n(C(K)) = 1, \quad n(C_0(L)) = 1, \quad n(L_\infty(\mu)) = 1.
 \]

6. $n(A(\mathbb{D})) = 1$ and $n(H^\infty) = 1$.

Numerical index: examples
Two results on surjective isometries

- Numerical ranges and isometries
- Isometries on finite-dimensional spaces
- Isometries and duality

M. Martín
The group of isometries of a Banach space and duality.

M. Martín, J. Merí, and A. Rodríguez-Palacios.
Finite-dimensional spaces with numerical index zero.

H. P. Rosenthal
The Lie algebra of a Banach space.
Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).

- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \text{Id}$).
A motivating example

A real or complex $n \times n$ matrix. TFAE:
- A is skew-adjoint (i.e. $A^* = -A$).
- $\text{Re}(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \text{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:
- $\text{Re} \, W(T) = \{0\}$.
- $\exp(\rho T) \in \text{Iso}(H)$ for every $\rho \in \mathbb{R}$.
Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:
- A is skew-adjoint (i.e. $A^* = -A$).
- $\Re(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \Id$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:
- $\Re W(T) = \{0\}$.
- $\exp(\rho T) \in \Iso(H)$ for every $\rho \in \mathbb{R}$.

For general Banach spaces

X Banach space, $T \in L(X)$. TFAE:
- $\Re V(T) = \{0\}$.
- $\exp(\rho T) \in \Iso(X)$ for every $\rho \in \mathbb{R}$.
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re} \ V(T) = \{0\}$ (\textit{T is skew-hermitian}).
- $\| \exp(\rho T) \| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\| \text{Id} + \rho T \| - 1}{\rho} = 0$.
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

1. $\text{Re } V(T) = \{0\}$ (T is skew-hermitian).
2. $\| \exp(\rho T) \| \leq 1$ for every $\rho \in \mathbb{R}$.
3. $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
4. T belongs to the tangent space to $\text{Iso}(X)$ at Id.
5. $\lim_{\rho \to 0} \frac{\| \text{Id} + \rho T \| - 1}{\rho} = 0$.

This follows from the exponential formula

$$
\sup \text{Re } V(T) = \lim_{\beta \downarrow 0} \frac{\| \text{Id} + \beta T \| - 1}{\beta} = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha T) \|}{\alpha}.
$$
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re } V(T) = \{0\}$ \textit{(T is skew-hermitian)}.
- $\| \exp(\rho T) \| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\| \text{Id} + \rho T \| - 1}{\rho} = 0$.

Remark

If X is complex, there always exists exponential one-parameter semigroups of surjective isometries:

$$t \mapsto e^{it} \text{Id} \quad \text{generator: } i \text{Id}.$$
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

\(X \) real or complex Banach space, \(T \in L(X) \). TFAE:

- \(\text{Re} \ V(T) = \{0\} \) (\(T \) is skew-hermitian).
- \(\| \exp(\rho T) \| \leq 1 \) for every \(\rho \in \mathbb{R} \).
- \(\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X) \).
- \(T \) belongs to the tangent space to \(\text{Iso}(X) \) at \(\text{Id} \).
- \(\lim_{\rho \to 0} \frac{\|\text{Id} + \rho T\| - 1}{\rho} = 0 \).

Main consequence

If \(X \) is a real Banach space such that

\[V(T) = \{0\} \quad \implies \quad T = 0, \]

then \(\text{Iso}(X) \) is “small”:

- it does not contain any exponential one-parameter semigroup,
- the tangent space of \(\text{Iso}(X) \) at \(\text{Id} \) is zero.
Theorem

X finite-dimensional real space. TFAE:

1. $\text{Iso}(X)$ is infinite.
2. $n(X) = 0$.
3. There is $T \in \mathcal{L}(X)$, $T \neq 0$, with $v(T) = 0$.

Examples of spaces of this kind

2. $X \mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and $\|x_0 + e^{i\theta}x_1\| = \|x_0 + x_1\|$ ($x_0 \in X_0$, $x_1 \in X_1$, $\theta \in \mathbb{R}$).

(Note that the other 3 cases are included here)

Question

Can every Banach space X with $n(X) = 0$ be decomposed as in 2?
Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind:

2. $X \mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and $\|x_0 + e^{i\theta}x_1\| = \|x_0 + x_1\|$ ($x_0 \in X_0$, $x_1 \in X_1$, $\theta \in \mathbb{R}$).

(Note that the other 3 cases are included here.)
Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. $X \subset \mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and

\[
\|x_0 + e^{i\theta}x_1\| = \|x_0 + x_1\| \quad (x_0 \in X_0, x_1 \in X_1, \theta \in \mathbb{R})
\]

(Note that the other 3 cases are included here)

Question

Can every Banach space X with $n(X) = 0$ be decomposed as in above?
Isometries in finite-dimensional spaces

Theorem

X finite-dimensional **real** space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. Then the following are equivalent (TFAE):

1. $\text{Iso}(X)$ is infinite.
2. $n(X) = 0$.
3. There exists $T \in L(X)$, $T \neq 0$, with $v(T) = 0$.

Examples of spaces of this kind

2. $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
Isometries in finite-dimensional spaces

Theorem

X finite-dimensional **real** space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. $X_\mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and

 $$\left\| x_0 + e^{i\theta} x_1 \right\| = \left\| x_0 + x_1 \right\| \quad (x_0 \in X_0, \ x_1 \in X_1, \ \theta \in \mathbb{R}).$$

(Note that the other 3 cases are included here)
Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:
- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $v(T) = 0$.

Examples of spaces of this kind

2. $X_\mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and

$$\left\| x_0 + e^{i\theta} x_1 \right\| = \left\| x_0 + x_1 \right\| \quad (x_0 \in X_0, \ x_1 \in X_1, \ \theta \in \mathbb{R}).$$

(Note that the other 3 cases are included here)

Question

Can every Banach space X with $n(X) = 0$ be decomposed as in 4?
Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is $X = \bigoplus_{n \geq 2} X_n$ where X_n is the two-dimensional space whose unit ball is the regular polygon of 2^n vertices.

Note such an example is not possible in the finite-dimensional case.
Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.
Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

\[X = \left[\bigoplus_{n \geq 2} X_n \right]_{c_0} \]

X_n is the two-dimensional space whose unit ball is the regular polygon of $2n$ vertices.
Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

$$X = \left[\bigoplus_{n \geq 2} X_n \right]_{c_0}$$

X_n is the two-dimensional space whose unit ball is the regular polygon of $2n$ vertices.

Note

Such an example is not possible in the finite-dimensional case.
Quasi affirmative answer
Quasi affirmative answer

Finite-dimensional case

Let X be a finite-dimensional real space. TFAE:

1. $n(X) = 0$.
2. $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X_0 is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,
 - there are ρ_1, \ldots, ρ_n rational numbers, such that
 \[
 \|x_0 + e^{i\rho_1 \theta} x_1 + \cdots + e^{i\rho_n \theta} x_n\| = \|x_0 + x_1 + \cdots + x_n\|
 \]
 for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark: The theorem is due to Rosenthal, but with real ρ's. The fact that the ρ's may be chosen as rational numbers is due to M. Merí–Rodríguez-Palacios.
Finite-dimensional case

Let X be a finite-dimensional real space. TFAE:

- $n(X) = 0$.
- $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X_0 is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,

there are ρ_1, \ldots, ρ_n rational numbers, such that

$$\left\| x_0 + e^{i\rho_1 \theta} x_1 + \cdots + e^{i\rho_n \theta} x_n \right\| = \left\| x_0 + x_1 + \cdots + x_n \right\|$$

for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark

- The theorem is due to Rosenthal, but with real ρ’s.
- The fact that the ρ’s may be chosen as rational numbers is due to M.–Merí–Rodríguez-Palacios.
Sketch of the proof

Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$. We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.

Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$. You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j's are the eigenspaces of T^2.

Use Kronecker's Approximation Theorem to change the eigenvalues of T^2 by rational numbers.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

28 / 152
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $\nu(T) = 0$.

- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.

 Use Kronecker's Approximation Theorem to change the eigenvalues of T^2 by rational numbers.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
Sketch of the proof

1. Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
2. We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
3. A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
4. Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
5. You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j’s are the eigenspaces of T^2.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.

- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.

- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.

- You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j's are the eigenspaces of T^2.

- Use Kronecker’s Approximation Theorem to change the eigenvalues of T^2 by rational numbers.✓
A simple case of getting rational numbers

Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho}x_1 + e^{i\alpha \rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2.$$

Then

$$\|x_0 + x_1 + x_2\| = \|x_0 + \exp(i2\pi k(\alpha - 1)\rho)x_2\| \quad \forall \rho.$$

But \{\exp(i2\pi k(\alpha - 1)\rho) : k \in \mathbb{Z}\} is dense in \mathbb{T}, so

$$\|x_0 + (x_1 + x_2)\| = \|x_0 + e^{i\rho(x_1 + x_2)}\| \quad \forall \rho \in \mathbb{R}$$

and $X = X_0 \oplus \mathbb{Z}$ where $\mathbb{Z} = X_1 \oplus X_2$ is a complex space.
A simple case of getting rational numbers

Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho}x_1 + e^{i\alpha \rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2.$$
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2.$$

- Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha - 1)\rho} x_2\right)\| \quad \forall \rho.$
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.
 \[
 \|x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2.
 \]

- Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha-1)\rho} x_2\right)\| \quad \forall \rho$.

- Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.
 $$\left\| x_0 + e^{i\rho} x_1 + e^{i\alpha\rho} x_2 \right\| = \left\| x_0 + x_1 + x_2 \right\| \quad \forall \rho, \forall x_0, x_1, x_2.$$

- Then $\left\| x_0 + x_1 + x_2 \right\| = \left\| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha - 1)\rho} x_2 \right) \right\| \quad \forall \rho.$

- Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.

- Then $\left\| x_0 + (x_1 + x_2) \right\| = \left\| x_0 + e^{i\frac{2\pi k}{\alpha - 1}} (x_1 + x_2) \right\| \quad \forall k \in \mathbb{Z}$
A simple case of getting rational numbers

Let \(X = X_0 \oplus X_1 \oplus X_2 \) and \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \) s.t.

\[
\left\| x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2 \right\| = \left\| x_0 + x_1 + x_2 \right\| \quad \forall \rho, \forall x_0, x_1, x_2.
\]

Then \(\left\| x_0 + x_1 + x_2 \right\| = \left\| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha-1)\rho} x_2 \right) \right\| \quad \forall \rho \).

Take \(\rho = \frac{2\pi k}{\alpha - 1} \) with \(k \in \mathbb{Z} \).

Then \(\left\| x_0 + (x_1 + x_2) \right\| = \left\| x_0 + e^{i \frac{2\pi k}{\alpha - 1}} (x_1 + x_2) \right\| \quad \forall k \in \mathbb{Z} \)

But \(\left\{ \exp \left(i \frac{2\pi k}{\alpha - 1} \right) : k \in \mathbb{Z} \right\} \) is dense in \(\mathbb{T} \), so

\[
\left\| x_0 + (x_1 + x_2) \right\| = \left\| x_0 + e^{i\rho} (x_1 + x_2) \right\| \quad \forall \rho \in \mathbb{R}
\]

and \(X = X_0 \oplus Z \) where \(Z = X_1 \oplus X_2 \) is a complex space.
Consequences

If \(\dim(X) = 2 \), then \(X \equiv \mathbb{C} \).

If \(\dim(X) = 3 \), then \(X \equiv \mathbb{R} \oplus \mathbb{C} \) (absolute sum).

Natural question

Are all finite-dimensional \(X \)'s with \(n(X) = 0 \) of the form \(X = X_0 \oplus X_1 \)?

Answer

No.

Example

\[X = (\mathbb{R}^4, \|\cdot\|), \] \[\| (a, b, c, d) \| = \frac{1}{4} \int_0^{2\pi} |Re\left(e^{2it}(a+ib) + e^{it}(c+id)\right)| dt. \]

Then \(n(X) = 0 \) but the unique possible decomposition is \(X = \mathbb{C} \oplus \mathbb{C} \).
Consequences

Corollary

Let X be a real space with $n(X) = 0$.

- If $\dim(X) = 2$, then $X \cong \mathbb{C}$.
- If $\dim(X) = 3$, then $X \cong \mathbb{R} \oplus \mathbb{C}$ (absolute sum).
Consequences

Corollary

X real space with $n(X) = 0$.
- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with $n(X) = 0$ of the form $X = X_0 \oplus X_1$?
Consequences

Corollary

- If \(\dim(X) = 2 \), then \(X \equiv \mathbb{C} \).
- If \(\dim(X) = 3 \), then \(X \equiv \mathbb{R} \oplus \mathbb{C} \) (absolute sum).

Natural question

Are all finite-dimensional \(X \)'s with \(n(X) = 0 \) of the form \(X = X_0 \oplus X_1 \) ?

Answer

No.
Consequences

Corollary

X real space with $n(X) = 0$.
- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X’s with $n(X) = 0$ of the form $X = X_0 \oplus X_1$?

Answer

No.

Example

$X = (\mathbb{R}^4, \| \cdot \|)$, $\|(a, b, c, d)\| = \frac{1}{4} \int_0^{2\pi} \left| \text{Re} \left(e^{2it}(a + ib) + e^{it}(c + id) \right) \right| \, dt$.

Then $n(X) = 0$ but the unique possible decomposition is $X = \mathbb{C} \oplus \mathbb{C}$ with

$$\left\| e^{it} x_1 + e^{2it} x_2 \right\| = \left\| x_1 + x_2 \right\|.$$
The Lie-algebra of a Banach space

For a real Banach space X, the Lie-algebra $Z(X)$ is defined as:

$$Z(X) = \{ T \in \mathcal{L}(X) : v(T) = 0 \}.$$

When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $Z(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

$$\dim(X) = n \implies \dim(Z(X)) \leq n(n-1)/2.$$

Equality holds if and only if X is a Hilbert space.

An open problem

Given $n \geq 3$, which are the possible $\dim(Z(X))$ over all n-dimensional X's?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(Z(X))$ cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).
The Lie-algebra of a Banach space

Lie-algebra

\(X \) real Banach space, \(\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \} \).

- When \(X \) is finite-dimensional, \(\text{Iso}(X) \) is a Lie-group and \(\mathcal{Z}(X) \) is the tangent space (i.e. its Lie-algebra).

Remark

- \(\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2} \).
- Equality holds \(\iff \) \(H \) Hilbert space.
The Lie-algebra of a Banach space

<table>
<thead>
<tr>
<th>Lie-algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>X real Banach space, $\mathcal{Z}(X) = { T \in L(X) : v(T) = 0 }$.</td>
</tr>
<tr>
<td>- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>- $\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$.</td>
</tr>
<tr>
<td>- Equality holds $\iff H$ Hilbert space.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An open problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?</td>
</tr>
</tbody>
</table>
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : \nu(T) = 0 \}$.
- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$.
- Equality holds \iff H Hilbert space.

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
Two results on surjective isometries

Isometries on finite-dimensional spaces

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Proof

If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

Remark

If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X's?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, \(\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \} \).
- When \(X \) is finite-dimensional, \(\text{Iso}(X) \) is a Lie-group and \(\mathcal{Z}(X) \) is the tangent space (i.e. its Lie-algebra).

Proof

If \(\text{dim}(X) = 3 \), \(n(X) = 0 \), then \(X = \mathbb{C} \oplus \mathbb{R} \) (absolute sum).
- If \(\oplus = \oplus_2 \), then \(X \) is a Hilbert space and \(\text{dim}(\mathcal{Z}(X)) = 3 \). ✓

Remark

- If \(\oplus \neq \oplus_2 \), then isometries respect summands and \(\text{dim}(\mathcal{Z}(X)) = 1 \). ✓

An open problem

Given \(n \geq 3 \), which are the possible \(\text{dim}(\mathcal{Z}(X)) \) over all \(n \)-dimensional \(X \)'s?

Observation (Javier Merí, PhD)

When \(\text{dim}(X) = 3 \), \(\text{dim}(\mathcal{Z}(X)) \) cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Proof

If $\dim(X) = 3$, $n(X) = 0$, then $X = C \oplus R$ (absolute sum).

- If $\oplus = \oplus_2$, then X is a Hilbert space and $\dim(\mathcal{Z}(X)) = 3$. ✓
- If $\oplus \neq \oplus_2$, then isometries respect summands and $\dim(\mathcal{Z}(X)) = 1$. ✓

Remark

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
Semigroups of surjective isometries and duality

Remark

The problem

How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?

Is it possible that $\mathcal{Z}(\text{Iso}(X^*))$ is big while $\mathcal{Z}(\text{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.
Remark

X Banach space.

- $T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)$.
- $\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.
Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)$.
- $\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.

The problem

- How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?
- Is it possible that $\mathcal{Z}(\text{Iso}(X^*))$ is big while $\mathcal{Z}(\text{Iso}(X))$ is trivial?
Semigroups of surjective isometries and duality

Remark

- X Banach space.
- $T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)$.
- $\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.

The problem

- How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?
- Is it possible that $\mathcal{Z}(\text{Iso}(X^*))$ is big while $\mathcal{Z}(\text{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.
Semigroups of surjective isometries and duality

Two results on surjective isometries

Isometries and duality

Spaces $C_{E}(K, L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$C_{E}(K, L) = \{ f \in C(K) : f|_{L} \in E \}$.

Theorem $C_{E}(K, L)^{*} \equiv E^{*} \oplus \mathbb{C}0(K, L)^{*}$.

$\forall (C_{E}(K, L))^{*} = \mathbb{C}$. 33 / 152
Spaces $C_E(K\parallel L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\parallel L) = \{ f \in C(K) : f|_L \in E \}.$$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$
Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}$.

Theorem

$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1$.

Proof.
Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$

 $\implies C_0(K\|L)$ is an M-ideal of $C_E(K\|L)$.
Semigroups of surjective isometries and duality

<table>
<thead>
<tr>
<th>Spaces $C_E(K∥L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.</td>
</tr>
<tr>
<td>$C_E(K∥L) = {f \in C(K) : f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_E(K∥L)^* \equiv E^* \oplus_1 C_0(K∥L)^*$ & $n(C_E(K∥L)) = 1$.</td>
</tr>
</tbody>
</table>

Proof.

- $C_0(K∥L)$ is an M-ideal of $C(K)$
 $\implies C_0(K∥L)$ is an M-ideal of $C_E(K∥L)$.

- Meaning that $C_E(K∥L)^* \equiv C_0(K∥L)\perp \oplus_1 C_0(K∥L)^*$.
Semigroups of surjective isometries and duality

Spaces \(C_E(K\parallel L) \)

- \(K \) compact, \(L \subset K \) closed nowhere dense, \(E \subset C(L) \).

\[
C_E(K\parallel L) = \{ f \in C(K) : f|_L \in E \}.
\]

Theorem

\[
C_E(K\parallel L)^* \equiv E^* \oplus_1 C_0(K\parallel L)^* \quad \& \quad n(C_E(K\parallel L)) = 1.
\]

Proof.

- \(C_0(K\parallel L) \) is an \(M \)-ideal of \(C(K) \)

\[
\implies C_0(K\parallel L) \text{ is an } M \text{-ideal of } C_E(K\parallel L).
\]

- Meaning that \(C_E(K\parallel L)^* \equiv C_0(K\parallel L)^\perp \oplus_1 C_0(K\parallel L)^* \).

- \(C_0(K\parallel L)^\perp \equiv (C_E(K\parallel L)/C_0(K\parallel L))^* \equiv E^* \).
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}. $$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$
 $$\implies C_0(K\|L) \text{ is an } M\text{-ideal of } C_E(K\|L).$$

- Meaning that $C_E(K\|L)^* \equiv C_0(K\|L)^\perp \oplus_1 C_0(K\|L)^*.$

- $C_0(K\|L)^\perp \equiv (C_E(K\|L)/C_0(K\|L))^* \equiv E^*$:

- $\Phi : C_E(K\|L) \longrightarrow E$, $\Phi(f) = f|_L$.
 $$\|\Phi\| \leq 1 \quad \text{and} \quad \ker \Phi = C_0(K\|L).$$

- $\tilde{\Phi} : C_E(K\|L)/C_0(K\|E) \longrightarrow E \text{ onto isometry}$:

- $\{ g \in E : \|g\| < 1 \} \subseteq \Phi(\{ f \in C_E(K\|L) : \|f\| < 1 \}). \checkmark$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^*$$

and

$$n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$
 \[\implies C_0(K\|L) \text{ is an } M\text{-ideal of } C_E(K\|L). \]

- Meaning that $C_E(K\|L)^* \equiv C_0(K\|L)^\perp \oplus_1 C_0(K\|L)^*$

- $C_0(K\|L)^\perp \equiv (C_E(K\|L)/C_0(K\|L))^* \equiv E^*$:

- $\Phi : C_E(K\|L) \longrightarrow E$, $\Phi(f) = f|_L$.
 \[\|\Phi\| \leq 1 \text{ and } \ker \Phi = C_0(K\|L). \]

- $\tilde{\Phi} : C_E(K\|L)/C_0(K\|E) \longrightarrow E$ onto isometry:

 \[\{ g \in E : \|g\| < 1 \} \subseteq \Phi(\{ f \in C_E(K\|L) : \|f\| < 1 \}). \]
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.
Semigroups of surjective isometries and duality

<table>
<thead>
<tr>
<th>Spaces $C_E(K|L)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.</td>
</tr>
<tr>
<td>$C_E(K|L) = { f \in C(K) : f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_E(K|L)^* \equiv E^* \oplus_1 C_0(K|L)^*$ & $n(C_E(K|L)) = 1$.</td>
</tr>
</tbody>
</table>

Proof.
- Fix $T \in L(C_E(K\|L))$. Take $f_0 \in S_{C_E(K\|L)}$ and $\xi_0 \in K \setminus L$ with $|[Tf_0](\xi_0)| \sim \|T\|$.

Two results on surjective isometries

Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- Fix $T \in L(C_E(K\|L))$. Take $f_0 \in SC_E(K\|L)$ and $\xi_0 \in K \setminus L$ with $\|Tf_0(\xi_0)\| \sim \|T\|$.

- Consider $V = \{\xi \in K \setminus L : f_0(\xi) \sim f_0(\xi_0)\}$ and take $\varphi : K \rightarrow [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

Semigroups of surjective isometries and duality

Spaces \(C_E(K\|L) \)

\[K \text{ compact, } L \subset K \text{ closed nowhere dense, } E \subset C(L). \]

\[C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}. \]

Theorem

\[C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1. \]

Proof.

- Fix \(T \in L(C_E(K\|L)) \). Take \(f_0 \in S_{C_E(K\|L)} \) and \(\xi_0 \in K \setminus L \) with \(\|Tf_0(\xi_0)\| \sim \|T\| \).
- Consider \(V = \{ \xi \in K \setminus L : f_0(\xi) \sim f_0(\xi_0) \} \) and take \(\varphi : K \to [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).
- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \) and consider the functions \(f_i = (1 - \varphi)f_0 + \varphi \omega_i \equiv f_0 + \varphi(\omega_i - f_0) \in C_E(K\|L) \) for \(i = 1,2 \).
Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \ \& \ n(C_E(K\|L)) = 1.$$

Proof.

- Fix $T \in L(C_E(K\|L))$. Take $f_0 \in S_{C_E(K\|L)}$ and $\xi_0 \in K \setminus L$ with $|[Tf_0](\xi_0)| \sim \|T\|$.
- Consider $V = \{\xi \in K \setminus L : f_0(\xi) \sim f_0(\xi_0)\}$ and take $\varphi : K \to [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.
- Write $f_0(\xi_0) = \lambda \omega_1 + (1-\lambda)\omega_2$ with $|\omega_i| = 1$ and consider the functions
 $$f_i = (1-\varphi)f_0 + \varphi \omega_i \quad (= f_0 + \varphi(\omega_i - f_0)) \in C_E(K\|L) \text{ for } i = 1,2.$$
- Then $\|f_i\| \leq 1$ and $\|f_0 - (\lambda f_1 + (1-\lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0.$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad \text{null}(C_E(K\|L)) = 1.$$

Proof.

- Fix $T \in L(C_E(K\|L))$. Take $f_0 \in S_{C_E(K\|L)}$ and $\xi_0 \in K \setminus L$ with $|(Tf_0)(\xi_0)| \sim \|T\|$.

- Consider $V = \{\xi \in K \setminus L : f_0(\xi) \sim f_0(\xi_0)\}$ and take $\varphi : K \to [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2$ with $|\omega_i| = 1$ and consider the functions
 $$f_i = (1 - \varphi)f_0 + \varphi \omega_i \left[= f_0 + \varphi(\omega_i - f_0)\right] \in C_E(K\|L) \quad \text{for } i = 1, 2.$$

- Then $\|f_i\| \leq 1$ and $\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0$.

- Therefore, we may choose $i \in \{1,2\}$ with $|(T(f_i))(\xi_0)| \sim \|T\|$, but now $|f_i(\xi_0)| = 1$.

Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- Fix $T \in L(C_E(K\|L))$. Take $f_0 \in S_{C_E(K\|L)}$ and $\xi_0 \in K \setminus L$ with $|[T f_0](\xi_0)| \sim \|T\|$.

- Consider $V = \{ \xi \in K \setminus L : f_0(\xi) \sim f_0(\xi_0) \}$ and take $\varphi : K \to [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2$ with $|\omega_i| = 1$ and consider the functions

$$f_i = (1 - \varphi)f_0 + \varphi \omega_i \left[= f_0 + \varphi(\omega_i - f_0) \right] \in C_E(K\|L) \quad \text{for} \ i = 1, 2.$$

- Then $\|f_i\| \leq 1$ and $\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0$.

- Therefore, we may choose $i \in \{1,2\}$ with $|[T(f_i)](\xi_0)| \sim \|T\|$, but now $|f_i(\xi_0)| = 1$.

- Equivalently, $|\delta_{\xi_0}(T(f_i))| \sim \|T\|$ and $|\delta_{\xi_0}(f_i)| = 1$, so $v(T) \sim \|T\|$. ✓
Spaces $C_E(K\Vert L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\Vert L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\Vert L)^* \equiv E^* \oplus_1 C_0(K\Vert L)^* \quad \& \quad n(C_E(K\Vert L)) = 1.$$

Consequence: the example

Take $K = [0, 1]$, $L = \Delta$ (Cantor set), $E = \ell_2 \subset C(\Delta)$.

- $\text{Iso}(C_{\ell_2}([0, 1]\Vert \Delta))$ has no exponential one-parameter semigroups.
- $C_{\ell_2}([0, 1]\Vert \Delta)^* \equiv \ell_2 \oplus_1 C_0([0, 1]\Vert \Delta)^*$, so taken $S \in \text{Iso}(\ell_2)$

$$\implies T = \begin{pmatrix} S & 0 \\ 0 & \text{Id} \end{pmatrix} \in \text{Iso}(C_{\ell_2}([0, 1]\Vert \Delta)^*)$$

Then, $\text{Iso}(C_{\ell_2}([0, 1]\Vert \Delta)^*)$ contains infinitely many exponential one-parameter semigroups.
Some comments
Some comments

In terms of linear dynamical systems

In $C^\ell_2([0, 1] \parallel \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system $x'(t) = A x(t)$ (where $x(t) : \mathbb{R}^+ \rightarrow C^\ell_2([0, 1] \parallel \Delta)$) is given by a semigroup of isometries. There are infinitely many such A's in $C^\ell_2([0, 1] \parallel \Delta)^*$, in $C^\ell_2([0, 1] \parallel \Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2011) There are unbounded A's on $C^\ell_2([0, 1] \parallel \Delta)$ such that the solution to the linear dynamical system $x'(t) = A x(t)$ is a one-parameter C_0 semigroup of isometries. There is X such that $\text{Iso}(X) = \{-\text{Id}, \text{Id}\}$ and $X^* = \ell_2 \oplus^1 L_1(\nu)$.

Therefore, there is no semigroups in $\text{Iso}(X)$, but there are infinitely many exponential one-parameter semigroups in $\text{Iso}(X^*)$.
Some comments

In terms of linear dynamical systems

- In $C_{\ell^2}([0, 1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = Ax \quad (x : \mathbb{R}^+_0 \rightarrow C_{\ell^2}([0, 1]\|\Delta))$$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

 $$x' = Ax \quad (x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0, 1] \| \Delta))$$

 (which is $x(t) = \exp(tA)(x(0))$) is given by a semigroup of isometries.

- **There are infinitely many such A's in $C_{\ell_2}([0, 1] \| \Delta)^*$, in $C_{\ell_2}([0, 1] \| \Delta)^{**} \ldots**
Some comments

In terms of linear dynamical systems

1. In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = Ax \quad (x : \mathbb{R}_0^+ \to C_{\ell_2}([0,1]\|\Delta))$$

(which is $x(t) = \exp(tA)(x(0))$) is given by a semigroup of isometries.

2. There are infinitely many such A's in $C_{\ell_2}([0,1]\|\Delta)^*$, in $C_{\ell_2}([0,1]\|\Delta)^{**}$. . .

Further results (Koszmider–M.–Merí., 2011)

Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0,1]||\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system
 \[x' = A x \quad (x : \mathbb{R}^+_0 \longrightarrow C_{\ell_2}([0,1]||\Delta)) \]

 (which is $x(t) = \exp(tA)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A’s in $C_{\ell_2}([0,1]||\Delta)^*$, in $C_{\ell_2}([0,1]||\Delta)^{**}$.

Further results (Koszmider–M.–Merí., 2011)

- There are unbounded As on $C_{\ell_2}([0,1]||\Delta)$ such that the solution to the linear dynamical system
 \[x'(t) = A x(t) \]

 is a one-parameter C_0 semigroup of isometries.
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1]||\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system
 \[x' = A x \quad (x : \mathbb{R}^+ \longrightarrow C_{\ell_2}([0, 1]||\Delta)) \]

 (which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.
- There are infinitely many such A's in $C_{\ell_2}([0, 1]||\Delta)^*$, in $C_{\ell_2}([0, 1]||\Delta)^{**}$. . .

Further results (Koszmider–M.–Merí., 2011)

- There are unbounded A on $C_{\ell_2}([0, 1]||\Delta)$ such that the solution to the linear dynamical system
 \[x'(t) = A x(t) \]

 is a one-parameter C_0 semigroup of isometries.
- There is X such that
 \[\text{Iso}(X) = \{-\text{Id}, \text{Id}\} \quad \text{and} \quad X^* = \ell_2 \oplus_1 L_1(\nu). \]
Some comments

In terms of linear dynamical systems

- In $C_{\ell^2}([0, 1]|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = Ax \quad (x: \mathbb{R}_0^+ \longrightarrow C_{\ell^2}([0, 1]|\Delta))$$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A's in $C_{\ell^2}([0, 1]|\Delta)^*$, in $C_{\ell^2}([0, 1]|\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2011)

- There are unbounded As on $C_{\ell^2}([0, 1]|\Delta)$ such that the solution to the linear dynamical system

$$x'(t) = A x(t)$$

is a one-parameter C_0 semigroup of isometries.

- There is X such that

$$\text{Iso}(X) = \{-\text{Id}, \text{Id}\} \quad \text{and} \quad X^* = \ell_2 \oplus_1 L_1(\nu).$$

- Therefore, there is no semigroups in $\text{Iso}(X)$, but there are infinitely many exponential one-parameter semigroups in $\text{Iso}(X^*)$.
Numerical index of Banach spaces

- Basic definitions and examples
- Stability properties
- Duality
- The isomorphic point of view
- Banach spaces with numerical index one
 - Isomorphic properties
 - Isometric properties
 - Asymptotic behavior
- How to deal with numerical index 1 property?
- Some open problems

V. Kadets, M. Martín, and R. Payá.
Recent progress and open questions on the numerical index of Banach spaces.
RACSAM (2006)
Numerical index of Banach spaces: definitions

Numerical radius

Let X be a Banach space, $T \in L(X)$. The **numerical radius** of T is

$$v(T) = \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$
Numerical index of Banach spaces: definitions

Numerical radius

Let X be a Banach space, $T \in L(X)$. The **numerical radius** of T is

$$
\nu(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1 \}
$$

Remark

The numerical radius is a continuous seminorm in $L(X)$. Actually, $\nu(\cdot) \leq \| \cdot \|$
Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, \(T \in L(X) \). The numerical radius of \(T \) is

\[
v(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1 \}
\]

Remark

The numerical radius is a continuous seminorm in \(L(X) \). Actually, \(v(\cdot) \leq \| \cdot \| \)

Numerical index (Lumer, 1968)

X Banach space, the numerical index of \(X \) is

\[
n(X) = \inf \{ v(T) : T \in L(X), \ |T| = 1 \}
\]

\[
= \max \ \{ k \geq 0 : k |T| \leq v(T) \ \forall \ T \in L(X) \}
\]

\[
= \inf \ \{ M \geq 0 : \exists T \in L(X), \ |T| = 1, \ |\exp(\rho T)| \leq e^{\rho M} \ \forall \rho \in \mathbb{R} \}
\]
Recalling some basic properties

\[n(X) = 1 \text{ iff } v \text{ and } \|\cdot\| \text{ coincide.} \]

\[n(X) = 0 \text{ iff } v \text{ is not an equivalent norm in } L(X). \]

\(X \) complex \(\Rightarrow n(X) \geq \frac{1}{e}. \)

(Bohnenblust–Karlin, 1955; Glickfeld, 1970)

Actually, \(\{ n(X) : X \text{ complex}, \dim(X) = 2 \} = [e^{-1}, 1] \)

\(\{ n(X) : X \text{ real}, \dim(X) = 2 \} = [0, 1] \)

(Duncan–McGregor–Pryce–White, 1970)
Recalling some basic properties

- $n(X) = 1$ iff v and $\| \cdot \|$ coincide.
- $n(X) = 0$ iff v is not an equivalent norm in $L(X)$
Recalling some basic properties

- $n(X) = 1$ iff v and $\| \cdot \|$ coincide.
- $n(X) = 0$ iff v is not an equivalent norm in $L(X)$

- X complex $\Rightarrow n(X) \geq 1/e.$

 (Bohnenblust–Karlin, 1955; Glickfeld, 1970)
Recalling some basic properties

- \(n(X) = 1 \) iff \(v \) and \(\| \cdot \| \) coincide.
- \(n(X) = 0 \) iff \(v \) is not an equivalent norm in \(L(X) \)

- \(X \) complex \(\Rightarrow \) \(n(X) \geq 1/e. \)
 (Bohnenblust–Karlin, 1955; Glickfeld, 1970)

- Actually,

\[
\{ n(X) : X \text{ complex}, \dim(X) = 2 \} = [e^{-1}, 1] \\
\{ n(X) : X \text{ real}, \dim(X) = 2 \} = [0, 1]
\]

(Duncan–McGregor–Pryce–White, 1970)
Some examples

1. **H** Hilbert space, \(\dim(H) > 1 \),

 \[
 n(H) = 0 \quad \text{if } H \text{ is real} \\
 n(H) = 1/2 \quad \text{if } H \text{ is complex}
 \]
Numerical index of Banach spaces: examples (I)

Some examples

1. H Hilbert space, $\dim(H) > 1$,

 \begin{align*}
 n(H) &= 0 \quad \text{if } H \text{ is real} \\
 n(H) &= 1/2 \quad \text{if } H \text{ is complex}
 \end{align*}

2. $n(L_1(\mu)) = 1$ \quad μ positive measure
 $n(C(K)) = 1$ \quad K compact Hausdorff space

 (Duncan et al., 1970)
Numerical index of Banach spaces: examples (I)

Some examples

1. H Hilbert space, $\dim(H) > 1$,
 \[
 n(H) = 0 \quad \text{if } H \text{ is real} \\
 n(H) = 1/2 \quad \text{if } H \text{ is complex}
 \]

2. $n(L_1(\mu)) = 1$ μ positive measure
 $n(C(K)) = 1$ K compact Hausdorff space
 (Duncan et al., 1970)

3. If A is a C^*-algebra $\implies \begin{cases}
 n(A) = 1 & A \text{ commutative} \\
 n(A) = 1/2 & A \text{ not commutative}
\end{cases}$
 (Huruya, 1977; Kaidi–Morales–Rodríguez, 2000)
Some examples

1. H Hilbert space, $\dim(H) > 1$,

 \begin{align*}
 n(H) &= 0 \quad \text{if } H \text{ is real} \\
 n(H) &= 1/2 \quad \text{if } H \text{ is complex}
 \end{align*}

2. $n(L_1(\mu)) = 1$ \quad μ positive measure
 $n(C(K)) = 1$ \quad K compact Hausdorff space

 \begin{center}
 (Duncan et al., 1970)
 \end{center}

3. If A is a C^*-algebra $\Rightarrow \begin{cases} n(A) = 1 & A \text{ commutative} \\ n(A) = 1/2 & A \text{ not commutative} \end{cases}$

 \begin{center}
 (Huruya, 1977; Kaidi–Morales–Rodríguez, 2000)
 \end{center}

4. If A is a function algebra $\Rightarrow n(A) = 1$

 \begin{center}
 (Werner, 1997)
 \end{center}
For $n \geq 2$, the unit ball of X_n is a $2n$ regular polygon:

$$n(X_n) = \begin{cases}
\tan \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is even,} \\
\sin \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is odd.}
\end{cases}$$

(M.–Mérité, 2007)
For $n \geq 2$, the unit ball of X_n is a $2n$ regular polygon:

$$n(X_n) = \begin{cases}
\tan \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is even,} \\
\sin \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is odd.}
\end{cases}$$

(M.–Merí, 2007)

Every finite-codimensional subspace of $C[0, 1]$ has numerical index 1

(Boyko–Kadets–M.–Werner, 2007)
Numerical index of Banach spaces: some examples (III)

Even more examples

- Numerical index of L_p-spaces, $1 < p < \infty$:
Numerical index of Banach spaces: some examples (III)

Even more examples

- **Numerical index of** L_p-spaces, $1 < p < \infty$:

 $$n(L_p[0, 1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
Even more examples

Numerical index of L^p-spaces, $1 < p < \infty$:

- $n(L^p[0, 1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

- $n(\ell_p^{(2)})$?
Numerical index of Banach spaces: some examples (III)

Even more examples

- **Numerical index of** L_p-spaces, $1 < p < \infty$:
 - $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
 - $n(\ell_p^{(2)})$?
 - In the real case,

 $\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$

 and $M_p = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

 (M.–Merí, 2009)
Even more examples

- **Numerical index of L_p-spaces, $1 < p < \infty$:**
 - $n(L_p[0, 1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.
 - (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
 - $n(\ell_p^{(2)})$?
 - In the real case,
 $$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$
 and $M_p = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$
 - (M.–Merí, 2009)
 - In the real case, $n(L_p(\mu)) \geq \frac{M_p}{6 p^p q^q}$.
 - (M.–Merí–Popov, 2011)
Even more examples

Numerical index of L_p-spaces, $1 < p < \infty$:

- $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^m)$.

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

- $n(\ell_p^{(2)})$?

- In the real case,

 $$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$

 and $M_p = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

 (M.–Merí, 2009)

- In the real case, $n(L_p(\mu)) \geq \frac{M_p}{1 \overline{\text{p}} \overline{\text{q}}}$.

- In particular, $n(L_p(\mu)) > 0$ for $p \neq 2$.

 (M.–Merí–Popov, 2011)
Numerical index: open problems on computing

1. Compute $n(L^p[0, 1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell^p(2^p)) = M_p$ (real case)?

3. Is $n(\ell^p(2^p)) = (p_{1/p}q_{1/q})^{-1}$ (complex case)?

4. Compute the numerical index of real C^*-algebras.

5. Compute the numerical index of more classical Banach spaces: $C_m[0, 1], Lip(K)$, Lorentz spaces, Orlicz spaces, etc.
Open problems

1. Compute \(n(L_p[0,1]) \) for \(1 < p < \infty, \ p \neq 2 \).
Numerical index: open problems on computing

Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?

3. Is $n(\ell_p^{(2)}) = \left(p^{\frac{1}{p}} q^{\frac{1}{q}} \right)^{-1}$ (complex case)?
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty, p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?

3. Is $n(\ell_p^{(2)}) = (p^\frac{1}{p} q^\frac{1}{q})^{-1}$ (complex case)?

4. Compute the numerical index of real C^*-algebras.
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.
2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?
3. Is $n(\ell_p^{(2)}) = \left(p^{\frac{1}{p}} q^{\frac{1}{q}} \right)^{-1}$ (complex case)?
4. Compute the numerical index of real C^*-algebras.
5. Compute the numerical index of more classical Banach spaces: $C^m[0,1]$, Lip(K), Lorentz spaces, Orlicz spaces...
Direct sums of Banach spaces (M.–Payá, 2000)

\[n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda [c_0]\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda [\ell_1]\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda [\ell_\infty]\right) = \inf_{\lambda} n(X_\lambda) \]
Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

\[n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right) = \inf_{\lambda} n(X_\lambda) \]

Consequences

- There is a real Banach space \(X \) such that
 \[\nu(T) > 0 \quad \text{when } T \neq 0, \]
 but \(n(X) = 0 \)
 (i.e. \(\nu(\cdot) \) is a norm on \(L(X) \) which is not equivalent to the operator norm).
Numerical index Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

\[n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\big)c_0\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\big)\ell_1\right) = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\big)\ell_\infty\right) = \inf_{\lambda} n(X_{\lambda}) \]

Consequences

- There is a real Banach space \(X \) such that \(\nu(T) > 0 \) when \(T \neq 0 \), but \(n(X) = 0 \)
 (i.e. \(\nu(\cdot) \) is a norm on \(L(X) \) which is not equivalent to the operator norm).
- For every \(t \in [0, 1] \), there exist a real \(X_t \) isomorphic to \(c_0 \) (or \(\ell_1 \) or \(\ell_\infty \)) with \(n(X_t) = t \).
- For every \(t \in [e^{-1}, 1] \), there exist a complex \(Y_t \) isomorphic to \(c_0 \) (or \(\ell_1 \) or \(\ell_\infty \)) with \(n(Y_t) = t \).
Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

\[n(C(K,E)) = n(C_w(K,E)) = n(L_1(\mu,E)) = n(L_\infty(\mu,E)) = n(E), \]

and $n(C_{w^*}(K,E^*)) \leq n(E)$
Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$n(C(K,E)) = n(C_{\text{w}}(K,E)) = n(L_1(\mu,E)) = n(L_\infty(\mu,E)) = n(E),$$

and $n(C_{\text{w}}^*(K,E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X\tilde{\otimes}_\varepsilon Y)$ nor for $n(X\tilde{\otimes}_\pi Y)$:

- $n(\ell_1^{(4)} \tilde{\otimes}_\pi \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\varepsilon \ell_\infty^{(4)}) = 1$.
- $n(\ell_1^{(4)} \tilde{\otimes}_\varepsilon \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\pi \ell_\infty^{(4)}) < 1$.
Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

Let E be a Banach space, μ a positive σ-finite measure, and K a compact space. Then

$$n(C(K, E)) = n(C_w(K, E)) = n(L_1(\mu, E)) = n(L_\infty(\mu, E)) = n(E),$$

and $n(C_w^*(K, E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X \tilde{\otimes}_\epsilon Y)$ nor for $n(X \tilde{\otimes}_\pi Y)$:

- $n(\ell_1^{(4)} \tilde{\otimes}_\pi \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\epsilon \ell_\infty^{(4)}) = 1$.
- $n(\ell_1^{(4)} \tilde{\otimes}_\epsilon \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\pi \ell_\infty^{(4)}) < 1$.

$$n(L_p([0, 1], E)) = n(\ell_p(E)) = \lim_{m \to \infty} n(E \oplus_p \cdots \oplus_p E).$$
Numerical index and duality

Proposition

Let X be a Banach space, and $T \in L(X)$. Then

$$\sup \Re \nu(T) = \lim_{\alpha \to 0^+} \|\Id + \alpha T\| - 1.$$

Then, $\nu(T^*) = \nu(T)$ for every $T \in L(X)$. Therefore,

$$n(X^*) \leq n(X).$$

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is $n(X) = n(X^*)$?

Negative answer (Boyko–Kadets–M.–Werner, 2007)

Consider the space $X = \{(x, y, z) \in c \oplus \infty c \oplus \infty c : \lim x + \lim y + \lim z = 0\}$.

Then, $n(X) = 1$ but $n(X^*) < 1$.
Numerical index and duality

Proposition

Let X be a Banach space, $T \in L(X)$. Then

$$\sup \text{Re} V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}.$$

(Duncan–McGregor–Pryce–White, 1970)
Numerical index and duality

Proposition

Let X be a Banach space, $T \in L(X)$. Then

- $\sup \text{Re} V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}$.

- Then, $\nu(T^*) = \nu(T)$ for every $T \in L(X)$.

(Duncan–McGregor–Pryce–White, 1970)
Proposition

Let X be a Banach space, $T \in L(X)$. Then

- $\sup \Re V(T) = \lim_{\alpha \to 0^+} \frac{\|\Id + \alpha T\| - 1}{\alpha}$.

- Then, $v(T^*) = v(T)$ for every $T \in L(X)$.

- Therefore, $n(X^*) \leq n(X)$.

(Duncan–McGregor–Pryce–White, 1970)
Proposition

X Banach space, **T** ∈ **L**(**X**). Then

- \(\text{sup Re } V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha} \).

- Then, \(\nu(T^*) = \nu(T) \) for every \(T \in \text{L}(X) \).

- Therefore, \(n(X^*) \leq n(X) \).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is \(n(X) = n(X^*) \)?
Proposition

\[X \text{ Banach space, } T \in L(X). \text{ Then} \]

- \[\sup \Re V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}. \]

- Then, \(v(T^*) = v(T) \) for every \(T \in L(X) \).
- Therefore, \(n(X^*) \leq n(X) \).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is \(n(X) = n(X^*) \)?

Negative answer (Boyko–Kadets–M.–Werner, 2007)

Consider the space

\[X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}. \]

Then, \(n(X) = 1 \) but \(n(X^*) < 1 \).
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]
\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \bigoplus \infty c \bigoplus \infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^* \right] / (\lim, \lim, \lim). \)
Numerical index and duality. Proof of main example

\[X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\} : \]
\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)}/(1,1,1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \)
- \(A = \{(e_n,0,0,0) : n \in \mathbb{N}\} \cup \{(0,e_n,0,0) : n \in \mathbb{N}\} \cup \{(0,0,e_n,0) : n \in \mathbb{N}\} \subset X^*. \)
Numerical index and duality. Proof of main example

\[X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^*\right]/(\lim, \lim, \lim). \)

- Then, writing \(Z = \ell_1^{(3)}/(1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*. \]

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)

- Then \(B_X = \overline{\text{aco}^{w^*}(A)} \) and
 \[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_X^{**}) \forall a \in A. \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1), \) we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(A = \{ (e_n, 0, 0, 0) : n \in \mathbb{N} \} \cup \{ (0, e_n, 0, 0) : n \in \mathbb{N} \} \cup \{ (0, 0, e_n, 0) : n \in \mathbb{N} \} \subset X^*. \)
- Then \(B_{X^*} = \overline{\text{aco}}^{w^*}(A) \) and
 \[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \forall a \in A. \]
- Fix \(T \in L(X), \varepsilon > 0. \) Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon. \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus \infty c \oplus \infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \text{ but } n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^* \right] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]
- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)
- Then \(B_{X^*} = \overline{\text{aco}}^{w^*}(A) \) and
 \[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \quad \forall a \in A. \]
- Fix \(T \in L(X), \varepsilon > 0. \) Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon. \)
- Then we find \(x^{**} \in \text{ext}(B_{X^{**}}) \) such that
 \[|x^{**}(T^*(a))| = \|T^*(a)\| > \|T^*\| - \varepsilon. \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus \infty c \oplus \infty c : \lim x + \lim y + \lim z = 0 \} : \]
\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)
- Then \(B_{X^*} = \overline{\text{aco}} \omega^* (A) \) and
 \[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \quad \forall a \in A. \]
- Fix \(T \in L(X), \varepsilon > 0. \) Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon. \)
- Then we find \(x^{**} \in \text{ext}(B_{X^{**}}) \) such that
 \[|x^{**}(T^*(a))| = \|T^*(a)\| > \|T^*\| - \varepsilon. \]
- Since \(|x^{**}(a)| = 1 \), this gives that \(v(T^*) > \|T^*\| - \varepsilon \), so \(v(T) = \|T\| \) and \(n(X) = 1. \) √
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim) \).

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(Z \) is an \(L \)-summand of \(X^* \) so
 \[n(X^*) \leq n(Z). \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_c c \oplus_c c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)

- Then, writing \(Z = \ell_1^{(3)}/(1, 1, 1) \), we can identify

\[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(Z \) is an \(L \)-summand of \(X^* \) so

\[n(X^*) \leq n(Z). \]

- But \(n(Z) < 1 ! \) \(\checkmark \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus c \oplus c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \[c^* = \ell_1 \oplus_1 k \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^* \right] / (\lim, \lim, \lim). \]

- Then, writing \[Z = \ell_1^{(3)}/(1, 1, 1), \] we can identify

\[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(Z \) is an \(L \)-summand of \(X^* \) so

\[n(X^*) \leq n(Z). \]

- But \(n(Z) < 1 ! \checkmark \]
Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.
The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with $n(X) = 1$ and $n(X^*) = 0$.
- Exists X complex with $n(X) = 1$ and $n(X^*) = 1/e$.
The above example can be squeezed to get more counterexamples.

Example 1
- Exists X real with $n(X) = 1$ and $n(X^*) = 0$.
- Exists X complex with $n(X) = 1$ and $n(X^*) = 1/e$.

Example 2
- Given $t \in]0, 1]$, exists X real with $n(X) = t$ and $n(X^*) = 0$.
- Given $t \in]1/e, 1]$, exists X complex with $n(X) = t$ and $n(X^*) = 1/e$.
Numerical index and duality (III)

Some positive partial answers

One has $n(X) = n(X^*)$ when X is reflexive (evident). X is a C^*-algebra or a von Neumann predual (1970's – 2000's). X is L-embedded in X^{**} (M., 2009).

If X has RNP and $n(X) = 1$, then $n(X^*) = 1$ (M., 2002).

If X is M-embedded in X^{**} and $n(X) = 1$, then $n(Y) = 1$ for $X \subseteq Y \subseteq X^{**}$.

Example $X = C(K(\ell^2([0, 1] \parallel \Delta)))$. Then $n(X) = 1$ and $X^* \equiv K(\ell^2) \oplus 1 C_0(K \parallel \Delta)$ and $X^{**} \equiv L(\ell^2) \oplus \infty C_0(K \parallel \Delta)$.

Therefore, X^{**} is a C^*-algebra, but $n(X^*) = 1/2 < n(X) = 1$.

47 / 152
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
Some positive partial answers

One has \(n(X) = n(X^*) \) when

- \(X \) is reflexive (evident).
- \(X \) is a \(C^* \)-algebra or a von Neumann predual (1970’s – 2000’s).
- \(X \) is \(L \)-embedded in \(X^{**} \) (M., 2009).
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and $n(X) = 1$, then $n(X^*) = 1$ (M., 2002).
Numerical index and duality (III)

Some positive partial answers

One has \(n(X) = n(X^*) \) when

- \(X \) is reflexive (evident).
- \(X \) is a \(C^* \)-algebra or a von Neumann predual (1970’s – 2000’s).
- \(X \) is \(L \)-embedded in \(X^{**} \) (M., 2009).
- If \(X \) has RNP and \(n(X) = 1 \), then \(n(X^*) = 1 \) (M., 2002).
- If \(X \) is \(M \)-embedded in \(X^{**} \) and \(n(X) = 1 \)
 \[\implies n(Y) = 1 \quad \text{for} \quad X \subseteq Y \subseteq X^{**}. \]
Some positive partial answers

One has \(n(X) = n(X^*) \) when
- \(X \) is reflexive (evident).
- \(X \) is a \(C^* \)-algebra or a von Neumann predual (1970’s – 2000’s).
- \(X \) is \(L \)-embedded in \(X^{**} \) (M., 2009).
- If \(X \) has RNP and \(n(X) = 1 \), then \(n(X^*) = 1 \) (M., 2002).
- If \(X \) is \(M \)-embedded in \(X^{**} \) and \(n(X) = 1 \)
 \[\implies n(Y) = 1 \text{ for } X \subseteq Y \subseteq X^{**}. \]

Example

\[X = C_{K(\ell_2)}([0, 1] \| \Delta). \] Then \(n(X) = 1 \) and

\[X^* \equiv K(\ell_2)^* \oplus_1 C_0(K\|\Delta)^* \quad \text{and} \quad X^{**} \equiv L(\ell_2) \oplus_\infty C_0(K\|\Delta)^{**}. \]

Therefore, \(X^{**} \) is a \(C^* \)-algebra, but \(n(X^*) = 1/2 < n(X) = 1 \).
Numerical index and duality: open problems

Main question
Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1
If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2
If Z is a dual space, does there exist a predual X such that $n(X) = n(X^*)$?

Question 4
If X has the RNP, does $n(X) = n(X^*)$?
Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2

Z dual space, does there exist a predual X such that $n(X) = n(X^*)$?
Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that \(n(X) = n(X^*) \).

Question 1

If \(Z \) has a unique predual \(X \), does \(n(X) = n(X^*) \) ?

Question 2

\(Z \) dual space, does there exists a predual \(X \) such that \(n(X) = n(X^*) \) ?

Question 4

If \(X \) has the RNP, does \(n(X) = n(X^*) \) ?
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then

\[0, 1 \subseteq \{ n(X, | \cdot |) : | \cdot | \cong \| \cdot \| \} \]

Real case:

Complex case:

\[e^{-1}, 1 \subseteq \{ n(X, | \cdot |) : | \cdot | \cong \| \cdot \| \} \]

Open question

The result is known to be true when \(X\) has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of \(n(X)\) but 1 is isomorphically trivial.

\(\star\) What about the value 1?
Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

$(X, \| \cdot \|)$ (separable or reflexive) Banach space. Then

- **Real case:**
 \[
 [0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}
 \]

- **Complex case:**
 \[
 [e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}
 \]
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

$(X, \| \cdot \|)$ (separable or reflexive) Banach space. Then

- **Real case:**
 $$[0,1[\subseteq \{ n(X, |\cdot|) : |\cdot| \simeq \| \cdot \| \}$$

- **Complex case:**
 $$[e^{-1},1[\subseteq \{ n(X, |\cdot|) : |\cdot| \simeq \| \cdot \| \}$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general?
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

$(X, \| \cdot \|)$ (separable or reflexive) Banach space. Then

- **Real case:**
 \[
 [0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}
 \]

- **Complex case:**
 \[
 [e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}
 \]

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of $n(X)$ but 1 is isomorphically trivial.
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then

- Real case:
 \[[0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

- Complex case:
 \[[e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

Open question

The result is known to be true when \(X\) has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of \(n(X)\) but 1 is isomorphically trivial.

\(\star\) What about the value 1?
Recall that X has numerical index one ($n(X) = 1$) iff

$$\|T\| = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. $\nu(T) = \|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$\|T\| = \sup\{|\langle Tx, x \rangle| : x \in S_X\}$$

which is known to be valid for every self-adjoint operator T.

Examples

$C(K)$, $L^1(\mu)$, $A(D)$, H^∞, finite-codimensional subspaces of $C[0, 1]$. . .
Recall that X has numerical index one ($n(X) = 1$) iff
\[\|T\| = \sup \{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\} \]
(i.e. $v(T) = \|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to
\[\|T\| = \sup \{|\langle Tx, x \rangle| : x \in S_X\} \]
which is known to be valid for every self-adjoint operator T.

Numerical index 1

Recall that X has numerical index one ($n(X) = 1$) iff

\[\|T\| = \sup \{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\} \]

(i.e. $v(T) = \|T\|$) for every $T \in L(X)$.
Recall that X has **numerical index one** ($n(X) = 1$) iff

$$\|T\| = \sup \{ |x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1 \}$$

(i.e. $\nu(T) = \|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$\|T\| = \sup \{ |\langle Tx, x \rangle| : x \in S_X \}$$

which is known to be valid for every self-adjoint operator T.

Examples

$C(K), L_1(\mu), A(\mathbb{D}), H^\infty$, finite-codimensional subspaces of $C[0,1]$. . .
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?
Isomorphic properties (prohibitive results)

Question
Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)
Not every real Banach space can be renormed to have numerical index 1.

More details on this later on.
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
Isomorphic properties (prohibitive results)

Question
Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)
Not every real Banach space can be renormed to have numerical index 1. Concretely:
- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and $n(X) = 1$, then $X \supset \ell_1$.
Isomorphism properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and $n(X) = 1$, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)

If X is real, $\dim(X) = \infty$ and $n(X) = 1$, then $X^* \supset \ell_1$.

More details on this later on.
Lemma

X Banach space, \(n(X) = 1 \Rightarrow \|x^* - 0(x_0)\| = 1 \) for all \(x^* \in \text{ext}(B^X) \) and all denting point \(x_0 \) of \(B^X \).

Proof:

Fix \(\varepsilon > 0 \). As \(x_0 \) denting point, \(\exists y^* \in S^{X^*} \) and \(\alpha > 0 \) such that \(\|z - x_0\| < \varepsilon \) whenever \(z \in B^X \) satisfies \(\Re y^*(z) > 1 - \alpha \).

(Choquet's lemma): \(x^* \in \text{ext}(B^X) \), \(\exists y \in S^X \) and \(\beta > 0 \) such that \(|z^*(y) - x^* - 0(x_0)| < \varepsilon \) whenever \(z^* \in B^X \) satisfies \(\Re z^*(y) > 1 - \beta \).

Let \(T = y^* \otimes y^* \in L(X) \). \(\|T\| = 1 = \Rightarrow v(T) = 1 \).

We may find \(x \in S^X, x^* \in S^{X^*} \), such that \(x^*(x) = 1 \) and \(|x^*(Tx) - x^* - 0(x_0)| = |y^*(x)| > 1 - \min\{\alpha, \beta\} \).

By choosing suitable \(s, t \in T \) we have \(\Re y^*(sx) = |y^*(x)| > 1 - \alpha \) and \(\Re tx^*(y) = |x^*(y)| > 1 - \beta \).

It follows that \(\|sx - x_0\| < \varepsilon \) and \(|tx^*(x_0) - x^* - 0(x_0)| < \varepsilon \), and so \(1 - |x^* - 0(x_0)| \leq |tx^*(sx) - x^* - 0(x_0)| \leq |tx^*(sx) - tx^*(x_0)| + |tx^*(x_0)| < 2 \varepsilon \).
Lemma

Let X be a Banach space, with $n(X) = 1$. Then $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

Fix $\varepsilon > 0$. As x_0 is a denting point, there exists $y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_X$ satisfies $\Re y^*(z) > 1 - \alpha$.

(Choquet's lemma):

For $x^*_0 \in \text{ext}(B_{X^*})$, there exist $y^* \in S_{X^*}$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\Re z^*(y) > 1 - \beta$.

Let $T = y^* \otimes y^* \in L(X)$. Then $\|T\| = 1$ implies $v(T) = 1$.

We may find $x \in S_X$, $x^* \in S_{X^*}$ such that $x^*(x) = 1$ and $|x^*_0(x_0)| = |z^*(x_0)|$, whenever $z^* \in B_{X^*}$ satisfies $\Re z^*(y^*) > 1 - \min\{\alpha, \beta\}$.

By choosing suitable $s, t \in T$ we have $\Re y^*(sx) = |y^*(x)| > 1 - \alpha$ and $\Re tx^*(y) = |x^*(y)| > 1 - \beta$.

It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x^*_0(x_0)| < \varepsilon$, and so $1 - |x^*_0(x_0)| \leq |tx^*(sx) - x^*_0(x_0)| \leq |tx^*(sx) - tx^*(x_0)| + |tx^*(x_0)| < 2\varepsilon$.

\blacksquare
Lemma

\(X\) Banach space, \(n(X) = 1\)
\[\implies |x_0^*(x_0)| = 1 \text{ for all } x_0^* \in \text{ext } (B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X.\]

Proof:

\[\text{Fix } \varepsilon > 0. \text{ As } x_0 \text{ denting point, } \exists y^* \in S_{X^*} \text{ and } \alpha > 0 \text{ such that } \|z - x_0\| < \varepsilon \text{ whenever } z \in B_X \text{ satisfies } \Re y^*(z) > 1 - \alpha.\]

(Choquet's lemma):
\[x_0^* \in \text{ext } (B_{X^*}), \exists y \in S_{X^*} \text{ and } \beta > 0 \text{ such that } |z^*(x_0) - x_0^*(x_0)| < \varepsilon \text{ whenever } z^* \in B_{X^*} \text{ satisfies } \Re z^*(y) > 1 - \beta.\]

Let \(T = y^* \otimes y^* \in L(X)\).
\[\|T\| = 1 \implies v(T) = 1.\]

We may find \(x \in S_X, x^* \in S_{X^*}, \) such that \(x^*(x) = 1\) and \(|x^*(Tx) - x^*(x_0)| < \varepsilon\) whenever \(z^* \in B_{X^*} \text{ satisfies } \Re z^*(y) > 1 - \min\{\alpha, \beta\}.\)

By choosing suitable \(s, t \in T\) we have \(\Re y^*(sx) = |y^*(x_0)| > 1 - \alpha \) and \(\Re tx^*(y) = |x^*(y)| > 1 - \beta.\)

It follows that \(\|sx - x_0\| < \varepsilon\) and \(|tx^*(x_0) - x_0^*(x_0)| < \varepsilon\), and so \(1 - |x_0^*(x_0)| \leq |tx^*(sx) - x_0^*(x_0)| \leq 1 - |x_0^*(x_0)| + |tx^*(x_0) - x_0^*(x_0)| < 2 \varepsilon.\) \(\square\)
Lemma

\(X \) Banach space, \(n(X) = 1 \)
\(\implies |x^*_0(x_0)| = 1 \) for all \(x^*_0 \in \text{ext}(B_{X^*}) \) and all denting point \(x_0 \) of \(B_X \).

Proof:
- Fix \(\varepsilon > 0 \). As \(x_0 \) denting point, \(\exists y^* \in S_{X^*} \) and \(\alpha > 0 \) such that
 \[\|z - x_0\| < \varepsilon \quad \text{whenever } z \in B_X \text{ satisfies } \text{Re} y^*(z) > 1 - \alpha. \]
Lemma

\(X \) Banach space, \(n(X) = 1 \)
\(\implies |x_0^*(x_0)| = 1 \) for all \(x_0^* \in \text{ext}(B_{X^*}) \) and all denting point \(x_0 \) of \(B_X \).

Proof:

• Fix \(\varepsilon > 0 \). As \(x_0 \) denting point, \(\exists y^* \in S_{X^*} \) and \(\alpha > 0 \) such that
 \[||z - x_0|| < \varepsilon \quad \text{whenever } z \in B_X \text{ satisfies } \text{Re } y^*(z) > 1 - \alpha. \]

• \textbf{(Choquet’s lemma):} \(x_0^* \in \text{ext}(B_{X^*}), \exists y \in S_X \) and \(\beta > 0 \) such that
 \[|z^*(x_0) - x_0^*(x_0)| < \varepsilon \quad \text{whenever } z^* \in B_{X^*} \text{ satisfies } \text{Re } z^*(y) > 1 - \beta. \]
Lemma

Let X be a Banach space, $n(X) = 1$ implies $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:
- Fix $\varepsilon > 0$. As x_0 denting point, there exists $y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_X$ satisfies $\text{Re} y^*(z) > 1 - \alpha$.
- (Choquet's lemma): $x^*_0 \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1$ implies $v(T) = 1$.

\[\]
Lemma

Let X be a Banach space, $n(X) = 1$.

Then $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_X$ satisfies $\text{Re}y^*(z) > 1 - \alpha$.

- *(Choquet’s lemma)*: $x^*_0 \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re}z^*(y) > 1 - \beta$.

- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies v(T) = 1$.

- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.

Lemma

Let X be a Banach space, $n(X) = 1$ if and only if $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\epsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \epsilon$ whenever $z \in B_X$ satisfies $\text{Re} y^*(z) > 1 - \alpha$.

- *Choquet’s lemma*: $x^*_0 \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \epsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} z^*(y) > 1 - \beta$.

- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies v(T) = 1$.

- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.

- By choosing suitable $s, t \in \mathbb{T}$ we have

\[
\text{Re} y^*(sx) = |y^*(x)| > 1 - \alpha \quad \& \quad \text{Re} tx^*(y) = |x^*(y)| > 1 - \beta.
\]
Lemma

Let X be a Banach space, $n(X) = 1$ implies $|x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_X$ satisfies $\text{Re} \, y^*(z) > 1 - \alpha$.

- (Choquet’s lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} \, z^*(y) > 1 - \beta$.

- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies \nu(T) = 1$.

- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.

- By choosing suitable $s, t \in T$ we have

 $\text{Re} \, y^*(sx) = |y^*(x)| > 1 - \alpha \quad \& \quad \text{Re} \, tx^*(y) = |x^*(y)| > 1 - \beta$.

- It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x_0^*(x_0)| < \varepsilon$, \square
Lemma

Let X be a Banach space, $n(X) = 1 \implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_X$ satisfies $\text{Re} \, y^*(z) > 1 - \alpha$.

- (Choquet’s lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} \, z^*(y) > 1 - \beta$.

- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies \nu(T) = 1$.

- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.

- By choosing suitable $s, t \in \mathbb{T}$ we have

$$\text{Re} \, y^*(sx) = |y^*(x)| > 1 - \alpha \quad \& \quad \text{Re} \, tx^*(y) = |x^*(y)| > 1 - \beta.$$

- It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x_0^*(x_0)| < \varepsilon$, and so

$$1 - |x_0^*(x_0)| \leq |tx^*(sx) - x_0^*(x_0)| \leq |tx^*(sx) - tx^*(x_0)| + |tx^*(x_0) - x_0^*(x_0)| < 2\varepsilon.$$
Proposition

X real, $A \subset S_X$ infinite with $|x^* (a)| = 1$ $\forall x^* \in \text{ext}(B_X^*)$, $\forall a \in A$.

$\Rightarrow X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

$X \supseteq \ell_1$ ✓

(Rosenthal ℓ_1-theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.

Consider Y the closed linear span of $\{a_n: n \in \mathbb{N}\}$.

$\|a_n - a_m\| = 2$ if $n \neq m$ $\Rightarrow \text{dim}(Y) = \infty$.

(Krein-Milman theorem): every $y^* \in \text{ext}(B_Y^*)$ has an extension which belongs to $\text{ext}(B_X^*)$.

So, $|y^*(a_n)| = 1$ $\forall y^* \in \text{ext}(B_Y^*), \forall n \in \mathbb{N}$.

$\{a_n\}$ weak Cauchy $\Rightarrow \{y^*(a_n)\}$ is eventually 1 or -1.

Then $\text{ext}(B_Y^*) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$ where $E_k = \{y^* \in \text{ext}(B_Y^*): y^*(a_n) = 1 \text{ for } n \geq k\}$.

$\{a_n\}$ separates points of Y $\Rightarrow E_k$ finite, so $\text{ext}(B_Y^*)$ countable.

(Fonf): $Y \supseteq c_0$. So, $X \supseteq c_0$.

✓
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} \ (B_{X^*}), \ \forall a \in A.$

$\implies X \supseteq c_0$ or $X \supseteq \ell_1.$
Proposition

Proposition

Let \(X \) be real, \(A \subset S_X \) infinite with \(|x^*(a)| = 1 \) for all \(x^* \in \text{ext}(B_{X^*}) \) and \(a \in A \). Then \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Proof:

Consider \(Y \), the closed linear span of \(\{a_n\} \subset A \), and assume it is non-trivial. Let \(\{a_n\} \) be a weak Cauchy sequence. Consider the weak closure of \(\{y^*(a_n)\} \), where \(y^* \in \text{ext}(B_{Y^*}) \). By the Krein-Milman theorem, \(y^* \) has an extension to \(B_{X^*} \). Then \(\{y^*(a_n)\} \) is eventually \(1 \) or \(-1 \).

Finally, \(\text{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k) \) where \(E_k = \{y^* \in \text{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k \} \). Since \(\{a_n\} \) separates points of \(Y^* \), \(E_k \) is finite, and hence \(\text{ext}(B_{Y^*}) \) is countable. Thus, \(Y \supseteq c_0 \). Therefore, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).
Proposition

Let X be real, $A \subset S_X$ infinite with $|x^*(a)| = 1$ for all $x^* \in \text{ext}(B_{X^*})$, $\forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

- $X \supseteq \ell_1$
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \ \forall a \in A.$

$\implies X \supseteq c_0$ or $X \supseteq \ell_1.$

Proof:

- $X \supseteq \ell_1$ ✓

- (Rosenthal ℓ_1-theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
Proposition

\(X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext} \ (B_{X^*}), \ \forall a \in A. \)

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \) ✓
- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \ \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
Proving the 1999 results (II)

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \ \forall a \in A.$

$\implies X \supseteq c_0$ or $X \supseteq \ell_1.$

Proof:

- $X \supseteq \ell_1 \checkmark$
- *(Rosenthal ℓ_1-theorem):* Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $\|a_n - a_m\| = 2$ if $n \neq m \implies \dim(Y) = \infty.$
Proving the 1999 results (II)

Proposition

\[
X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.
\]

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.\]

Proof:

- \(X \supseteq \ell_1\) \(\checkmark\)
- **(Rosenthal \(\ell_1\)-theorem):** Otherwise, \(\exists \{a_n\} \subseteq A\) non-trivial weak Cauchy.
- Consider \(Y\) the closed linear span of \(\{a_n : n \in \mathbb{N}\}\).
- \(\|a_n - a_m\| = 2\) if \(n \neq m\) \(\implies \dim(Y) = \infty.\)
- **(Krein-Milman theorem):** every \(y^* \in \text{ext}(B_{Y^*})\) has an extension which belongs to \(\text{ext}(B_{X^*})\).
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} \ (B_{X^*})$, $\forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

- $X \supseteq \ell_1$ ✓
- (Rosenthal ℓ_1-theorem): Otherwise, $\exists \ \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $\|a_n - a_m\| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in \text{ext} \ (B_{Y^*})$ has an extension which belongs to $\text{ext} \ (B_{X^*})$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} \ (B_{Y^*})$, $\forall n \in \mathbb{N}$.
Proposition

\(X \) real, \(A \subset S_X \) infinite with \(|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \ \forall a \in A \).

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \ check \)
- **(Rosenthal \(\ell_1 \)-theorem)**: Otherwise, \(\exists \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \text{ if } n \neq m \implies \text{dim}(Y) = \infty. \)
- **(Krein-Milman theorem)**: every \(y^* \in \text{ext} (B_{Y^*}) \) has an extension which belongs to \(\text{ext} (B_{X^*}) \).
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} (B_{Y^*}), \ \forall n \in \mathbb{N}. \)
- \(\{a_n\} \) weak Cauchy \(\implies \{y^*(a_n)\} \) is eventually 1 or \(-1\).
Proposition

\[X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \ \forall a \in A. \]
\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \) ✓
- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \) if \(n \neq m \) \(\implies \text{dim} (Y) = \infty. \)
- (Krein-Milman theorem): every \(y^* \in \text{ext} (B_{Y^*}) \) has an extension which belongs to \(\text{ext} (B_{X^*}) \).
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} (B_{Y^*}), \ \forall n \in \mathbb{N}. \)
- \(\{a_n\} \) weak Cauchy \(\implies \{y^*(a_n)\} \) is eventually 1 or \(-1.\)
- Then \(\text{ext} (B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k) \) where
 \[E_k = \{y^* \in \text{ext} (B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k\}. \]
Proving the 1999 results (II)

Proposition

\(X\) real, \(A \subset S_X\) infinite with \(|x^*(a)| = 1\ \forall x^* \in \text{ext } (B_{X^*}), \forall a \in A.\)

\[\implies X \supseteq c_0\ or\ X \supseteq \ell_1.\]

Proof:

- **\(X \supseteq \ell_1\)** ✓
- **(Rosenthal \(\ell_1\)-theorem):** Otherwise, \(\exists \{a_n\} \subseteq A\) non-trivial weak Cauchy.
- Consider \(Y\) the closed linear span of \(\{a_n : n \in \mathbb{N}\}\).
- \(\|a_n - a_m\| = 2\ if\ n \neq m \implies \dim(Y) = \infty.\)
- **(Krein-Milman theorem):** every \(y^* \in \text{ext } (B_{Y^*})\) has an extension which belongs to \(\text{ext } (B_{X^*})\).
- So, \(|y^*(a_n)| = 1\ \forall y^* \in \text{ext } (B_{Y^*}), \forall n \in \mathbb{N}.\)
- \(\{a_n\}\) weak Cauchy \(\implies\ \{y^*(a_n)\}\) is eventually 1 or \(-1.\)
- Then \(\text{ext } (B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)\) where

\[E_k = \{y^* \in \text{ext } (B_{Y^*}) : y^*(a_n) = 1\ for\ n \geq k\}\].

- \(\{a_n\}\) separates points of \(Y^* \implies E_k\ finite, \ so\ \text{ext } (B_{Y^*})\ countable.\)
Proposition

\(X \text{ real}, \ A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \ \forall a \in A. \)

\(\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \)

Proof:

- \(X \supseteq \ell_1 \checkmark \)
- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \ \{a_n\} \subseteq A \text{ non-trivial weak Cauchy.} \)
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\}. \)
- \(\|a_n - a_m\| = 2 \text{ if } n \neq m \implies \dim(Y) = \infty. \)
- (Krein-Milman theorem): every \(y^* \in \text{ext}(B_{Y^*}) \) has an extension which belongs to \(\text{ext}(B_{X^*}). \)
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}. \)
- \(\{a_n\} \text{ weak Cauchy } \implies \{y^*(a_n)\} \text{ is eventually } 1 \text{ or } -1. \)
- Then \(\text{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k) \) where

\[
E_k = \{y^* \in \text{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k\}.
\]

- \(\{a_n\} \text{ separates points of } Y^* \implies E_k \text{ finite, so } \text{ext}(B_{Y^*}) \text{ countable.} \)
- (Fonf): \(Y \supseteq c_0. \) So, \(X \supseteq c_0. \checkmark \)
Lemma

Let X be a Banach space, $n(X) = 1$.

Then $|x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

Let X be real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \forall x^* \in \text{ext}(B_{X^*})$, $\forall a \in A$.

Then $X \supseteq c_0$ or $X \supseteq \ell_1$.

Lemma

X Banach space, $n(X) = 1$

$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext} (B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \forall a \in A.$

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.
Proving the 1999 results (III)

Lemma

Let X be a Banach space, $n(X) = 1$.

$$|x_0^*(x_0)| = 1 \quad \text{for all } x_0^* \in \text{ext} \,(B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X.$$

Proposition

Let X be real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext} \,(B_{X^*}), \forall a \in A$.

$$X \supseteq c_0 \text{ or } X \supseteq \ell_1.$$

Main consequence

Let X be real, RNP, $\dim(X) = \infty$, and $n(X) = 1$.

$$X \supseteq \ell_1.$$

Proof.
Lemma

X Banach space, $n(X) = 1$

$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1$ $\implies X \supseteq \ell_1$.

Proof.

- X RNP, $\dim(X) = \infty$ $\implies \exists$ infinitely many denting points of B_X.

Lemma

X Banach space, $n(X) = 1$

$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Proof.

- X RNP, $\dim(X) = \infty \implies \exists$ infinitely many denting points of B_X.
- Therefore, $X \supseteq c_0$ or $X \supseteq \ell_1$.
Lemma

X Banach space, $n(X) = 1$ \[\Rightarrow |x_0^*(x_0)| = 1 \text{ for all } x_0^* \in \text{ext}(B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X. \]

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ \[\Rightarrow X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \Rightarrow X \supseteq \ell_1.$

Proof.

- X RNP, $\dim(X) = \infty \Rightarrow \exists$ infinitely many denting points of $B_X.$
- Therefore, $X \supseteq c_0 \text{ or } X \supseteq \ell_1.$
- If X RNP, then $X \not\supseteq c_0.$ ✓
Proving the 1999 results (III)

Lemma

X Banach space, $n(X) = 1$

$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext} (B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*})$, $\forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1$ $\implies X \supseteq \ell_1$.

Corollary

X real, $\dim(X) = \infty$, $n(X) = 1$.

- X is not reflexive.
- X^{**}/X is non-separable.
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence: X separable containing c_0 \Rightarrow there is $Z \cong X$ such that $n(Z) = 1$ and

- $\{n(Z^*) = 0\}$ real case
- $\{n(Z^*) = e^{-1}\}$ complex case

Open questions:

Find isomorphic properties which assures renorming with numerical index 1.

In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980)

There is X such that $X^* \cong \ell_1$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_1$).
A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

If X is separable containing $c_0 = \Rightarrow$ there is $Z \cong X$ such that $n(Z) = 1$ and

- $n(Z^*) = 0$ real case
- $n(Z^*) = e^{-1}$ complex case

Open questions

Find isomorphic properties which assures renorming with numerical index 1.

In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980)

There is X such that $X^* \cong \ell_1$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_1$).

Isomorphic properties (positive results)
A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing c_0 \implies there is $Z \simeq X$ such that

\[
n(Z) = 1 \quad \text{and} \quad \begin{cases}
n(Z^*) = 0 & \text{real case} \\
n(Z^*) = e^{-1} & \text{complex case} \end{cases}
\]
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1 \quad \text{and} \quad \begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$$

Open questions

Find isomorphic properties that assure renorming with numerical index 1.

In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980)

There is X such that $X^* \simeq \ell_1$ and X has the RNP. Then, X cannot be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)

$55 / 152$
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)
If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence
X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1 \quad \text{and} \quad \begin{cases} n(Z^*) = 0 & \text{real case} \smallskip \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$$

Open questions
- Find isomorphic properties which assures renorming with numerical index 1
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If \(X \) is separable, \(X \supseteq c_0 \), then \(X \) can be renormed to have numerical index 1.

Consequence

\(X \) separable containing \(c_0 \) \(\implies \) there is \(Z \cong X \) such that

\[
\begin{align*}
n(Z) &= 1 \\
\begin{cases}
n(Z^*) = 0 & \text{real case} \\
n(Z^*) = e^{-1} & \text{complex case}
\end{cases}
\end{align*}
\]

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if \(X \supseteq \ell_1 \), can \(X \) be renormed to have numerical index 1?
Isomorphic properties (positive results)

<table>
<thead>
<tr>
<th>A renorming result (Boyko–Kadets–M.–Merí, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X separable containing $c_0 \implies$ there is $Z \cong X$ such that</td>
</tr>
<tr>
<td>$n(Z) = 1$ and $\begin{cases} n(Z^) = 0 & \text{real case} \ n(Z^) = e^{-1} & \text{complex case} \end{cases}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Find isomorphic properties which assures renorming with numerical index 1</td>
</tr>
<tr>
<td>- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative result (Bourgain–Delbaen, 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is X such that $X^* \cong \ell_1$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)</td>
</tr>
</tbody>
</table>
Isometric properties: finite-dimensional spaces

A real or complex finite-dimensional space X is said to have numerical index one if for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$, we have

$$|x^*(x)| = 1.$$

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1: the space is not smooth and not strictly convex.

Question

What is the situation in the infinite-dimensional case?
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.

Remark: This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question: What is the situation in the infinite-dimensional case?
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

Let X be a real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext } (B_{X^*})$, $x \in \text{ext } (B_X)$.

Remark: This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:
- The space is not smooth.
- The space is not strictly convex.

Question: What is the situation in the infinite-dimensional case?
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

Let X be a real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark: This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:
- The space is not smooth.
- The space is not strictly convex.

Question: What is the situation in the infinite-dimensional case?
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_X^*)$, $x \in \text{ext}(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext} \,(B_{X^*})$, $x \in \text{ext} \,(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X $(X$ is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_X^*)$, $x \in \text{ext}(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case?
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space, and assume $\text{num}(X) = 1$. Then X^* is neither smooth nor strictly convex. The norm of X cannot be Fréchet-smooth. There is no WLUR points in S_X.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

X^* is neither smooth nor strictly convex.

The norm of X cannot be Fréchet-smooth.

There is no WKLUR points in S_X.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.
Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with numerical index $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.

- (AcostaPayá1993): exists $\{T_n\} \rightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $\nu(T_n^*) = \nu(T_n) = \|T_n\| = 1$.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.

- (AcostaPayá1993): exists $\{T_n\} \rightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = \|T_n\| = 1$.

- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}}$ such that

$$\lambda_n x_n^{**}(x_n^*) = 1 \quad \text{and} \quad [T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.$$
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

If \(X \) is an infinite-dimensional Banach space, \(n(X) = 1 \). Then
- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).

Proving that \(X^* \) is not smooth:
- \(\dim(X) > 1 \), exists \(x_0 \in S_X \) and \(x_0^* \in S_{X^*} \) such that \(x_0^*(x_0) = 0 \). Then, consider \(T = x_0^* \otimes x_0 \) which satisfies \(T^2 = 0, \|T\| = 1 \).
- \(\text{(AcostaPayá1993)}: \) exists \(\{T_n\} \rightarrow T \) such that \(\|T_n\| = 1, T_n^* \) attains its numerical radius \(v(T_n^*) = v(T_n) = \|T_n\| = 1 \).
- We may find \(\lambda_n \in \mathbb{T} \) and \((x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}} \) such that \(\lambda_n x_n^{**}(x_n^*) = 1 \) and \([T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1 \).
- If \(X^* \) is smooth: \(T_n^{**}(x_n^{**}) = \lambda_n x_n^{**} \). Thus, \(\|T_n^{**}(x_n^{**})\|^2 = \|\lambda_n x_n^{**}\|^2 = 1 \).
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.

- (AcostaPayá1993): exists $\{T_n\} \rightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $\nu(T_n^*) = \nu(T_n) = \|T_n\| = 1$.

- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}}$ such that

\[\lambda_n x_n^{**}(x_n^*) = 1 \quad \text{and} \quad [T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1. \]

- If X^* is smooth: $T_n^{**}(x_n^{**}) = \lambda_n x_n^{**}$. Thus,

\[\| [T_n^{**}]^2 (x_n^{**}) \| = \| \lambda_n^2 x_n^{**} \| = 1. \]

- But, since $T_n \rightarrow T$ and $T^2 = 0$, then $[T_n^{**}]^2 \rightarrow 0$!!
Theorem (Kadets–M.–Merí–Payá, 2009)

\(X \) infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

$X = C(\mathbb{T})/A(\mathbb{D})$. $X^* = H^1$ is smooth $\implies n(X) < 1 \& n(H^1) < 1$.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

\(X \) infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).

Corollary

\[X = C(T) / A(D). \quad X^* = H^1 \text{ is smooth} \implies n(X) < 1 \text{ & } n(H^1) < 1. \]

Example without completeness

- There is \(X \) (non-complete) strictly convex with \(X^* \equiv L_1(\mu) \), so \(n(X) = 1 \).
- \(\tilde{X} \) completion of \(X \). For \(F \subseteq S_{\tilde{X}} \) maximal face, \(B_{\tilde{X}} = \text{aconv}(F) \).
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

If $X = C(T)/A(D)$. Then $X^* = H^1$ is smooth implies $n(X) < 1$ and $n(H^1) < 1$.

Example without completeness

- There is X (non-complete) strictly convex with $X^* \equiv L_1(\mu)$, so $n(X) = 1$.
- \tilde{X} completion of X. For $F \subseteq S_{\tilde{X}}$, maximal face, $B_{\tilde{X}} = \text{aconv}(F)$.

Open question

Is there X with $n(X) = 1$ which is smooth or strictly convex?
Numerical index
Banach spaces with numerical index one

Asymptotic behavior of the set of spaces with numerical index one
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\text{dist}(X, \ell_2^m) \geq c \ m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\text{dist}(X, \ell_2^m) \geq c \, m^{1/4}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.

Old examples

$$\text{dist}(\ell_1^m, \ell_2^m) = \text{dist}(\ell_{\infty}^m, \ell_2^m) = m^{1/2}$$
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\text{dist}(X, \ell_2^{(m)}) \geq c \, m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.

Old examples

$$\text{dist}(\ell_1^{(m)}, \ell_2^{(m)}) = \text{dist}(\ell_\infty^{(m)}, \ell_2^{(m)}) = m^{\frac{1}{2}}$$

Open questions

- Is there a universal constant \tilde{c} such that
 $$\text{dist}(X, \ell_2^{(m)}) \geq \tilde{c} \, m^{\frac{1}{2}}$$
 for every $m \in \mathbb{N}$ and every m-dimensional X’s with $n(X) = 1$?

- What is the diameter of the set of all m-dimensional X’s with $n(X) = 1$?
How to deal with numerical index 1 property?

One the one hand: weaker properties

In a general Banach space, we only can construct compact (actually, finite-rank) operators. Actually, we only may easily calculate the norm of rank-one operators. All the results given before for Banach spaces in which we use numerical index 1 only need \(v(T) = \|T\| \) for every rank-one operator \(T \). This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

We do not know any operator-free characterization of Banach spaces with numerical index 1. When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more. Later we will study sufficient geometrical conditions. The weakest property is called lushness.
How to deal with numerical index 1 property?

One the one hand: weaker properties

In a general Banach space, we only can construct compact (actually, finite-rank) operators. Actually, we only may easily calculate the norm of rank-one operators.

All the results given before for Banach spaces in which we use numerical index 1 only need $v(T) = \|T\|$ for every rank-one operator T.

This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

We do not know any operator-free characterization of Banach spaces with numerical index 1.

When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more. Later we will study sufficient geometrical conditions. The weakest property is called lushness.
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.

In a general Banach space, we only can construct compact (actually, finite-rank) operators.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

\[v(T) = \|T\| \] for every rank-one operator \(T \).
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

 $v(T) = \|T\|$ for every rank-one operator T.
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.
Numerical index

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \]
 for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \text{ for every rank-one operator } T. \]
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

 \[v(T) = \|T\| \text{ for every rank-one operator } T. \]

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
- The weakest property is called lushness.
How to deal with numerical index 1 property?

One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

- lushness
- Numerical index 1
- ADP

with SCD property (RNP, Asplund...)

A very interesting property appears: the slicely countably determination. We will study this property later on.
One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

- Lushness
- Numerical index 1
- ADP

Relationship between the properties

A very interesting property appears: the slicely countably determination. We will study this property later on.
One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

A very interesting property appears: the slicely countably determination.
One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent. A very interesting property appears: the slicely countably determination. We will study this property later on.

Relationship between the properties

- Lushness
- Numerical index 1
- ADP

with SCD property
(RNP, Asplund...)

Numerical index
How to deal with numerical index 1 property?
Some interesting open problems

Open problems

Characterize (without operators) Banach spaces with numerical index 1.

\[X \ni n(X) = 1, \quad \text{dim}(X) = \infty \]

\[X \supset c_0 \text{ or } \supset \ell_1 ? \]

Characterize those \(X \) admitting a renorming with numerical index 1.

If \(X \supset c_0 \text{ or } \supset \ell_1 \) can \(X \) be renormed with numerical index 1?

Find isomorphic or isometric conditions assuring that \(n(X) = n(X^*) \).

The oldest open problem

Calculate the numerical index of "classical" spaces.

- In particular, calculate \(n(L^p(\mu)) \).
Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
2. X with $n(X) = 1$, $\dim(X) = \infty$ $X \supset c_0$ or $X \supset \ell_1$?
Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
2. X with $n(X) = 1$, $\dim(X) = \infty$ $X \supset c_0$ or $X \supset \ell_1$?
3. Characterize those X admitting a renorming with numerical index 1.
4. Calculate the numerical index of "classical" spaces.
 - In particular, calculate $n(L^p(\mu))$.

Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
2. X with $n(X) = 1$, dim$(X) = \infty$ $X \supset c_0$ or $X \supset \ell_1$?
3. Characterize those X admitting a renorming with numerical index 1.
4. If $X \supset c_0$ or $\supset \ell_1$ can X be renormed with numerical index 1?
Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
2. X with $n(X) = 1$, $\dim(X) = \infty$ $X \supset c_0$ or $X \supset \ell_1$?
3. Characterize those X admitting a renorming with numerical index 1.
4. If $X \supset c_0$ or $\supset \ell_1$ can X be renormed with numerical index 1 ?
5. Find isomorphic or isometric conditions assuring that $n(X) = n(X^*)$.
Some interesting open problems

Open problems

1. Characterize (without operators) Banach spaces with numerical index 1.
2. X with $n(X) = 1$, $\dim(X) = \infty$ $X \supset c_0$ or $X \supset \ell_1$?
3. Characterize those X admitting a renorming with numerical index 1.
4. If $X \supset c_0$ or $\supset \ell_1$ can X be renormed with numerical index 1?
5. Find isomorphic or isometric conditions assuring that $n(X) = n(X^*)$.

The oldest open problem

Calculate the numerical index of “classical” spaces.
- In particular, calculate $n(\mathcal{L}_p(\mu))$.
The alternative Daugavet property

- The Daugavet property
- The alternative Daugavet property
 - Geometric characterizations
 - C^*-algebras and preduals
 - Some results

M. Martín and T. Oikberg

An alternative Daugavet property

M. Martín

The alternative Daugavet property of C^-algebras and JB^*-triples*
In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
The Daugavet property: motivation

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has
 $$x \notin \overline{co}(B_X \setminus (x + \varepsilon B_X)).$$
In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.

$x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has

$$x \notin \overline{co}(B_X \setminus (x + \varepsilon B_X)).$$

$C[0,1]$ and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$

$$\overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X.$$
In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.

$x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has

$$x \notin \text{co}(B_X \setminus (x + \varepsilon B_X)).$$

$C[0,1]$ and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$

$$\text{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X.$$

This geometric property is equivalent to a property of operators on the space.
The alternative Daugavet property

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}$$
The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}$$

Classical examples

1. **Daugavet, 1963:**
 Every compact operator on $C[0,1]$ satisfies (DE).

2. **Lozanoskii, 1966:**
 Every compact operator on $L_1[0,1]$ satisfies (DE).

3. **Abramovich, Holub, and more, 80’s:**
 $X = C(K)$, K perfect compact space
 or $X = L_1(\mu)$, μ atomless measure
 \implies every weakly compact $T \in L(X)$ satisfies (DE).
The Daugavet property: definition

The Daugavet equation

\[X \text{ Banach space, } T \in L(X) \]
\[\|\text{Id} + T\| = 1 + \|T\| \quad (DE) \]

The Daugavet property

A Banach space \(X \) is said to have the \textbf{Daugavet property} iff every rank-one operator on \(X \) satisfies (DE).

\(\star \) Then, every weakly compact operator on \(X \) satisfies (DE).

\((Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000) \)
The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.

Every rank-one operator $T \in L(X)$ satisfies

$$\|\text{Id} + T\| = 1 + \|T\|.$$
The Daugavet property: geometric characterizations

Theorem [KSSW]

Let X be a Banach space. TFAE:

- X has the Daugavet property.

- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\epsilon > 0$, there exists $y \in S_X$ such that
 \[\Re x^*(y) > 1 - \epsilon \quad \text{and} \quad \|x - y\| \geq 2 - \epsilon. \]

- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\epsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\Re y^*(x) > 1 - \epsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \epsilon. \]
The alternative Daugavet property

The Daugavet property: geometric characterizations

Theorem [KSSW]

Let X be a Banach space. The following are TFAE:

1. X has the Daugavet property.
2. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\text{Re } x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
3. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\text{Re } y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
The Daugavet property: geometric characterizations

Theorem [KSSW]

Let X be a Banach space. The following are equivalent:

- X has the Daugavet property.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\Re x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\Re y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 \[\overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X. \]
Some propaganda

\(X \) with the Daugavet property. Then:

- \(X \) does not have the Radon-Nikodým property.

\((\text{Wojtaszczyk, 1992})\)
Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.

 \[(\text{Wojtaszczyk, 1992})\]

- Every weakly-open subset of B_X has diameter 2.

 \[(\text{Shvidkoy, 2000})\]
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
 \[(Wojtaszczyk, \ 1992)\]

- Every weakly-open subset of B_X has diameter 2.
 \[(Shvidkoy, \ 2000)\]

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.
 \[(Kadets–Shvidkoy–Sirotkin–Werner, \ 2000)\]

- X does not have unconditional basis.
 \[(Kadets, \ 1996)\]
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- X does not have unconditional basis.

 (Kadets, 1996)

- X does not embed into a unconditional sum of Banach spaces without a copy of ℓ_1.

 (Shvidkoy, 2000)
Observation (Duncan-McGregor-Price-White, 1970) \[X \] Banach space, \(T \in \mathcal{L}(X) \):

\[
\sup \text{Re} \, V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|.
\]

\[X \] Banach space:

Daugavet property (DPr): every rank-one \(T \) satisfies \(\|\text{Id} + T\| = 1 + \|T\| \) (DE)

numerical index \(1 \): every \(T \) satisfies \(\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \) (aDE)

The alternative Daugavet property (M.–Oikhberg, 2004)

alternative Daugavet property (ADP): every rank-one \(T \in \mathcal{L}(X) \) satisfies (aDE).

\[\star \] Then, every weakly compact operator satisfies (aDE).
Observation (Duncan-McGregor-Price-White, 1970)

\[\text{X Banach space, } T \in L(X): \]

\[\sup \ Re V(T) = \|T\| \iff \| Id + T \| = 1 + \|T\|. \]

\[v(T) = \|T\| \iff \max_{\theta \in T} \| Id + \theta T \| = 1 + \|T\|. \]
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

- $\sup \text{Re } V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|$.
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

Let X be a Banach space, $T \in L(X)$:

- $\sup \Re V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|.$
- $v(T) = \|T\| \iff \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|.$
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

\(X \) Banach space, \(T \in L(X) \):

- \(\sup \Re V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\| \).
- \(v(T) = \|T\| \iff \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \).

\(X \) Banach space:

- **Daugavet property (DPr)**: every rank-one \(T \) satisfies

\[
\|\text{Id} + T\| = 1 + \|T\| \quad (\text{DE})
\]
The DPr, the ADP and numerical index 1

<table>
<thead>
<tr>
<th>Observation (Duncan-McGregor-Price-White, 1970)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Banach space, $T \in L(X)$:</td>
</tr>
<tr>
<td>• $\sup \text{Re } V(T) = |T| \iff |\text{Id} + T| = 1 + |T|$.</td>
</tr>
<tr>
<td>• $v(T) = |T| \iff \max_{\theta \in \mathbb{T}} |\text{Id} + \theta T| = 1 + |T|$.</td>
</tr>
</tbody>
</table>

X Banach space:

• **Daugavet property (DPr)**: every rank-one T satisfies

\[\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)} \]

• **numerical index 1**: EVERY T satisfies

\[\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\| \quad \text{(aDE)} \]
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, \(T \in L(X) \):
- \(\sup \Re V(T) = \|T\| \iff \|\Id + T\| = 1 + \|T\| \).
- \(v(T) = \|T\| \iff \max_{\theta \in T} \|\Id + \theta T\| = 1 + \|T\| \).

X Banach space:
- **Daugavet property (DPr)**: every rank-one \(T \) satisfies
 \[
 \|\Id + T\| = 1 + \|T\| \quad \text{(DE)}
 \]
- **numerical index 1**: EVERY \(T \) satisfies
 \[
 \max_{\theta \in T} \|\Id + \theta T\| = 1 + \|T\| \quad \text{(aDE)}
 \]

The alternative Daugavet property (M.–Oikhberg, 2004)

alternative Daugavet property (ADP): every rank-one \(T \in L(X) \) satisfies (aDE).
★ Then, every weakly compact operator satisfies (aDE).
Relations between the properties

\[\text{Daugavet property} = \text{ADP} \neq \text{Numerical index} = 1 \]

Examples

- \(C \left([0, 1], K(\ell_2) \right) \) has DPr, but has not numerical index 1
- \(c_0 \) has numerical index 1, but has not DPr
- \(c_0 \oplus \infty C \left([0, 1], K(\ell_2) \right) \) has ADP, neither DPr nor numerical index 1

Remarks

For RNP or Asplund spaces, \(\text{ADP} \Rightarrow \text{numerical index} = 1 \).

Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Relations between the properties

- Daugavet property
- Numerical index 1
- ADP

Examples
- $C([0,1], K(ℓ_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_∞ C([0,1], K(ℓ_2))$ has ADP, neither DPr nor numerical index 1

Remarks
For RNP or Asplund spaces, $\text{ADP} \Rightarrow \text{numerical index 1}$.

Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
The alternative Daugavet property

Relations between the properties

- **Daugavet property** ⇔ **Numerical index 1**
- **ADP**

Examples
- \(C([0,1], K(\ell_2)) \) has DPr, but has not numerical index 1
- \(c_0 \) has numerical index 1, but has not DPr
- \(c_0 \oplus \infty C([0,1], K(\ell_2)) \) has ADP, neither DPr nor numerical index 1

Remarks
- For RNP or Asplund spaces, \(\text{ADP} \) ⇒ numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
The alternative Daugavet property

Geometric characterizations of the ADP

Theorem

Let X be a Banach space. TFAE:

- X has the ADP.

Every rank-one operator $T \in L(X)$ (equivalently, every weakly compact operator) satisfies

$$\max_{|\omega|=1} \|\text{Id} + \omega T\| = 1 + \|T\|.$$
Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:

- X has the ADP.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 $$|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon.$$
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 $$|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon.$$
Geometric characterizations of the ADP

Theorem

Let X be a Banach space. The following are equivalent (TFAE):

1. X has the ADP.
2. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

 $$|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon.$$

3. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

 $$|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon.$$
The alternative Daugavet property

Geometric characterizations of the ADP

Theorem

Let X be a Banach space. TFAE:

- X has the ADP.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 $$|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon.$$
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 $$|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon.$$
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 $$B_X = \overline{\operatorname{co}} \left(T \{ y \in B_X : \|x - y\| \geq 2 - \varepsilon \} \right).$$
Let V_* be the predual of the von Neumann algebra V.
Let V_\ast be the predual of the von Neumann algebra V.

The Daugavet property of V_\ast is equivalent to:

- V has no atomic projections, or
- the unit ball of V_\ast has no extreme points.
Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:

- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:

- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

The alternative Daugavet property of V_* is equivalent to:

- the atomic projections of V are central, or
- $|v(v_*)| = 1$ for $v \in \text{ext}(B_V)$ and $v_* \in \text{ext}(B_{V_*})$, or
- $V = C \oplus \infty N$, where C is commutative and N has no atomic projections.
Let X be a C^*-algebra.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.
C*-algebras and preduals (II)

Let X be a C*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w^*-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index \(n = 1 \), only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.—Payá, 1999)
Not every real Banach space can be renormed with the ADP.

\[X \text{ real reflexive with ADP} \implies \dim(X) = \infty. \]

Moreover, if \(X \) is real, \(\text{RNP} \), \(\dim(X) = \infty \), and ADP, then \(X \supset \ell_1 \).

A very recent result (Avilés–Kadets–M.—Merí–Shepelska)
If \(X \) is real, \(\dim(X) = \infty \) and \(X \) has the ADP, then \(X^* \supset \ell_1 \).

A renorming result (Boyko–Kadets–M.—Merí, 2009)
If \(X \) is separable, \(X \supset c_0 \), then \(X \) can be renormed with the ADP.
Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.
Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.
Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\implies X$ finite-dimensional.
Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\implies X$ finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.
Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.
- X real reflexive with ADP $\implies X$ finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)
If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.
Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\implies X$ finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)

If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed with the ADP.
Some results on the ADP: isometric properties
Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.
Some results on the ADP: isometric properties

Remark
Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)
X infinite-dimensional with the ADP. Then
- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Some results on the ADP: isometric properties

Remark
Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)
X infinite-dimensional with the ADP. Then
- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary
$X = C(\mathbb{T})/A(\mathbb{D})$. Since $X^* = H^1$ is smooth \implies nor X nor H^1 have the ADP.
Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional with the ADP. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

$X = C(\mathbb{T})/A(\mathbb{D})$. Since $X^* = H^1$ is smooth \implies nor X nor H^1 have the ADP.

Open question

Is there X with the ADP which is smooth or strictly convex?
Lush spaces

6 Lush spaces
- Definition and examples
- Lush renorming
- Reformulations of lushness and applications
- Lushness is not equivalent to numerical index one

K. Boyko, V. Kadets, M. Martín, and J. Merí.
Properties of lush spaces and applications to Banach spaces with numerical index 1.

K. Boyko, V. Kadets, M. Martín, and D. Werner.
Numerical index of Banach spaces and duality.

V. Kadets, M. Martín, J. Merí, and R. Payá.
Convexity and smoothness of Banach spaces with numerical index one.

V. Kadets, M. Martín, J. Merí, and V. Shepelska.
Lushness, numerical index one and duality.
Lush spaces

Motivation

Remark

Usually, when we show that a Banach space has numerical index 1, we actually prove more. We do not have an operator-free characterization of the spaces with numerical index 1. Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) Fullerton, 1961: X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[n(X) = 1 \]
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964**: X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.
Lush spaces

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.
Lush spaces

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an **almost-CL-space** if B_X is the closed absolutely convex hull of every maximal face of S_X.
Lush spaces

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[
\begin{align*}
(a) & \iff (b) & \iff (c) & \iff n(X) = 1
\end{align*}
\]
Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964**: X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961**: X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978**: X is an **almost-CL-space** if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[
\begin{align*}
(a) & \iff (b) \iff (c) \iff n(X) = 1
\end{align*}
\]
Lush spaces

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964**: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961**: X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978**: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[(a) \iff (b) \iff (c) \iff n(X) = 1 \]

Observation

Showing that $(c) \implies n(X) = 1$, one realizes that (c) is too much.
Lush spaces

Motivation

Some sufficient conditions

Let \(X \) be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** \(X \) has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** \(X \) is a **CL-space** if \(B_X \) is the absolutely convex hull of every maximal face of \(S_X \).

(c) **Lima, 1978:** \(X \) is an **almost-CL-space** if \(B_X \) is the closed absolutely convex hull of every maximal face of \(S_X \).

\[
(a) \iff (b) \iff (c) \iff n(X) = 1
\]

Observation

Showing that (c) \(\implies n(X) = 1 \), one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)

\(X \) is **lush** if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]
Lush spaces

Definition and examples

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \mathrm{dist}\left(y, \mathrm{aconv}(S(B_X, x^*, \varepsilon))\right) < \varepsilon.
\]
Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

\(X \) is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies \) \(n(X) = 1 \).
Lush spaces

Definition and examples

Lushness (Boyko–Kadets–M.–Werner, 2007)

\(X \) is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv}(S(B_X, x^*, \varepsilon)) \right) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies \) \(n(X) = 1 \).

Proof.
Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies \) \(n(X) = 1. \)

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon. \)
Lush spaces

Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X \), \(\varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies n(X) = 1 \).

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon \).
- Use lushness for \(x_0 = Ty_0/\|Ty_0\| \) and \(y_0 \) to get \(x^* \in S_{X^*} \) and

\[
v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0,1], \sum \lambda_i = 1, \theta_i \in T,
\]

with \(\text{Re} x^*(x_0) > 1 - \varepsilon \) and \(\|v - y_0\| < \varepsilon \).
Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies n(X) = 1 \).

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon \).
- Use lushness for \(x_0 = Ty_0 / \|Ty_0\| \) and \(y_0 \) to get \(x^* \in S_{X^*} \) and
 \[
 v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0,1], \sum \lambda_i = 1, \theta_i \in \mathbb{T},
 \]
 with \(\text{Re} \, x^*(x_0) > 1 - \varepsilon \) and \(\|v - y_0\| < \varepsilon \).
- Then \(|x^*(Tv)| = |x^*(x_0) - x^*(T(\frac{y_0}{\|Ty_0\| - v}))| \sim \|T\| \).
Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

A space X is **lush** if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv} \left(S(B_X, x^*, \varepsilon) \right) \right) < \varepsilon.$$

Theorem

X lush $\implies n(X) = 1$.

Proof.

- $T \in L(X)$ with $\|T\| = 1$, $\varepsilon > 0$. Find $y_0 \in S_X$ which $\|Ty_0\| > 1 - \varepsilon$.
- Use lushness for $x_0 = Ty_0 / \|Ty_0\|$ and y_0 to get $x^* \in S_{X^*}$ and

$$v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \ \lambda_i \in [0,1], \ \sum \lambda_i = 1, \ \theta_i \in \mathbb{T},$$

with $\text{Re} \ x^*(x_0) > 1 - \varepsilon$ and $\|v - y_0\| < \varepsilon$.

- Then $|x^*(Tv)| = |x^*(x_0) - x^* \left(T \left(\frac{y_0}{\|Ty_0\|} - v \right) \right) | \sim \|T\|$.

- By a convexity argument, $\exists i$ such that $|x^*(Tx_i)| \sim \|T\|$ and $\text{Re} \ x^*(x_i) \sim 1$.
Lushness (Boyko–Kadets–M.–Werner, 2007)

A space X is **lush** if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv} \left(S(B_X, x^*, \varepsilon) \right) \right) < \varepsilon.$$

Theorem

If X is lush, then $n(X) = 1$.

Proof.

- Let $T \in L(X)$ with $\|T\| = 1$, $\varepsilon > 0$. Find $y_0 \in S_X$ such that $\|Ty_0\| > 1 - \varepsilon$.
- Use lushness for $x_0 = Ty_0 / \|Ty_0\|$ and y_0 to get $x^* \in S_{X^*}$ and

$$v = \sum_{i=1}^n \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \quad \lambda_i \in [0, 1], \quad \sum \lambda_i = 1, \quad \theta_i \in \mathbb{T},$$

with $\text{Re} x^*(x_0) > 1 - \varepsilon$ and $\|v - y_0\| < \varepsilon$.
- Then $|x^*(Tv)| = |x^*(x_0) - x^* \left(T \left(\frac{y_0}{\|Ty_0\|} - v \right) \right)| \sim \|T\|$.
- By a convexity argument, $\exists i$ such that $|x^*(Tx_i)| \sim \|T\|$ and $\text{Re} x^*(x_i) \sim 1$.
- Then $\max_{\omega \in \mathbb{T}} \|\text{Id} + \omega T\| \sim 1 + \|T\| \implies v(T) \sim \|T\|$. ✔️
Examples of lush spaces

2. In particular, $C(K), L_1(\mu), C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.
4. C-rich subspaces K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h: K \rightarrow [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.
5. More examples of lush spaces
6. C-rich subspaces of $C(K)$.
7. In particular, finite-codimensional subspaces of $C[0, 1]$.
8. $C_E(K)$, where L nowhere dense in K and $E \subseteq C(L)$.
9. Y if $c_0 \subseteq Y \subseteq \ell_\infty$ (canonical copies).
Examples of lush spaces

- Almost-CL-spaces.

Preduals of $L_1(\mu)$-spaces.

Examples of lush spaces

2. $C_0(K)$, $L_1(\mu)$, $C(K)$, ...
3. Preduals of $L_1(\mu)$-spaces.
4. C-rich subspaces K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \to [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.
5. More examples of lush spaces
6. Finite-codimensional subspaces of $C[0, 1]$.
7. $C_c(E)(K)$, where L nowhere dense in K and $E \subseteq C(L)$.
8. If $c_0 \subseteq Y \subseteq \ell_\infty$ (canonical copies).
Examples of lush spaces

<table>
<thead>
<tr>
<th></th>
<th>Examples of lush spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Almost-CL-spaces.</td>
</tr>
<tr>
<td>2</td>
<td>In particular, $C(K), L_1(\mu), C_0(L)\ldots$</td>
</tr>
</tbody>
</table>
Examples of lush spaces

- Almost-CL-spaces.
- In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
- Preduals of $L_1(\mu)$-spaces.
Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is **C-rich** iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \rightarrow [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.
Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

A subspace X of $C(K)$ is C-rich if for all open nonempty U and all $\epsilon > 0$, there exists a continuous $h: K \to [0,1]$ such that $\text{supp}(h) \subseteq U$, $\text{dist}(h, X) < \epsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
Examples of lush spaces

2. In particular, $C(K), L_1(\mu), C_0(L)$...
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is **C-rich** iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \rightarrow [0, 1]$ continuous, supp$(h) \subseteq U$ such that dist$(h, X) < \varepsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
5. In particular, finite-codimensional subspaces of $C[0, 1]$.

Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \to [0, 1]$ continuous, supp$(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
5. In particular, finite-codimensional subspaces of $C[0,1]$.
6. $C_E(K\|L)$, where L nowhere dense in K and $E \subseteq C(L)$.
Examples of lush spaces

Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

A compact, X subspace of $C(K)$ is **C-rich** iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \to [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
5. In particular, finite-codimensional subspaces of $C[0, 1]$.
6. $C_E(K\|L)$, where L nowhere dense in K and $E \subseteq C(L)$.
7. Y if $c_0 \subseteq Y \subseteq \ell_\infty$ (canonical copies).
Lush renorming

The goal

When we may get a lush equivalent norm?
Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition

X separable, $X \supseteq c_0 \implies$ exists $\| \cdot \| \simeq \| \cdot \|$ and $T : (X, \| \cdot \|) \to \ell_\infty$ with T isometric embedding & $c_0 \subseteq T(X)$ (canonical copy).
The goal

When we may get a lush equivalent norm?

Proposition

\(X\) separable, \(X \supseteq c_0\) \(\implies\) exists \(\| \cdot \| \simeq \| \cdot \|\) and \(T : (X, \| \cdot \|) \to \ell_\infty\) with \(T\) isometric embedding \& \(c_0 \subseteq T(X)\) (canonical copy).

Recall this family of examples of lush spaces

\(Y\) if \(c_0 \subseteq Y \subseteq \ell_\infty\) (canonical copies).
Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition
\(X\) separable, \(X \supseteq c_0 \implies \) exists \(\| \cdot \| \simeq \| \cdot \|\) and \(T : (X, \| \cdot \|) \to \ell_\infty\) with \(T\) isometric embedding & \(c_0 \subseteq T(X)\) (canonical copy).

Recall this family of examples of lush spaces
\(\ell_\infty\) if \(c_0 \subseteq Y \subseteq \ell_\infty\) (canonical copies).

Theorem
\(X\) separable, \(X \supseteq c_0 \implies X\) admits an equivalent lush norm.
Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

\[X \text{ separable, } X \supseteq c_0 \implies \text{exists } \| \cdot \| \simeq \| \cdot \| \text{ and } T : (X, \| \cdot \|) \to \ell_\infty \text{ with } T \text{ isometric embedding } \& \ c_0 \subseteq T(X) \text{ (canonical copy).} \]

Recall this family of examples of lush spaces

- \(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).

Theorem

\[X \text{ separable, } X \supseteq c_0 \implies X \text{ admits an equivalent lush norm.} \]

Corollary

Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Lush spaces

Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

\(X \) separable, \(X \supseteq c_0 \Rightarrow \exists \| \cdot \| \simeq \| \cdot \| \)

and \(T : (X, \| \cdot \|) \to \ell_\infty \) with

\(T \) isometric embedding & \(c_0 \subseteq T(X) \) (canonical copy).

Recall this family of examples of lush spaces

\(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).

Open problems

Theorem

\(X \) separable, \(X \supseteq c_0 \Rightarrow X \) admits an equivalent lush norm.

Corollary

Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition
X separable, $X \supseteq c_0 \Rightarrow \exists |||\cdot||| \simeq \|\cdot\|$ and $T : (X, |||\cdot|||) \rightarrow \ell_\infty$ isometric embedding & $c_0 \subseteq T(X)$ (canonical copy).

Open problems
- Find more sufficient conditions to get equivalent lush norms.

Recall
Y if $c_0 \subseteq Y \subseteq \ell_\infty$ (canonical copies).

Theorem
X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary
Every closed subspace of c_0 admits an equivalent lush norm.
Lush spaces

Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition
\[X \text{ separable, } X \supseteq c_0 \implies \exists |||\cdot||| \simeq \|\cdot\| \text{ and } T : (X, |||\cdot|||) \to \ell_\infty \text{ with } T \text{ isometric embedding} \]

Recall this family of examples of lush spaces.
\[Y \text{ if } c_0 \subseteq Y \subseteq \ell_\infty \text{ (canonical copies).} \]

Open problems
- Find more sufficient conditions to get equivalent lush norms.
- When \(X \supseteq \ell_1 \)?

Theorem
\[X \text{ separable, } X \supseteq c_0 \implies X \text{ admits an equivalent lush norm.} \]

Corollary
Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition
X separable, \(X \supseteq c_0 = \begin{array}{l}
\Rightarrow \exists |||\cdot||| \simeq \|\cdot\| \\
T: (X, |||\cdot|||) \to \ell_\infty \text{ with } T \text{ isometric embedding} & c_0 \subseteq T(X) \text{ (canonical copy)}.
\end{array}

Open problems
- Find more sufficient conditions to get equivalent lush norms.
- When \(X \supseteq \ell_1 \)?
- When \(X \supseteq \ell_\infty \)?

Recall this family of examples of lush spaces
\(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).

Theorem
\(X \) separable, \(X \supseteq c_0 \implies X \) admits an equivalent lush norm.

Corollary
Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Even more examples of lush spaces

Observation

X

Banach space. Consider the following assertions.

(a) Exists $A \subset B_X^*$ norming, $|x^{**}(a^*)| = 1$ for all $a^* \in A$ and $x^{**} \in \text{ext}(B_X^{**})$.

(b) For $x \in S_{B_X}$ and $\varepsilon > 0$, exists $x^* \in S_{B_X^*}$ such that $x \in S(B_X, x^*, \varepsilon)$ and $B_X = a_{\text{conv}}(S(B_X, x^*, \varepsilon))$.

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J: X \rightarrow C_b(\Omega)$ linear isometry with

(N1) $\|J^*\delta_s\| = 1$ for all $s \in \Omega$,

(N2) span$(J^*\delta_s)$ is a L^1-summand in X for all $s \in \Omega$.

Nicely embedded Banach spaces (they fulfil (a)).

In particular, function algebras (as $A(D)$ and H_∞).
Observation

Let X be a Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1$ for all $a^* \in A$ and $\forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).$$

(a) \iff (b) \implies lushness
Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1 \ \forall a^* \in A$ and $\forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).$$

Definition (Werner, 1997)

X is **nicely embedded** in $C_b(\Omega)$ if exists $J : X \rightarrow C_b(\Omega)$ linear isometry with

- (N1) $\|J^*\delta_s\| = 1 \ \forall s \in \Omega$,

- (N2) $\text{span}(J^*\delta_s)$ L-summand in X^* \ \forall s \in \Omega.$
Observation

X Banach space. Consider the following assertions.

(a) Exists \(A \subset B_{X^*} \) norming, \(|x^{**}(a^*)| = 1 \ \forall a^* \in A \) and \(\forall x^{**} \in \text{ext}(B_{X^{**}}) \).

(b) For \(x \in S_X \) and \(\varepsilon > 0 \), exists \(x^* \in S_{X^*} \) such that

\[
 x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{aconv}(S(B_X, x^*, \varepsilon)).
\]

Definition (Werner, 1997)

\(X \) is nicely embedded in \(C_b(\Omega) \) if exists \(J : X \rightarrow C_b(\Omega) \) linear isometry with

\(\text{(N1)} \quad \|J^*\delta_s\| = 1 \ \forall s \in \Omega, \)

\(\text{(N2)} \quad \text{span}(J^*\delta_s) \ L\text{-summand in } X^* \ \forall s \in \Omega. \)

Even more examples of lush spaces

Nicely embedded Banach spaces (they fulfil (a)).

In particular, function algebras (as \(A(D) \) and \(H_\infty \)).
Observation

A Banach space. Consider the following assertions.

(a) Exists \(A \subset B_{X^*} \) norming, \(|x^{**}(a^*)| = 1 \) \(\forall a^* \in A \) and \(\forall x^{**} \in \text{ext}(B_{X^{**}}) \).

(b) For \(x \in S_X \) and \(\epsilon > 0 \), exists \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \epsilon) \quad \text{and} \quad B_X = \text{aconv}(S(B_X, x^*, \epsilon)).
\]

Definition (Werner, 1997)

\(X \) is \textbf{nicely embedded} in \(C_b(\Omega) \) if exists \(J : X \rightarrow C_b(\Omega) \) linear isometry with

\[
\text{(N1)} \quad \|J^*\delta_s\| = 1 \quad \forall s \in \Omega,
\]

\[
\text{(N2)} \quad \text{span}(J^*\delta_s) \ L\text{-summand in } X^* \quad \forall s \in \Omega.
\]

Nicely embedded Banach spaces (they fulfil (a)).
Observation

X Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1 \ \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{a\text{conv}}(S(B_X, x^*, \varepsilon)).$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J : X \to C_b(\Omega)$ linear isometry with

(N1) $\|J^* \delta_s\| = 1 \ \forall s \in \Omega$,

(N2) $\text{span}(J^* \delta_s)$ L-summand in $X^* \ \forall s \in \Omega$.

Even more examples of lush spaces

8 Nicely embedded Banach spaces (they fulfil (a)).

9 In particular, function algebras (as $A(\mathbb{D})$ and H^∞).
Some reformulations of lushness
Some reformulations of lushness

Proposition

Let X be a Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

In other words, B_X is the aconvex hull of the set of $x \in B_X$ such that $x^*(x) = 1$ for any $x^* \in G$.
Some reformulations of lushness

Proposition

X Banach space. TFAE:
- X is lush,
- Every separable $E \subset X$ is contained in a separate lush Y with $E \subset Y \subset X$.

Separable lush spaces

X separable. TFAE:
- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that
 \[B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)) \quad (\varepsilon > 0, \ x^* \in G). \]
- Therefore, $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext} (B_{X^{**}})$ and every $x^* \in G$.
- This implies that $B_X = \overline{\text{aconv}} \left(\{ x \in B_X : x^*(x) = 1 \} \right)$ $\forall x^* \in G$.
Some reformulations of lushness

Proposition

Let X be a Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces

Let X be separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

 $$B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)) \quad (\varepsilon > 0, \ x^* \in G).$$

- Therefore, $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$.
- This implies that $B_X = \overline{\text{aconv}} \left(\{ x \in B_X : x^*(x) = 1 \} \right) \ \forall x^* \in G$.

We almost returned to the almost-CL-space definition!!
Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces

X separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that
 \[B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)) \quad (\varepsilon > 0, \ x^* \in G). \]

- Therefore, $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$.
- This implies that $B_X = \overline{\text{aconv}} \left(\{ x \in B_X : x^*(x) = 1 \} \right)$ $\forall x^* \in G$.

Consequence

$X \subseteq C[0,1]$ strictly convex or smooth $\implies C[0,1]/X$ contains $C[0,1]$.
An important consequence

Remark

\[X \text{ lush separable, } \dim(X) = \infty = \Rightarrow \text{ there is } G \in S_{X^*} \text{ infinite such that } \left| x^{**}(x^*) \right| = 1 \left(x^{**} \in \text{ext}(B_{X^{**}}), x^* \in G \right). \]

Proposition (López–M.–Payá, 1999)

\[X \text{ real, } A \subset S_X \text{ infinite such that } \left| x^*(a) \right| = 1 \left(x^* \in \text{ext}(B_X), a \in A \right). \]

Then,

\[X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Main consequence

\[X \text{ real lush, } \dim(X) = \infty = \Rightarrow X^{**} \supseteq \ell_1. \]
An important consequence

Remark

X lush separable, $\dim(X) = \infty \implies$ there is $G \in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext} (B_{X^{**}}), \ x^* \in G).$$
An important consequence

Remark

X lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

X real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1. \)
An important consequence

Remark

$LUSH$ spaces

If X is lush separable, $\dim(X) = \infty \implies \exists G \in S_{X*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).$$

Proposition (López–M.–Payá, 1999)

If X is real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).$$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

If X is real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Proof.
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[
|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).
\]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[
|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).
\]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1 \).

Proof.

- There is \(E \subset X \) separable and lush.
An important consequence

Remark

X lush separable, $\dim(X) = \infty \implies$ there is $G \in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).$$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).$$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Proof.

- There is $E \subseteq X$ separable and lush.
- Then $E^* \supseteq c_0$ or $E^* \supseteq \ell_1 \implies E^* \supseteq \ell_1$.
An important consequence

Remark

\(X \text{ lush separable, } \dim(X) = \infty \implies \text{ there is } G \in S_{X^*} \text{ infinite such that}
\)
\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \text{ real, } A \subset S_X \text{ infinite such that}
\)
\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \text{ or } X \supseteq \ell_1.\)

Main consequence

\(X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.\)

Proof.

• There is \(E \subseteq X \text{ separable and lush.}\)
• Then \(E^* \supseteq c_0 \text{ or } E^* \supseteq \ell_1 \implies E^* \supseteq \ell_1.\)
• By “lifting” property of \(\ell_1 \implies X^* \supseteq \ell_1. \checkmark\)
An important consequence

Remark

Let X be lush separable, $\dim(X) = \infty \implies$ there is $G \in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).$$

Proposition (López–M.–Payá, 1999)

Let X be real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).$$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

Let X be real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Question

What happens if just $n(X) = 1$?
An important consequence

Remark

X lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

X real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

X real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1 \).

Question

What happens if just \(n(X) = 1 \)? The same, we will prove later.
Lush spaces

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space X such that X^* is lush but X is not lush. Since $n(X^*) = 1$, also $n(X) = 1$.

The set $\{x^* \in S_{X^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{X^{**}})\}$ is empty.

Consequence

X lush $\neq \neq X^*$ lush

Proposition

X^{**} lush $\neq \neq X$ lush
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
Lush spaces Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

$$\{ x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext } (B_{\mathcal{X}^{**}}) \}$$

is empty.
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

$$\{ x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}}) \}$$

is empty.

Consequence

$$X \text{ lush } \iff X^* \text{ lush}$$
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

\[\{ x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}}) \} \]

is empty.

Consequence

\[X \text{ lush } \iff X^* \text{ lush} \]

Proposition

\[X^{**} \text{ lush } \iff X \text{ lush} \]
Slicely countably determined spaces

7 Slicely countably determined spaces
- Slicely Countably Determined sets and spaces
- Applications to numerical index 1 spaces
- SCD operators
- Open questions

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska
Slicely Countably Determined Banach spaces
SCD sets: Definitions and preliminary remarks

A Banach space X is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- Every slice of A contains one of the S_n's.
- $A \subseteq \text{conv}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset$ for all n.
- Given $\{x_n : n \in \mathbb{N}\}$ with $x_n \in S_n$ for all n, $A \subseteq \text{conv}(\{x_n : n \in \mathbb{N}\})$.

Remarks:

A is SCD iff A is separable.

If A is SCD, then it is separable.
X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n's,
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
- $A \subseteq \text{conv}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
- $A \subseteq \overline{\text{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in S_n \ \forall n \in \mathbb{N}$, $A \subseteq \overline{\text{conv}}(\{x_n : n \in \mathbb{N}\})$.

Remarks

A is SCD iff A is SCD.

If A is SCD, then it is separable.
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined** (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
- $A \subseteq \text{conv}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in S_n \ \forall n \in \mathbb{N}$, $A \subseteq \overline{\text{conv}}(\{x_n : n \in \mathbb{N}\})$.

Remarks

- A is SCD iff \overline{A} is SCD.
- If A is SCD, then it is separable.
SCD sets: Elementary examples I

Example A separable and $A = \text{conv}(\text{dent}(A)) \Rightarrow A$ is SCD.

Proof. Take $\{a_n: n \in \mathbb{N}\}$ denting points with $A = \text{conv}(\{a_n: n \in \mathbb{N}\})$.

For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_n and of diameter $1/m$.

If $B \cap S_{n, m} \neq \emptyset \forall n, m \in \mathbb{N} \Rightarrow a_n \in B \forall n \in \mathbb{N}$.

Therefore, $A = \text{conv}(\{a_n: n \in \mathbb{N}\}) \subseteq \text{conv}(B) = \text{conv}(B)$. ✓

Example In particular, A_{RNP} separable $\Rightarrow A$ SCD.

Corollary If X is separable LUR $\Rightarrow B(X)$ is SCD.

So, every separable space can be renormed such that $B(X, |\cdot|)$ is SCD.
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.
Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \implies A \text{ is SCD.} \)

Proof.
Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \implies A \text{ is SCD.} \)

Proof.

- Take \(\{ a_n : n \in \mathbb{N} \} \) denting points with \(A = \overline{\text{conv}}(\{ a_n : n \in \mathbb{N} \}) \).
Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.
SCD sets: Elementary examples I

Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \implies A \) is SCD.

Proof.

- Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \).
- For every \(n, m \in \mathbb{N} \), take a slice \(S_{n,m} \) containing \(a_n \) and of diameter \(1/m \).
- If \(B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N} \).
- Therefore, \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}(B)} = \overline{\text{conv}(B)} \). ✓
SCD sets: Elementary examples I

Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \implies A \) is SCD.

Proof.

- Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \).
- For every \(n, m \in \mathbb{N} \), take a slice \(S_{n,m} \) containing \(a_n \) and of diameter \(1/m \).
- If \(B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N} \).
- Therefore, \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}(B)} = \overline{\text{conv}(B)}. \) \(\checkmark \)

Example

In particular, \(A \) RNP separable \(\implies A \) SCD.
SCD sets: Elementary examples I

Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \) \(\implies \) \(A \) is SCD.

Proof.

- Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \).
- For every \(n, m \in \mathbb{N} \), take a slice \(S_{n,m} \) containing \(a_n \) and of diameter \(1/m \).
- If \(B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \) \(\implies \) \(a_n \in \overline{B} \ \forall n \in \mathbb{N} \).
- Therefore, \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}}(\overline{B}) = \overline{\text{conv}}(B) \). ✓

Example

In particular, \(A \) RNP separable \(\implies \) \(A \) SCD.

Corollary

- If \(X \) is separable LUR \(\implies \) \(B_X \) is SCD.
- So, every separable space can be renormed such that \(B_{(X, \| \cdot \|)} \) is SCD.
Example

If X^* is separable $\Rightarrow A$ is SCD.

Proof.
Take $\{x^*_n: n \in \mathbb{N}\}$ dense in $S X^*$. For every $n, m \in \mathbb{N}$, consider $S_n^*, m = S(A, x^*_n, 1/m)$. It is easy to show that any slice of A contains one of the S_n^*, m.

Negative example

If X has the Daugavet property $\Rightarrow B^*_X$ is not SCD.

Therefore, $B^*_{C[0,1]}$, $B^*_1[0,1]$ are not SCD.

Proof.
Fix $x^*_0 \in B^*_X$ and $\{S_n^*\}$ sequence of slices of B^*_X. By [KSSW] there is a sequence $(x_n) \subset B^*_X$ such that $x_n \in S_n^*$ for every $n \in \mathbb{N}$, $(x_n)_{n \geq 0}$ is equivalent to the basis of ℓ_1, so $x^*_0 / \in lin\{x_n: n \in \mathbb{N}\}$.
Example

If X^* is separable $\implies A$ is SCD.
Example
If X^* is separable $\iff A$ is SCD.

Proof.
SCD sets: Elementary examples II

Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x^*_n : n \in \mathbb{N}\}$ dense in S_{X^*}.
Example

If \(X^* \) is separable \(\implies \) \(A \) is SCD.

Proof.

- Take \(\{x_n^* : n \in \mathbb{N}\} \) dense in \(S_{X^*} \).
- For every \(n, m \in \mathbb{N} \), consider \(S_{n,m} = S(A, x_n^*, 1/m) \).
SCD sets: Elementary examples II

Example

If X^* is separable $\iff A$ is SCD.

Proof.

- Take $\{x_n^*: n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓
Example
If X^* is separable $\implies A$ is SCD.

Proof.
- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example
If X has the Daugavet property $\implies B_X$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_1[0,1]}$ are not SCD.
SCD sets: Elementary examples II

Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD.

Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.
Example
If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example
If X has the Daugavet property $\implies B_X$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_1[0,1]}$ are not SCD.

Proof.

- Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X.

Slicely countably determined spaces SCD sets & spaces

SCD sets: Elementary examples II

SCD sets: Elementary examples II

Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x^*_n : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x^*_n, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD. Therefore, $B_{C[0,1]}, B_{L_1[0,1]}$ are not SCD.

Proof.

- Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X.
- By [KSSW] there is a sequence $(x_n) \subset B_X$ such that
 - $x_n \in S_n$ for every $n \in \mathbb{N}$,
 - $(x_n)_{n \geq 0}$ is equivalent to the basis of ℓ_1,
 - so $x_0 \notin \overline{\text{lin}}\{x_n : n \in \mathbb{N}\}$. ✓
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \]

where \(\lambda_k \geq 0 \), \(\sum \lambda_k = 1 \), \(S_k \) slices.

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combinations of slices.

Small combinations of slices of \(A \) has small combinations of slices iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.

Example

If \(A \) has small combinations of slices + separable \(\Rightarrow A \) is SCD.

Particular case

\(A \) strongly regular + separable \(\Rightarrow A \) is SCD.
Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]
Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

\(A \) has **small combinations of slices** iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

\(A \) has \textbf{small combinations of slices} iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.

Example

If \(A \) has small combinations of slices + separable \(\implies A \) is SCD.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable \(\implies \) A is SCD.

Particular case

A strongly regular + separable \(\implies \) A is SCD.
SCD sets: Further examples II
SCD sets: Further examples II

Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.
Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.
SCD sets: Further examples II

Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π-bases

A π-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i's.
SCD sets: Further examples II

Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π-bases
A π-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i’s.

Proposition
If $(A, \sigma(X, X^*))$ has a countable π-base $\implies A$ is SCD.
Theorem

A separable without \(\ell_1 \)-sequences \(\Rightarrow \) \((A, \sigma(X, X^*))\) has a countable \(\pi \)-base.

Proof.

We see \((A, \sigma(X, X^*)) \subset C(T)\) where \(T = (B_{X^*}, \sigma(X^*, X))\).

By Rosenthal \(\ell_1 \) theorem, \((A, \sigma(X, X^*))\) is a relatively compact subset of the space of first Baire class functions on \(T\).

By a result of Todor ˇcevi´c, \((A, \sigma(X, X^*))\) has a \(\sigma\)-disjoint \(\pi\)-base.

\(\{V_i : i \in I\}\) is \(\sigma\)-disjoint if \(I = \bigcup_{n \in \mathbb{N}} I_n\) and each \(\{V_i : i \in I_n\}\) is pairwise disjoint.

A \(\sigma\)-disjoint family of open subsets in a separable space is countable. ✓
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
Proof.

- We see $(A, \sigma(X, X^*)) \subseteq C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
- $\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_X^*, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
- $\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
- A σ-disjoint family of open subsets in a separable space is countable. ✓
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
- $\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
- A σ-disjoint family of open subsets in a separable space is countable. ✓

Example

A separable without ℓ_1-sequences $\implies A$ is SCD.
SCD spaces: definition and examples

SCD space X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces:
1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X^* \not\subseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces:
1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L_1[0,1]$
3. There is X with the Schur property which is not SCD.

Remark:
Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.
SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

1. X is separable strongly regular. In particular, RNP, CPCP spaces.
2. \(X \) is separable. In particular, if \(X^* \) is separable.
3. There is \(X \) with the Schur property which is not SCD.

Remark

Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

<table>
<thead>
<tr>
<th>SCD space</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples of SCD spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. X separable strongly regular. In particular, RNP, CPCP spaces.</td>
</tr>
</tbody>
</table>
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \nsubseteq \ell_1$. In particular, if X^* is separable.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \not\subseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$,
3. $L_1[0,1]$. There is X with the Schur property which is not SCD.

Remark

Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

A space X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \not\subseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L_1[0,1]$.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L_1[0,1]$
3. There is X with the Schur property which is not SCD.
SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable X \not\subseteq \ell_1. In particular, if X* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, C[0, 1], L_1[0, 1]
3. There is X with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.
SCD spaces: stability properties

Theorem

\[Z \subset X \text{. If } Z \text{ and } X/Z \text{ are SCD } \Rightarrow X \text{ is SCD.} \]

Corollary

\[\text{If } \ell_1 \cong Y \subset X = \Rightarrow X/Y \text{ contains a copy of } \ell_1. \]

\[\text{If } \ell_1 \cong Y_1 \subset X = \Rightarrow \text{there is } \ell_1 \cong Y_2 \subset X \text{ with } Y_1 \cap Y_2 = 0. \]

Corollary

\[X_1, \ldots, X_m \text{ SCD } \Rightarrow X_1 \oplus \cdots \oplus X_m \text{ SCD.} \]
Theorem

$Z \subset X$. If Z and X/Z are SCD $\implies X$ is SCD.
SCD spaces: stability properties

Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

\[X \text{ separable NOT SCD} \]
Theorem

\(Z \subset X \). If \(Z \) and \(X/Z \) are SCD \(\implies X \) is SCD.

Corollary

\(X \) separable NOT SCD

- If \(\ell_1 \cong Y \subset X \implies X/Y \) contains a copy of \(\ell_1 \).
SCD spaces: stability properties

Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

\[X \text{ separable NOT SCD} \]

- If \(\ell_1 \cong Y \subset X \implies X/Y \text{ contains a copy of } \ell_1. \)
- If \(\ell_1 \cong Y_1 \subset X \implies \text{there is } \ell_1 \cong Y_2 \subset X \text{ with } Y_1 \cap Y_2 = 0. \)
SCD spaces: stability properties

Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

X separable NOT SCD

- If \(\ell_1 \cong Y \subset X \implies X/Y \text{ contains a copy of } \ell_1. \)
- If \(\ell_1 \cong Y_1 \subset X \implies \text{there is } \ell_1 \cong Y_2 \subset X \text{ with } Y_1 \cap Y_2 = 0. \)

Corollary

\(X_1, \ldots, X_m \text{ SCD } \implies X_1 \oplus \cdots \oplus X_m \text{ SCD.} \)
SCD spaces: stability properties II

Theorem

\[X_1, X_2, \ldots, SCD, E \text{ with unconditional basis.} \]

\[E \nsubseteq c_0 \Rightarrow [\bigoplus_{n \in \mathbb{N}} X_n] E SCD. \]

\[E \nsubseteq \ell_1 \Rightarrow [\bigoplus_{n \in \mathbb{N}} X_n] E SCD. \]

Examples

1. \(c_0 (\ell_1) \) and \(\ell_1 (c_0) \) are SCD.

2. \(c_0 \otimes \varepsilon c_0, c_0 \otimes \pi c_0, c_0 \otimes \varepsilon \ell_1, c_0 \otimes \pi \ell_1, \ell_1 \otimes \varepsilon \ell_1, \) and \(\ell_1 \otimes \pi \ell_1 \) are SCD.

3. \(K (c_0) \) and \(K (c_0, \ell_1) \) are SCD.

4. \(\ell_2 \otimes \varepsilon \ell_2 \equiv K (\ell_2) \) and \(\ell_2 \oplus \pi \ell_2 \equiv L_1 (\ell_2) \) are SCD.
SCD spaces: stability properties II

Theorem

X_1, X_2, \ldots SCD, E with unconditional basis.

- $E \not\ni c_0 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.
- $E \not\ni \ell_1 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.
SCD spaces: stability properties II

Theorem

X_1, X_2, \ldots SCD, E with unconditional basis.

* $E \not\in c_0 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.
* $E \not\in \ell_1 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.

Examples

1. $c_0(\ell_1)$ and $\ell_1(c_0)$ are SCD.
2. $c_0 \otimes_\varepsilon c_0$, $c_0 \otimes_\pi c_0$, $c_0 \otimes_\varepsilon \ell_1$, $c_0 \otimes_\pi \ell_1$, $\ell_1 \otimes_\varepsilon \ell_1$, and $\ell_1 \otimes_\pi \ell_1$ are SCD.
3. $K(c_0)$ and $K(c_0, \ell_1)$ are SCD.
4. $\ell_2 \otimes_\varepsilon \ell_2 \equiv K(\ell_2)$ and $\ell_2 \oplus_\pi \ell_2 \equiv L_1(\ell_2)$ are SCD.
The DPr, the ADP and numerical index 1

Recalling the properties

Kadets-Shvidkoy-Sirotkin-Werner, 1997:

The space X has the Daugavet property (DPr) if

$$\|Id + T\| = 1 + \|T\|$$

for every rank-one $T \in L(X)$.

⋆ Then every weakly compact T also satisfies (DE).

Lumer, 1968:

The space X has numerical index 1 if

$$\max_{\theta \in T} \|Id + \theta T\| = 1 + \|T\|$$

⋆ Equivalently, $v(T) = \|T\|$ for every $T \in L(X)$.

M.-Oikhberg, 2004:

The space X has the alternative Daugavet property (ADP) if

$$\|Id + T\| = 1 + \|T\|$$

for every rank-one $T \in L(X)$.

⋆ Then every weakly compact T also satisfies (aDE).
Recalling the properties

Kadets-Shvidkoy-Sirotkin-Werner, 1997:

X has the Daugavet property (DPr) if

$$\|\text{Id} + T\| = 1 + \|T\|$$

(DE)

for every rank-one $T \in L(X)$.

Then every weakly compact T also satisfies (DE).

Lumer, 1968:

X has numerical index 1 if every operator on X satisfies

$$\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$$

(aDE)

Equivalently,

$$v(T) = \|T\|$$

for every $T \in L(X)$.

M.-Oikhberg, 2004:

X has the alternative Daugavet property (ADP) if every rank-one $T \in L(X)$ satisfies (aDE).

Then every weakly compact T also satisfies (DE).
Recalling the properties

1. **Kadets-Shvidkoy-Sirotkin-Werner, 1997:**
 \(X \) has the **Daugavet property (DPr)** if
 \[
 \|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}
 \]
 for every rank-one \(T \in L(X) \).
 \[\star\] Then every weakly compact \(T \) also satisfies (DE).

2. **Lumer, 1968:** \(X \) has **numerical index 1** if **EVERY** operator on \(X \) satisfies
 \[
 \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \quad \text{(aDE)}
 \]
 \[\star\] Equivalently, \(v(T) = \|T\| \) for **EVERY** \(T \in L(X) \).
The DPr, the ADP and numerical index 1

Recalling the properties

1. **Kadets-Shvidkoy-Sirotkin-Werner, 1997:**
 \(X \) has the **Daugavet property (DPr)** if
 \[
 \| \text{Id} + T \| = 1 + \| T \| \quad (\text{DE})
 \]
 for every rank-one \(T \in L(X) \).
 ★ Then every weakly compact \(T \) also satisfies (DE).

2. **Lumer, 1968:** \(X \) has **numerical index 1** if EVERY operator on \(X \) satisfies
 \[
 \max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \| \quad (\text{aDE})
 \]
 ★ Equivalently, \(v(T) = \| T \| \) for EVERY \(T \in L(X) \).

3. **M.-Oikhberg, 2004:** \(X \) has the **alternative Daugavet property (ADP)** if
every rank-one \(T \in L(X) \) satisfies (aDE).
 ★ Then every weakly compact \(T \) also satisfies (aDE).
Relations between these properties
Relations between these properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus \infty C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1
Relations between these properties

Examples
- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus \infty C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Remarks
- For RNP or Asplund spaces, $\text{ADP} \implies \text{numerical index 1}$.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
ADP + SCD \implies numerical index 1
ADP + SCD \implies numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
Characterizations of the ADP

Let X be a Banach space. The following are equivalent (TFAE):

1. X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T rank-one).
2. Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with
 $$\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.$$
ADP + SCD \implies numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with

$$\max_{\theta \in T} \| x + \theta y \| > 2 - \varepsilon.$$

- Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X, and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and

$$\text{conv}(T S(B_X, y^*, \varepsilon)) \cap S_n \neq \emptyset \quad (n \in \mathbb{N}).$$
Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with
 $$\max_{\theta \in T} \|x + \theta y\| > 2 - \varepsilon.$$
- Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X, and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and
 $$\overline{\text{conv}}(\bigcap_{\theta \in T} S(B_X, y^*, \varepsilon)) \cap S_n \neq \emptyset \quad (n \in \mathbb{N}).$$

Theorem

X ADP $+ B_X$ SCD \implies given $x \in S_X$ and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that

$$x \in S(B_X, y^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{conv}}(\bigcap_{\theta \in T} S(B_X, y^*, \varepsilon)).$$

★ This implies lushness and so, numerical index 1.
Some consequences
Some consequences

Corollary

- $\text{ADP} + \text{strongly regular} \implies \text{numerical index} 1$ (actually, lushness).
- $\text{ADP} + X \nsubseteq \ell_1 \implies \text{numerical index} 1$ (actually, lushness).
Some consequences

Corollary
- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\in \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

$$X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.$$
Some consequences

Corollary
- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \nsubseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

\[
X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.
\]

Proof.
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\subseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

X real + $\dim(X) = \infty$ + ADP \implies $X^* \supseteq \ell_1$.

Proof.

- If $X \supseteq \ell_1$ \implies X^* contains ℓ_∞ as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1$. ✓
Some consequences

Corollary

- ADP + strongly regular \(\implies \) numerical index 1 (actually, lushness).
- ADP + \(X \nsubseteq \ell_1 \) \(\implies \) numerical index 1 (actually, lushness).

Corollary

\[X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1. \]

Proof.

- If \(X \supseteq \ell_1 \) \(\implies \) \(X^* \) contains \(\ell_\infty \) as a quotient, so \(X^* \) contains \(\ell_1 \) as a quotient, and the lifting property gives \(X^* \supseteq \ell_1 \).
- If \(X \nsubseteq \ell_1 \) \(\implies \) \(X \) contains \(E \) separable, \(\dim(E) = \infty \) with ADP. \(E \) is SCD + ADP, so \(E \) is lush.
Some consequences

Corollary
- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supset \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

X real + $\dim(X) = \infty$ + ADP \implies $X^* \supseteq \ell_1$.

Proof.

- If $X \supseteq \ell_1 \implies X^*$ contains ℓ_∞ as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1$. ✓
- If $X \not\supset \ell_1 \implies X$ contains E separable, $\dim(E) = \infty$ with ADP. E is SCD + ADP, so E is lush.
- Lush + $\dim(E) = \infty \implies E^* \supseteq \ell_1 \implies X^* \supseteq \ell_1$. ✓
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\cong \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

$$X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.$$

In particular,
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- $\text{ADP} + X \not\subseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

X real + dim$(X) = \infty$ + ADP \implies $X^* \supseteq \ell_1$.

In particular,

Corollary

X real + dim$(X) = \infty$ + numerical index 1 \implies $X^* \supseteq \ell_1$.
Some consequences

Corollary
- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \nsubseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary
X real + $\dim(X) = \infty +$ ADP $\implies X^* \supseteq \ell_1$.

In particular,

Corollary
X real + $\dim(X) = \infty +$ numerical index 1 $\implies X^* \supseteq \ell_1$.

Open question
X real, $\dim(X) = \infty$, $n(X) = 1$ $\implies X \supset c_0$ or $X \supset \ell_1$?
SCD operators

A SCD operator $T \in \mathcal{L}(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples:
1. $T(B_X)$ is separable and $T(B_X)$ is RPN,
2. $T(B_X)$ has no ℓ_1 sequences,
3. T does not fix copies of ℓ_1.

Theorem

X ADP $+$ SCD operator $\Rightarrow \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$.

X DPr $+$ SCD operator $\Rightarrow \|\text{Id} + T\| = 1 + \|T\|$.

Main corollary

X ADP $+$ SCD operator $\Rightarrow \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$.

X DPr $+$ SCD operator $\Rightarrow \|\text{Id} + T\| = 1 + \|T\|$.

SCD operators

SCD operator

$T \in L(X)$ is an **SCD-operator** if $T(B_X)$ is an SCD-set.
SCD operators

SCD operator

$T \in L(X)$ is an **SCD-operator** if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and

1. $T(B_X)$ is RPN,
2. $T(B_X)$ has no ℓ_1 sequences,
3. T does not fix copies of ℓ_1
SCD operators

SCD operator

\[T \in L(X) \text{ is an SCD-operator if } T(B_X) \text{ is an SCD-set.} \]

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

- \(X \text{ ADP + } T \text{ SCD-operator} \implies \max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \|. \)
- \(X \text{ DPr + } T \text{ SCD-operator} \implies \| \text{Id} + T \| = 1 + \| T \|. \)
SCD operators

SCD operator

\(T \in L(X) \) is an **SCD-operator** if \(T(B_X) \) is an SCD-set.

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

- \(X \text{ ADP} + T \text{ SCD-operator} \implies \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \).
- \(X \text{ DPr} + T \text{ SCD-operator} \implies \|\text{Id} + T\| = 1 + \|T\| \).

Main corollary

\(X \text{ ADP} + T \) does not fix copies of \(\ell_1 \) \implies \(\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \).
SCD operators

SCD operator

\(T \in L(X) \) is an **SCD-operator** if \(T(B_X) \) is an SCD-set.

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

- \(X \) ADP + \(T \) SCD-operator \(\iff \) \(\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
- \(X \) DPr + \(T \) SCD-operator \(\iff \) \(\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).

Remark

Separability is not needed!

Main corollary

\(X \) ADP + \(T \) does not fix copies of \(\ell_1 \) \(\iff \) \(\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set?
- Is SCD equivalent to the existence of a countable π-base for the weak topology?
Open questions

On SCD-sets
- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set?
- Is SCD equivalent to the existence of a countable π-base for the weak topology?

On SCD-spaces
- E with unconditional basis. Is E SCD?
- X, Y SCD. Are $X \otimes_\varepsilon Y$ and $X \otimes_\pi Y$ SCD?
On the containment of c_0 or ℓ_1

Remarks on the containment of c_0 and ℓ_1

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska.
Slicely countably determined Banach spaces.

V. Kadets, M. Martín, J. Merí, and R. Payá.
Smoothness and convexity for Banach spaces with numerical index 1.
Open question (Godefroy, private communication)

\[X \text{ real}, \dim(X) = \infty, n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1 \]
Open question (Godefroy, private communication)

\[X \text{ real, } \dim(X) = \infty, \ n(X) = 1 \Rightarrow X \supset c_0 \text{ or } X \supset \ell_1 ? \]

★ Old approaches to this problem:
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \iff X \supset c_0$ or $X \supset \ell_1$?

Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- **López–M.–Payá, 1999:**
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.
Open question (Godefroy, private communication)

\(X \text{ real, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1?\)

Old approaches to this problem:

- **López–M.–Payá, 1999:**
 \(X \text{ real, RNP, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset \ell_1.\)

- **Kadets–M.–Merí–Payá, 2009:**
 \(X \text{ real lush, } \dim(X) = \infty \implies X^* \supset \ell_1.\)

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 \(X \text{ real, } \dim(X) = \infty \implies X^* \supset \ell_1.\)

Proof of the last statement:
Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

Old approaches to this problem:

- **López–M.–Payá, 1999:**

 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**

 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**

 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:
- **López–M.–Payá, 1999:**
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- **Kadets–M.–Merí–Payá, 2009:**
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:
- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓
- **(AKMMS 2010):** If $X \not\supset \ell_1 \implies X$ is lush.
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓

- (AKMMS 2010): If $X \not\supset \ell_1 \implies X$ is lush.

- (BKMM 2009): Lushness reduces to the separable case.
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓

- (AKMMS 2010): If $X \nsubseteq \ell_1 \implies X$ is lush.

- (BKMM 2009): Lushness reduces to the separable case.

- (KMMP 2009): In the separable case, lushness implies $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$, G norming for X.
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1$?

★ Old approaches to this problem:

- Lópezz–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓
- (AKMMS 2010): If $X \not\supset \ell_1 \implies X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.
- (KMMP 2009): In the separable case, lushness implies $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$, G norming for X.
- (LMP 1999): This gives $X^* \supset c_0 \text{ or } X^* \supset \ell_1 \implies X^* \supset \ell_1$ ✓
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

⭐ Old approaches to this problem:

- **López–M.–Payá, 1999:**
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Equivalent reformulation of the problem:

Equivalent open problem

X real separable, $X \not\supset \ell_1$, exists $G \subseteq S_{X^*}$ norming with $B_{X^*} = aconv\{x \in B_X : x^*(x) = 1\}$ ($x^* \in G$).

Does $X \supseteq c_0$?
Open question (Godefroy, private communication)

\[X \text{ real, } \dim(X) = \infty, n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1? \]

Old approaches to this problem:

- **López–M.–Payá, 1999:**
 \[X \text{ real, RNP, } \dim(X) = \infty, n(X) = 1 \implies X \supset \ell_1. \]

- **Kadets–M.–Merí–Payá, 2009:**
 \[X \text{ real lush, } \dim(X) = \infty \implies X^* \supset \ell_1. \]

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 \[X \text{ real, } \dim(X) = \infty \implies X^* \supset \ell_1. \]

Equivalent reformulation of the problem:
Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:
- Lópezm–Payá, 1999: X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets–Merí–Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

★ Equivalent reformulation of the problem:

Equivalent open problem

X real separable, $X \not
\supset \ell_1$, exists $G \subseteq S_{X^*}$ norming with

$$B_X = \overline{\operatorname{aconv}} \left(\left\{ x \in B_X : x^*(x) = 1 \right\} \right) \quad (x^* \in G).$$

Does $X \supset c_0$?
Numerical index of L_p-spaces

- The 2000’s results on the numerical index on L_p-spaces
- The new results on the numerical index of L_p-spaces

M. Martín, and J. Merí.
A note on the numerical index of the L_p-space of dimension two.
Linear Mult. Algebra (2009)

M. Martín, J. Merí, and M. Popov.
On the numerical index of real $L_p(\mu)$-spaces.
Israel J. Math. (2011)

M. Martín, J. Merí, and M. Popov.
On the numerical radius of operators on Lebesgue spaces.

M. Martín, J. Merí, M. Popov, and B. Randrianantoanina.
Numerical index of absolute sums of Banach spaces.
Known results on the numerical index of L_p-spaces

\[n(\ell_p) \leq n(\ell_{m+1}) \leq n(\ell_m) \]

for $m \in \mathbb{N}$.

(M. Payá, 2000)

\[n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_m) = \inf_{m \in \mathbb{N}} n(\ell_m). \]

In the real case,

\[\max\{1^{1/p}, 1^{1/q}\} \leq n(\ell_{2}) \leq \max_{t \in [0,1]} |t^p - 1 - t|^{1/p} + t^p. \]

(M. Merí, 2009)
Numerical index of L_p-spaces

Known results on the numerical index of L_p-spaces

$\ell_p \leq \ell_{p(m+1)} \leq \ell_{p(m)}$ for $m \in \mathbb{N}$.

(M.–Payá, 2000)
Known results on the numerical index of L_p-spaces

1. $n(\ell_p) \leq n(\ell_p^{(m+1)}) \leq n(\ell_p^{(m)})$ for $m \in \mathbb{N}$.
 (M.–Payá, 2000)

2. $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}) = \inf_{m \in \mathbb{N}} n(\ell_p^{(m)})$.
Numerical index of L_p-spaces

Known results on the numerical index of L_p-spaces

1. $n(\ell_p) \leq n(\ell_p^{(m+1)}) \leq n(\ell_p^{(m)})$ for $m \in \mathbb{N}$.
 (M.–Payá, 2000)

2. $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}) = \inf_{m \in \mathbb{N}} n(\ell_p^{(m)})$.

3. In the real case,
 \[
 \max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \leq n(\ell_p^{(2)}) \leq \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
 \]
 \[
 \text{and } \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}
 \]
 (M.–Merí, 2009)
Ideas behind the proofs I

Ideas behind the proofs I

Numerical index of L_p The 2000’s results

The numerical index decreases with the dimension n:

$$\ell_p \leq n \left(\ell_{m+1} \right)^p \leq n \left(\ell_m \right)^p$$

for $m \in \mathbb{N}$.

Proposition (M.–Paya, 2000)

$Z = U \oplus V$ with absolute sum (i.e. $\|u+v\| = f(\|u\|, \|v\|)$ for $u \in U$, $v \in V$).

Proof of the decreasing ℓ_m is an absolute summand in both ℓ_{m+1} and in ℓ_p.
Ideas behind the proofs I

The numerical index decreases with the dimension

\[n(\ell_p) \leq n(\ell_p^{(m+1)}) \leq n(\ell_p^{(m)}) \text{ for } m \in \mathbb{N}. \]
The numerical index decreases with the dimension

\[n(\ell_p) \leq n(\ell_p^{(m+1)}) \leq n(\ell_p^{(m)}) \text{ for } m \in \mathbb{N}. \]

Proposition (M.–Payá, 2000)

\[Z = U \oplus V \text{ with absolute sum (i.e. } \|u + v\| = f(\|u\|, \|v\|) \text{ for } u \in U, v \in V). \]

\[\Rightarrow n(Z) \leq \min\{n(U), n(V)\}. \]
Ideas behind the proofs I

The numerical index decreases with the dimension

\[n(\ell_p) \leq n(\ell^{(m+1)}_p) \leq n(\ell^{(m)}_p) \text{ for } m \in \mathbb{N}. \]

Proposition (M.–Payá, 2000)

\[Z = U \oplus V \text{ with absolute sum (i.e. } \|u + v\| = f(\|u\|, \|v\|) \text{ for } u \in U, \ v \in V). \]

\[\implies n(Z) \leq \min\{n(U), n(V)\}. \]

Proof of the decreasing
Ideas behind the proofs I

The numerical index decreases with the dimension

\[n(\ell_p) \leq n(\ell_p^{(m+1)}) \leq n(\ell_p^m) \text{ for } m \in \mathbb{N}. \]

Proposition (M.–Payá, 2000)

\[Z = U \oplus V \text{ with absolute sum (i.e. } \|u + v\| = f(\|u\|, \|v\|) \text{ for } u \in U, \ v \in V). \]

\[\implies n(Z) \leq \min\{n(U), n(V)\}. \]

Proof of the decreasing

- \(\ell_p^m \) is an absolute summand in both \(\ell_p^{(m+1)} \) and in \(\ell_p \).
Ideas behind the proofs II
Ideas behind the proofs II

One inequality

\[n(L_p[0,1]) \leq \lim_{m \to \infty} n(\ell_p^m). \]
One inequality

\[n(L_p[0,1]) \leq \lim_{m \to \infty} n(\ell_p(m)). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(E \) order continuous Köthe space, \(X \) Banach space

\[\implies n(E(X)) \leq n(X). \]
Ideas behind the proofs II

One inequality

\[n(L_p[0,1]) \leq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(E \) order continuous Köthe space, \(X \) Banach space

\[\implies n(E(X)) \leq n(X). \]

Proof of the inequality
Ideas behind the proofs II

One inequality

\[n(L_p[0,1]) \leq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(E \) order continuous Köthe space, \(X \) Banach space

\[\implies n(E(X)) \leq n(X). \]

Proof of the inequality

- \(E = L_p[0,1], \ X = \ell_p^m. \)
One inequality

\[n(L_p[0,1]) \leq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(E\) order continuous Köthe space, \(X\) Banach space

\[\implies n(E(X)) \leq n(X). \]

Proof of the inequality

- \(E = L_p[0,1], \ X = \ell_p^m\).
- \(E \equiv E(X)\) so \(n(E) \leq n(\ell_p^m)\).
Numerical index of L_p

Ideas behind the proofs III

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

Z

Banach space, \(\{Z_i\}_{i \in I} \) increasing family of one-complemented subspaces whose union is dense. Then,

\[n(Z) \geq \limsup_{i \in I} n(Z_i). \]

Corollary

Z

Banach space with monotone basis \((e_m) \),

\[Z_m = \text{span} \left\{ e_k : 1 \leq k \leq m \right\}. \]

\[= \Rightarrow n(Z) \geq \limsup_{m \to \infty} n(Z_m). \]

Proof of the inequality

Z

= \ell_p, \((e_m) \) canonical basis \(\Rightarrow Z_m \equiv \ell_p(m) \) for all \(m \in \mathbb{N} \).

E

= \ell_0, \ell_1, \((e_m) \) Haar system \(\Rightarrow Z_m \equiv \ell_p(m) \) for \(m = 2^k \) \((k \in \mathbb{N})\).
The reversed inequality

\[n(L_p[0,1]) \geq \lim_{m \to \infty} n(\ell_p^m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell_p^m). \]
The reversed inequality

\[n(L_p[0, 1]) \geq \lim_{m \to \infty} n(\ell^p_m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell^p_m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

Z Banach space, \(\{Z_i\}_{i \in I} \) increasing family of one-complemented subspaces whose union is dense. Then, \(\implies n(Z) \geq \lim \sup_{i \in I} n(Z_i). \)
Ideas behind the proofs III

The reversed inequality

\[n(L_p[0, 1]) \geq \lim_{m \to \infty} n(\ell_p^m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\[Z \] Banach space, \{\{Z_i\}_{i \in I} \] increasing family of one-complemented subspaces whose union is dense. Then, \[\implies n(Z) \geq \limsup_{i \in I} n(Z_i). \]

Corollary

\[Z \] Banach space with monotone basis \((e_m), Z_m = \text{span}\{e_k : 1 \leq k \leq m\}. \]

\[\implies n(Z) \geq \limsup_{m \to \infty} n(Z_m). \]
Ideas behind the proofs III

The reversed inequality

\[n(L_p[0, 1]) \geq \lim_{m \to \infty} n(\ell_p^m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(Z \) Banach space, \(\{Z_i\}_{i \in I} \) increasing family of one-complemented subspaces whose union is dense. Then, \(\implies n(Z) \geq \limsup_{i \in I} n(Z_i). \)

Corollary

\(Z \) Banach space with monotone basis \((e_m) \), \(Z_m = \text{span}\{e_k : 1 \leq k \leq m\} \).

\(\implies n(Z) \geq \limsup_{m \to \infty} n(Z_m). \)

Proof of the inequality
Ideas behind the proofs III

The reversed inequality

\[n(\ell_p[0, 1]) \geq \lim_{m \to \infty} n(\ell_p^m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

\(Z \) Banach space, \(\{Z_i\}_{i \in I} \) increasing family of one-complemented subspaces whose union is dense. Then, \(\implies n(Z) \geq \limsup_{i \in I} n(Z_i). \)

Corollary

\(Z \) Banach space with monotone basis \((e_m) \), \(Z_m = \text{span}\{e_k : 1 \leq k \leq m\} \).
\(\implies n(Z) \geq \limsup_{m \to \infty} n(Z_m). \)

Proof of the inequality

- \(Z = \ell_p, (e_m) \) canonical basis \(\implies Z_m = \ell_p^m \) for all \(m \in \mathbb{N} \).
Ideas behind the proofs III

The reversed inequality

\[n(L_p[0, 1]) \geq \lim_{m \to \infty} n(\ell_p^m) \quad \text{and} \quad n(\ell_p) \geq \lim_{m \to \infty} n(\ell_p^m). \]

Proposition (M.–Merí–Popov–Randrianantoanina, 2011)

Let \(Z \) be a Banach space, \(\{Z_i\}_{i \in I} \) an increasing family of one-complemented subspaces whose union is dense. Then, \(\implies n(Z) \geq \limsup_{i \in I} n(Z_i). \)

Corollary

Let \(Z \) be a Banach space with monotone basis \((e_m)\), \(Z_m = \text{span}\{e_k : 1 \leq k \leq m\} \).

\(\implies n(Z) \geq \limsup_{m \to \infty} n(Z_m). \)

Proof of the inequality

- \(Z = \ell_p, (e_m) \) canonical basis \(\implies Z_m \equiv \ell_p^m \) for all \(m \in \mathbb{N} \).
- \(E = L_p[0, 1], (e_m) \) Haar system \(\implies Z_m \equiv \ell_p^m \) for \(m = 2^k \) (\(k \in \mathbb{N} \)).
The two-dimensional case

In the real case,

$$\max \left\{ \frac{1}{2}, \frac{1}{2} \right\} M_p \leq n \left(\ell \left(2 \right)^p \right) \leq M_p$$

where

$$M_p = \max_{t \in [0,1]} |t^p - 1 - t| + t^p.$$
Ideas behind the proofs IV

The two-dimensional case

In the real case,

$$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$

where

$$M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$$
The two-dimensional case

In the real case,

$$\max \left\{\frac{1}{2^{1/p}}, \frac{1}{2^{1/q}}\right\} M_p \leq n(\ell_p^{(2)}) \leq M_p \quad \text{where} \quad M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$$

Proposition (Duncan-McGregor-Pryce-White, 1970)

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ operator in $\ell_p^{(2)}$. Then

$$v(T) = \max \left\{ \max_{t \in [0,1]} \frac{|a + d t^p| + |b t + c t^{p-1}|}{1 + t^p}, \max_{t \in [0,1]} \frac{|d + a t^p| + |c t + b t^{p-1}|}{1 + t^p} \right\}.$$
The two-dimensional case

In the real case,

\[\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p \quad \text{where} \quad M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} \]

Proposition (Duncan-McGregor-Pryce-White, 1970)

\[T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ operator in } \ell_p^{(2)} \]. Then

\[v(T) = \max \left\{ \max_{t \in [0,1]} \frac{|a + d t^p| + |b t + c t^{p-1}|}{1 + t^p}, \max_{t \in [0,1]} \frac{|d + a t^p| + |c t + b t^{p-1}|}{1 + t^p} \right\} \]

Proof of the result
The two-dimensional case

In the real case,

$$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$

where

$$M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$$

Proposition (Duncan-McGregor-Pryce-White, 1970)

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

operator in $$\ell_p^{(2)}$$. Then

$$v(T) = \max \left\{ \max_{t \in [0,1]} \frac{|a + d t^p| + |b t + c t^{p-1}|}{1 + t^p}, \max_{t \in [0,1]} \frac{|d + a t^p| + |c t + b t^{p-1}|}{1 + t^p} \right\}$$

Proof of the result

- $$n(\ell_p^{(2)}) \leq M_p$$ since

$$\left\| \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\| = 1$$

and

$$v \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) = M_p.$$
The two-dimensional case

In the real case,

\[
\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^2) \leq M_p \quad \text{where} \quad M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}
\]

Proposition (Duncan-McGregor-Pryce-White, 1970)

\[
T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ operator in } \ell_p^2. \text{ Then}
\]

\[
v(T) = \max \left\{ \max_{t \in [0,1]} \frac{|a + d t^p| + |b t + c t^{p-1}|}{1 + t^p}, \max_{t \in [0,1]} \frac{|d + a t^p| + |c t + b t^{p-1}|}{1 + t^p} \right\}.
\]

Proof of the result

- \(n(\ell_p^2) \leq M_p \) since \(\| \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \| = 1 \) and \(v \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) = M_p. \)

- We compare \(v(T) \) with \(M_p \), but we use \(\| T \|_1 \) and \(\| T \|_\infty \) instead of \(\| T \|_p \).
Questions
Questions

1. Is \(n(\ell_p^{(m+1)}) = n(\ell_p^{(m)}) \) for \(m \geq 2 \) ?
Questions

1. Is \(n(\ell_p^{(m+1)}) = n(\ell_p^{(m)}) \) for \(m \geq 2 \) ?

2. In the real case, is \(n(L_p[0,1]) \) positive ?
Questions

1. Is $n(\ell_p^{m+1}) = n(\ell_p^m)$ for $m \geq 2$?

2. In the real case, is $n(L_p[0,1])$ positive?

3. We do not have results for the complex case, even for dimension two.
Questions

1. Is \(n(\ell_p^{(m+1)}) = n(\ell_p^m) \) for \(m \geq 2 \)?

2. In the real case, is \(n(L_p[0,1]) \) positive?

3. We do not have results for the complex case, even for dimension two.

The 2010’s results

- We left the finite-dimensional approach and introduce the absolute numerical radius.
Questions

1. Is \(n(\ell_p^{(m+1)}) = n(\ell_p^{(m)}) \) for \(m \geq 2 \) ?

2. In the real case, is \(n(L_p[0,1]) \) positive ?

3. We do not have results for the complex case, even for dimension two.

The 2010’s results

- We left the finite-dimensional approach and introduce the absolute numerical radius.
- This allows to show that \(n(L_p[0,1]) > 0 \) in the real case.
The absolute numerical radius in L_p
The absolute numerical radius in L_p

The numerical radius in L_p

- For $x \in L_p(\mu)$, write $x^# = |x|^{p^{-1}} \text{sign}(\bar{x})$.
- It is the unique element in $L_q(\mu)$ such that

$$
\|x\|_p^p = \|x^#\|_q^q \quad \text{and} \quad \int x x^# \, d\mu = \|x\|_p \|x^#\|_q = \|x\|_p^p.
$$
The absolute numerical radius in L_p

The numerical radius in L_p

- For $x \in L_p(\mu)$, write $x^\# = |x|^{p-1} \text{sign}(\overline{x})$.
- It is the unique element in $L_q(\mu)$ such that
 \[\|x\|_p^p = \|x^\#\|_q^q \quad \text{and} \quad \int x x^\# \, d\mu = \|x\|_p \|x^\#\|_q = \|x\|_p^p. \]
- Therefore, for $T \in L(L_p(\mu))$ one has
 \[v(T) = \sup \left\{ \left| \int x^\# T x \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \]
 \[= \sup \left\{ \left| \int |x|^{p-1} \text{sign}(\overline{x}) \, T x \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \]
The absolute numerical radius in L_p

The numerical radius in L_p

- For $x \in L_p(\mu)$, write $x^# = |x|^{p-1} \text{sign}(\overline{x})$.
- It is the unique element in $L_q(\mu)$ such that
 \[\|x\|_p^p = \|x^#\|_q^q \quad \text{and} \quad \int x x^# \, d\mu = \|x\|_p \|x^#\|_q = \|x\|_p^p. \]
- Therefore, for $T \in L(L_p(\mu))$ one has
 \[v(T) = \sup \left\{ \left| \int x^#Tx \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \]
 \[= \sup \left\{ \left| \int |x|^{p-1} \text{sign}(\overline{x}) \, T x \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\}. \]

Absolute numerical radius

For $T \in L(L_p(\mu))$,

\[|v|(T) := \sup \left\{ \int |x^#T x| \, d\mu : x \in L_p(\mu), \|x\|_p = 1 \right\} \]
\[= \sup \left\{ \int |x|^{p-1} |T x| \, d\mu : x \in L_p(\mu), \|x\|_p = 1 \right\}. \]
The absolute numerical index of L_p
The absolute numerical index of L_p

Obvious remark

$v(T) \leq |v|(T) \leq \|T\|$ for every $T \in L(L_p(\mu))$.
The absolute numerical index of L_p

Obvious remark

$$v(T) \leq |v|(T) \leq \|T\| \text{ for every } T \in L(L_p(\mu)).$$

Absolute numerical index

$$|n|(L_p(\mu)) = \inf \{ |v|(T) : T \in L(L_p(\mu)), \|T\| = 1 \}$$

$$= \max \{ k \geq 0 : k\|T\| \leq |v|(T) \ \forall \ T \in L(L_p(\mu)) \}.$$
The absolute numerical index of L_p

Obvious remark

$$v(T) \leq |v|(T) \leq \|T\| \text{ for every } T \in L(L_p(\mu)).$$

Absolute numerical index

$$|n|(L_p(\mu)) = \inf \left\{ |v|(T) : T \in L(L_p(\mu)), \|T\| = 1 \right\}$$

$$= \max \left\{ k \geq 0 : k\|T\| \leq |v|(T) \ \forall \ T \in L(L_p(\mu)) \right\}.$$

- $n(L_p(\mu))$ is the greatest constant $M \geq 0$ such that

$$\sup \left\{ \left| \int |x|^{p-1} \text{sign}(\bar{x}) Tx \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \geq M \|T\|$$

for every $T \in L(L_p(\mu)).$
The absolute numerical index of \(L_p \)

Obvious remark

\[v(T) \leq |v|(T) \leq \|T\| \text{ for every } T \in L(L_p(\mu)). \]

Absolute numerical index

\[|n|(L_p(\mu)) = \inf \left\{ |v|(T) : T \in L(L_p(\mu)), \|T\| = 1 \right\} \]

\[= \max \left\{ k \geq 0 : k\|T\| \leq |v|(T) \ \forall \ T \in L(L_p(\mu)) \right\}. \]

- \(n(L_p(\mu)) \) is the greatest constant \(M \geq 0 \) such that

\[
\sup \left\{ \left| \int |x|^{p-1} \text{sign}(\bar{x}) \, T \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \geq M \|T\|
\]

for every \(T \in L(L_p(\mu)) \).

- \(|n|(L_p(\mu)) \) is the greatest constant \(K \geq 0 \) such that

\[
\sup \left\{ \left| \int |x|^{p-1}|T \, x| \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\} \geq K \|T\|
\]

for every \(T \in L(L_p(\mu)) \).
Giving an estimation of $n(L_p(\mu))$
Giving an estimation of $n(L_p(\mu))$

Roadmap

We would like to give an estimation of $n(L_p(\mu))$ in two steps:

- First, we study the relationship between $v(T)$ and $|v|(T)$ for all operators T.
- Second, we study the relationship between $|v|(T)$ and $\|T\|$ for all operators T. Here, we actually calculate $|n|(L_p(\mu))$.
Relating the numerical radius and the absolute numerical radius

Numerical index of L_p

The new results

Write

$$M_p = \max_{t \in [0,1]} |t^p - 1 - t| + t^p = v(0,1 - 1,0)$$

the numerical radius taken in the real ℓ_2.

Remark

It is not difficult to see that in every $L_p(\mu)$ space there is an operator T with $\|T\| = 1$ and $v(T) = M_p$.

⋆ We may use M_p to relate v and $|v|$: Theorem (M.–Merí–Popov, 2011)

In the real case, $v(T) \geq M_p v(T)$ for every $T \in L(L_p(\mu))$.

112 / 152
Relating the numerical radius and the absolute numerical radius

<table>
<thead>
<tr>
<th>The constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
</tr>
<tr>
<td>$M_p = \max_{t \in [0,1]} \frac{</td>
</tr>
<tr>
<td>the numerical radius taken in the real ℓ^2_p.</td>
</tr>
</tbody>
</table>
Relating the numerical radius and the absolute numerical radius

The constant

Write

\[M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

the numerical radius taken in the real \(\ell^2_p \).

Remark

It is not difficult to see that in every \(L_p(\mu) \) space there is an operator \(T \) with \(\|T\| = 1 \) and \(v(T) = M_p \).
Relating the numerical radius and the absolute numerical radius

<table>
<thead>
<tr>
<th>The constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
</tr>
<tr>
<td>$M_p = \max_{t \in [0,1]} \frac{</td>
</tr>
<tr>
<td>the numerical radius taken in the real ℓ^2_p.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is not difficult to see that in every $L_p(\mu)$ space there is an operator T with $|T| = 1$ and $v(T) = M_p$.</td>
</tr>
</tbody>
</table>

★ We may use M_p to relate v and $|v|$:
Relating the numerical radius and the absolute numerical radius

The constant

Write

\[M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + tp} = \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

the numerical radius taken in the real \(\ell^2_p \).

Remark

It is not difficult to see that in every \(L_p(\mu) \) space there is an operator \(T \) with \(\|T\| = 1 \) and \(\nu(T) = M_p \).

⭐ We may use \(M_p \) to relate \(\nu \) and \(|\nu| \):

Theorem (M.–Merí–Popov, 2011)

In the real case,

\[\nu(T) \geq \frac{M_p}{6} |\nu|(T) \]

for every \(T \in L(L_p(\mu)) \).
Calculating $|n|(L_p(\mu))$
Calculating $|n|(L_p(\mu))$ 1

The constant

Set $\kappa_p := \max_{\tau > 0} \frac{\tau^{p-1}}{1 + \tau^p} = \max_{\lambda \in [0,1]} \lambda^{\frac{1}{q}} (1 - \lambda)^{\frac{1}{p}} = \frac{1}{p^{1/p} q^{1/q}}$.
Calculating $|n|(L_p(\mu))$ 1

The constant

Set $\kappa_p := \max_{\tau > 0} \frac{\tau^{p-1}}{1 + \tau^p} = \max_{\lambda \in [0,1]} \lambda^{\frac{1}{q}} (1 - \lambda)^{\frac{1}{p}} = \frac{1}{p^{1/p} q^{1/q}}$.

The best possibility for $|n|(L_p(\mu))$

If $\dim(L_p(\mu)) \geq 2$, then there is a (positive) operator $T \in L(L_p(\mu))$ with

$$\|T\| = 1, \quad |\nu|(T) = \kappa_p.$$
Calculating $|n|(L_p(\mu))$ I

The constant

Set $\kappa_p := \max_{\tau > 0} \frac{\tau^{p-1}}{1 + \tau^p} = \max_{\lambda \in [0,1]} \lambda^\frac{1}{q} (1 - \lambda)^\frac{1}{p} = \frac{1}{p^{1/p} q^{1/q}}$.

The best possibility for $|n|(L_p(\mu))$

If $\dim(L_p(\mu)) \geq 2$, then there is a (positive) operator $T \in L(L_p(\mu))$ with

$$\|T\| = 1, \quad |v|(T) = \kappa_p.$$

The examples for ℓ_p and $L_p[0,1]$:

For ℓ_p: consider the extension by zero of the matrix

\[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\]

For $L_p[0,1]$: $T f = 2 \left[\int_{1/2}^1 f(s) \, ds \right] \chi_{[1/2,1]} (f \in L_p[0,1])$.

113 / 152
Calculating $|n|(L_p(\mu))$ 1

The constant

Set $\kappa_p := \max_{\tau > 0} \frac{\tau^{p-1}}{1 + \tau^p} = \max_{\lambda \in [0,1]} \lambda^{\frac{1}{q}} (1 - \lambda)^{\frac{1}{p}} = \frac{1}{p^{1/p} q^{1/q}}$.

The best possibility for $|n|(L_p(\mu))$

If dim($L_p(\mu)$) ≥ 2, then there is a (positive) operator $T \in L(L_p(\mu))$ with

$$\|T\| = 1, \quad |v|(T) = \kappa_p.$$

The examples for ℓ_p and $L_p[0,1]$:

- For ℓ_p: consider the extension by zero of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
Calculating $|n|(L_p(\mu))$

The constant

Set $\kappa_p := \max_{\tau > 0} \frac{\tau^{p-1}}{1 + \tau^p} = \max_{\lambda \in [0,1]} \lambda^\frac{1}{q} (1 - \lambda)^\frac{1}{p} = \frac{1}{p^{1/p} q^{1/q}}$.

The best possibility for $|n|(L_p(\mu))$

If $\dim(L_p(\mu)) \geq 2$, then there is a (positive) operator $T \in L(L_p(\mu))$ with $\|T\| = 1$, $|v|(T) = \kappa_p$.

The examples for ℓ_p and $L_p[0,1]$:

- For ℓ_p: consider the extension by zero of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- For $L_p[0,1]$:

 $$Tf = 2 \left[\int_0^{1/2} f(s) \, ds \right] \chi_{[1/2,1]} (f \in L_p[0,1]).$$
Numerical index of L_p The new results

Calculating $|n|(L_p(\mu))$ II
Theorem (M.–Merí–Popov, 2011)

\[|n|(L_p(\mu)) \geq \kappa_p \]
Calculating $|n|(L_p(\mu))$ II

Theorem (M.–Merí–Popov, 2011)

$$|n|(L_p(\mu)) \geq \kappa_p$$

Proof for positive operators:

...
Calculating $|n|(L_p(\mu))$ II

Theorem (M.–Merí–Popov, 2011)

$|n|(L_p(\mu)) \geq \kappa_p$

Proof for positive operators:

- Fix $T \in L(L_p(\mu))$ positive with $\|T\| = 1$, $\tau > 0$ and $\varepsilon > 0$.

Calculating $|n|(L_p(\mu))$ II

Theorem (M.–Merí–Popov, 2011)

$$|n|(L_p(\mu)) \geq \kappa_p$$

Proof for positive operators:

- Fix $T \in L(L_p(\mu))$ positive with $\|T\| = 1$, $\tau > 0$ and $\epsilon > 0$.
- Find $x \geq 0$ with $\|x\| = 1$ and $\|Tx\|^p > 1 - \epsilon$, set
 $$y = x \lor \tau Tx \quad \text{and} \quad A = \{\omega \in \Omega : x(\omega) \geq \tau(Tx)(\omega)\},$$
 and observe that
 $$\|y\|^p = \int_A x^p \, d\mu + \int_{\Omega \setminus A} (\tau Tx)^p \, d\mu \leq 1 + \tau^p \quad \text{and} \quad y^# = x^{p-1} \lor (\tau Tx)^{p-1}. $$
Calculating $|n|(L_p(\mu))$ II

Theorem (M.–Merí–Popov, 2011)

$$|n|(L_p(\mu)) \geq \kappa_p$$

Proof for positive operators:

- Fix $T \in L(L_p(\mu))$ positive with $\|T\| = 1$, $\tau > 0$ and $\varepsilon > 0$.
- Find $x \geq 0$ with $\|x\| = 1$ and $\|Tx\|^p > 1 - \varepsilon$, set

$$y = x \lor \tau Tx \quad \text{and} \quad A = \{\omega \in \Omega : x(\omega) \geq \tau(Tx)(\omega)\},$$

and observe that

$$\|y\|^p = \int_A x^p \, d\mu + \int_{\Omega \setminus A} (\tau Tx)^p \, d\mu \leq 1 + \tau^p \quad \text{and} \quad y^\# = x^{p-1} \lor (\tau Tx)^{p-1}.$$

- Now,

$$|v|(T) \geq \frac{1}{\|y\|^p} \int_{\Omega} y^\# Ty \, d\mu \geq \frac{1}{1 + \tau^p} \int_{\Omega} y^\# Ty \, d\mu.$$
Calculating $|n|(L_p(\mu))$ II

Theorem (M.-Merí–Popov, 2011)

$|n|(L_p(\mu)) \geq \kappa_p$

Proof for positive operators:

- Fix $T \in L(L_p(\mu))$ **positive** with $\|T\| = 1$, $\tau > 0$ and $\varepsilon > 0$.
- Find $x \geq 0$ with $\|x\| = 1$ and $\|Tx\|^p > 1 - \varepsilon$, set

 $y = x \vee \tau Tx \quad \text{and} \quad A = \{\omega \in \Omega : x(\omega) \geq \tau(Tx)(\omega)\},$

 and observe that

 $\|y\|^p = \int_A x^p \, d\mu + \int_{\Omega \setminus A} (\tau Tx)^p \, d\mu \leq 1 + \tau^p \quad \text{and} \quad y^# = x^{p-1} \vee (\tau Tx)^{p-1}.$

- Now,

 $|v|(T) \geq \frac{1}{\|y\|^p} \int_{\Omega} y^# Ty \, d\mu \geq \frac{1}{1 + \tau^p} \int_{\Omega} y^# Ty \, d\mu$

 $\geq \frac{1}{1 + \tau^p} \int_{\Omega} (\tau Tx)^{p-1} Tx \, d\mu = \frac{\tau^{p-1}}{1 + \tau^p} \int_{\Omega} (Tx)^p \, d\mu \geq \frac{\tau^{p-1}}{1 + \tau^p} (1 - \varepsilon).$
Calculating $|n|(L_p(\mu))$ II

Theorem (M.–Merí–Popov, 2011)

$$|n|(L_p(\mu)) \geq \kappa_p$$

Proof for positive operators:

- Fix $T \in L(L_p(\mu))$ positive with $\|T\| = 1$, $\tau > 0$ and $\varepsilon > 0$.
- Find $x \geq 0$ with $\|x\| = 1$ and $\|Tx\|^p > 1 - \varepsilon$, set
 $$y = x \vee \tau Tx \quad \text{and} \quad A = \{\omega \in \Omega : x(\omega) \geq \tau(Tx)(\omega)\},$$
 and observe that
 $$\|y\|^p = \int_A x^p \, d\mu + \int_{\Omega \setminus A} (\tau Tx)^p \, d\mu \leq 1 + \tau^p \quad \text{and} \quad y^\# = x^{p-1} \lor (\tau Tx)^{p-1}.$$

- Now,
 $$|v|(T) \geq \frac{1}{\|y\|^p} \int_{\Omega} y^\# Ty \, d\mu \geq \frac{1}{1 + \tau^p} \int_{\Omega} y^\# Ty \, d\mu$$
 $$\geq \frac{1}{1 + \tau^p} \int_{\Omega} (\tau Tx)^{p-1} Tx \, d\mu = \frac{\tau^{p-1}}{1 + \tau^p} \int_{\Omega} (Tx)^p \, d\mu \geq \frac{\tau^{p-1}}{1 + \tau^p} (1 - \varepsilon).$$

- Taking supremum on $\tau > 0$ and $\varepsilon > 0$, we get $|v|(T) \geq \kappa_p$.

The main consequence:
The main consequence:

\[n(L_p(\mu)) \geq \frac{M_p \kappa_p}{6} \text{ in the real case.} \]
The main consequence:

Corollary

\[n(L_p(\mu)) \geq \frac{M_p \kappa_p}{6} \text{ in the real case.} \]

In particular,
The main consequence:

Corollary

\[n(L_p(\mu)) \geq \frac{M_p \kappa_p}{6} \text{ in the real case.} \]

In particular,

Corollary

In the real case, \(n(L_p(\mu)) > 0 \) for every \(p \neq 2 \).
Further results
Further results

More results

- If $T \in L(L_p[0,1])$ is rank-one $\implies v(T) \geq \kappa_p^2 \|T\|.$
- If $T \in L(L_p[0,1])$ is compact, then

$$v(T) \geq \kappa_p^2 \|T\| \text{ (complex case), } \quad v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \text{ (real case).}$$
Further results

More results

- If \(T \in L(L_p[0,1]) \) is rank-one \(\implies v(T) \geq \kappa_p^2 \|T\| \).
- If \(T \in L(L_p[0,1]) \) is compact, then

\[
v(T) \geq \kappa_p^2 \|T\| \quad (\text{complex case}), \quad v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \quad (\text{real case}).
\]

Open problems with conjectures

- Is \(n(L_p(\mu)) = M_p(\dim \geq 2) \) in the real case?
 It is enough to prove that \(n(L_p[0,1]) \geq M_p \) or \(n(\ell_p) \geq M_p \).

- Is \(n(L_p(\mu)) = \kappa_p(\dim \geq 2) \) in the complex case?
 It is enough to prove that \(n(L_p[0,1]) \geq \kappa_p \) or \(n(\ell_p) \geq \kappa_p \).
Further results

More results

- If $T \in L(L_p[0,1])$ is rank-one $\Rightarrow v(T) \geq \kappa_p^2 \|T\|$.
- If $T \in L(L_p[0,1])$ is compact, then

 $$v(T) \geq \kappa_p^2 \|T\| \quad \text{(complex case)}, \quad v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \quad \text{(real case)}.$$

Open problems with conjectures

- Is $n(L_p(\mu)) = M_p$ (dim ≥ 2) in the real case?
Further results

More results

- If \(T \in L(L_p[0,1]) \) is rank-one, then \(v(T) \geq \kappa_p^2 \|T\| \).
- If \(T \in L(L_p[0,1]) \) is compact, then

\[
v(T) \geq \kappa_p^2 \|T\| \quad \text{(complex case)}, \quad v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \quad \text{(real case)}.\]

Open problems with conjectures

- Is \(n(L_p(\mu)) = M_p \) (dim \(\geq 2 \)) in the real case?
 - It is enough to prove that \(n(L_p[0,1]) \geq M_p \) or \(n(\ell_p) \geq M_p \).
Further results

More results

- If $T \in L(L_p[0,1])$ is rank-one $\implies v(T) \geq \kappa_p^2 \|T\|.$
- If $T \in L(L_p[0,1])$ is compact, then

 $$v(T) \geq \kappa_p^2 \|T\| \text{ (complex case)}, \quad v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \text{ (real case)}.$$

Open problems with conjectures

- Is $n(L_p(\mu)) = M_p \text{ (dim } \geq 2\text{) in the real case?}$
 - It is enough to prove that $n(L_p[0,1]) \geq M_p$ or $n(\ell_p) \geq M_p.$
- Is $n(L_p(\mu)) = \kappa_p \text{ (dim } \geq 2\text{) in the complex case?}$
Further results

More results

- If $T \in L(L_p[0,1])$ is rank-one $\implies v(T) \geq \kappa_p^2 \|T\|$.
- If $T \in L(L_p[0,1])$ is compact, then

\[v(T) \geq \kappa_p^2 \|T\| \text{ (complex case), } v(T) \geq \max_{\tau > 0} \frac{\kappa_p \tau^{p-1} - \tau}{1 + \tau^p} \|T\| \text{ (real case).} \]

Open problems with conjectures

- Is $n(L_p(\mu)) = M_p \ (\dim \geq 2)$ in the real case?
 - It is enough to prove that $n(L_p[0,1]) \geq M_p$ or $n(\ell_p) \geq M_p$.
- Is $n(L_p(\mu)) = \kappa_p \ (\dim \geq 2)$ in the complex case?
 - It is enough to prove that $n(L_p[0,1]) \geq \kappa_p$ or $n(\ell_p) \geq \kappa_p$.

Numerical index of L_p The new results
Extremely non-complex Banach spaces

1. Motivation
2. Extremely non-complex Banach spaces
3. Surjective isometries

V. Kadets, M. Martín, and J. Merí.
Norm equalities for operators on Banach spaces.

P. Koszmider, M. Martín, and J. Merí.
Extremely non-complex $C(K)$ spaces.

P. Koszmider, M. Martín, and J. Merí.
Isometries on extremely non-complex Banach spaces.
Isometries and duality. Reminder

Example (produced with numerical ranges)

There is a Banach space X such that $\text{Iso}(X)$ has no exponential one-parameter semigroups. $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

⋆ In terms of linear dynamical systems:

There is no $A \in L(X)$ such that the solution of $x' = Ax$ ($x : \mathbb{R}_+ \to X$) is given by a semigroup of isometries. There are infinitely many such A's on X.

But there are unbounded A's on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.

We would like to find X such that $\text{Iso}(X)$ has no C_0 semigroup of isometries. $\text{Iso}(X^*)$ has exponential semigroup of isometries.
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that the solution of
 $$x' = A x \quad (x : \mathbb{R}_0^+ \to X)$$
 is given by a semigroup of isometries.
- There are infinitely many such A's on X^*
Example (produced with numerical ranges)

There is a Banach space X such that
- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:
- There is no $A \in \mathbb{L}(X)$ such that the solution of
 $$x' = Ax \quad (x : \mathbb{R}^+_{0} \rightarrow X)$$

 is given by a semigroup of isometries.
- There are infinitely many such A's on X^*
- But there are unbounded A's on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that the solution of
 \[x' = Ax \quad (x : \mathbb{R}_0^+ \to X) \]

 is given by a semigroup of isometries.
- There are infinitely many such A's on X^*
- But there are unbounded A's on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.

We would like to find \mathcal{X} such that

- $\text{Iso}(\mathcal{X})$ has no C_0 semigroup of isometries.
- $\text{Iso}(\mathcal{X}^*)$ has exponential semigroup of isometries.
Numerical range of unbounded operators (1960’s)

Let X be a Banach space, $T : D(T) \to X$ a linear operator, then

$$V(T) = \{ x^*(Tx) : x^* \in X^*, x \in D(T), \ x^*(x) = \|x^*\| = \|x\| = 1 \}.$$
Numerical range of unbounded operators (1960’s)

X Banach space, $T : D(T) \rightarrow X$ linear,

$$V(T) = \{ x^*(Tx) : x^* \in X^*, x \in D(T), x^*(x) = \|x^*\| = \|x\| = 1 \}.$$

Teorema (Stone, 1932)

H Hilbert space, A densely defined operator. TFAE:

- A generates an strongly continuous one-parameter semigroup of unitary operators (onto isometries).
- $A^* = -A$.
- $\text{Re}(Ax | x) = 0$ for every $x \in D(A)$.

Numerical range of unbounded operators. II

Motivation

Which Banach spaces have unbounded operators with numerical range zero?

Examples

In $C^0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t+s)$ is a strongly continuous one-parameter semigroup of isometries (generated by the derivative).

In $C^\infty([0,1] \rightarrow \mathbb{R})$ there are also strongly continuous one-parameter semigroups of isometries.

Consequence

We have to completely change our approach to the problem.
Numerical range of unbounded operators. II

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?
Difficulties

Which Banach spaces have unbounded operators with numerical range zero?

Examples

- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t + s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0, 1]\|\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.
Numerical range of unbounded operators. II

Difficulty
Which Banach spaces have unbounded operators with numerical range zero?

Examples
- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t+s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0,1]||\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

Consequence
We have to completely change our approach to the problem.
Complex structures

Definition

X has **complex structure** if there is $T \in L(X)$ such that $T^2 = -\text{Id}$.
Complex structures

Definition

X has **complex structure** if there is $T \in L(X)$ such that $T^2 = -\text{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C}:

 $$(\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)$$
Complex structures

Definition

X has **complex structure** if there is *T* ∈ *L(X)* such that *T*² = −Id.

Some remarks

- This gives a structure of vector space over *C*:

 \[(\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)\]

- Defining

 \[\|x\| = \max\{\|e^{i\theta} x\| : \theta \in [0, 2\pi]\}\]

 \[(x \in X)\]

 one gets that \((X, \| \cdot \|)\) is a complex Banach space.
Complex structures

Definition

X has **complex structure** if there is $T \in L(X)$ such that $T^2 = -\text{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C}:
 \[
 (\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)
 \]

- Defining
 \[
 \|x\| = \max\{\|e^{i\theta} x\| : \theta \in [0, 2\pi]\} \quad (x \in X)
 \]
 one gets that $(X, \| \cdot \|)$ is a complex Banach space.

- If T is an isometry, then actually the given norm of X is complex.
Complex structures

Definition

X has **complex structure** if there is *T* ∈ *L(X)* such that *T*² = −Id.

Some remarks

- This gives a structure of vector space over *C*:

 \[(\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)\]

- Defining

 \[\|x\| = \max\{\|e^{i\theta}x\| : \theta \in [0, 2\pi]\}\]

 one gets that \((X, \| \cdot \|)\) is a complex Banach space.

- If *T* is an isometry, then actually the given norm of *X* is complex.

- Conversely, if *X* is a complex Banach space, then

 \[T(x) = i x \quad (x \in X)\]

 satisfies *T*² = −Id and *T* is an isometry.
If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

If $X \cong \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \cong X^2$), then X has complex structure.

X is even if admits a complex structure but its hyperplanes does not. X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition: X is extremely non-complex if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e. $\|\text{Id} + T^2\| = 1 + \|T^2\|$ ($T \in \mathcal{L}(X)$).
Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

2. If $X \cong \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \cong X^2$), then X has complex structure.

3. There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space J (since $J^{\ast\ast} \equiv J \oplus \mathbb{R}$).
 - Szarek, 1986: uniformly convex examples.
 - Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.

 X is even if it admits a complex structure but its hyperplanes do not.
 X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is extremely non-complex if

$$\text{dist}(T^2, -\text{Id})$$

is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$
Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. If $X \cong \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \cong X^2$), then X has complex structure.
Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

2. If $X \simeq \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \simeq X^2$), then X has complex structure.

3. There are infinite-dimensional Banach spaces without complex structure:
 - **Dieudonné, 1952**: the James’ space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
 - **Szarek, 1986**: uniformly convex examples.
 - **Gowers-Maurey, 1993**: their H.I. space.
 - **Ferenczi-Medina Galego, 2007**: there are odd and even infinite-dimensional spaces X.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).
Complex structures II

Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. If $X \simeq \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \simeq X^2$), then X has complex structure.
3. There are infinite-dimensional Banach spaces without complex structure:
 - **Dieudonné, 1952**: the James’ space J (since $J^{**} \equiv J \oplus \mathbb{R}$).
 - **Szarek, 1986**: uniformly convex examples.
 - **Gowers-Maurey, 1993**: their H.I. space.
 - **Ferenczi-Medina Galego, 2007**: there are odd and even infinite-dimensional spaces X.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is **extremely non-complex** if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$
The Daugavet equation

What Daugavet did in 1963

The norm equality

\[\| \text{Id} + T \| = 1 + \| T \| \]

holds for every compact \(T \in L(C[0,1]) \).
The Daugavet equation

What Daugavet did in 1963

The norm equality

\[\| \text{Id} + T \| = 1 + \| T \| \]

holds for every **compact** \(T \in L(C[0,1]) \).

The Daugavet equation

\(X \) Banach space, \(T \in L(X) \),

\[\| \text{Id} + T \| = 1 + \| T \| \quad (\text{DE}) \]
The Daugavet equation

What Daugavet did in 1963

The norm equality

\[\|\text{Id} + T\| = 1 + \|T\| \]

holds for every compact \(T \in L(C[0,1]) \).

The Daugavet equation

\(X \) Banach space, \(T \in L(X) \), \(\|\text{Id} + T\| = 1 + \|T\| \) \hspace{1cm} \text{(DE)}.

Classical examples

1. **Daugavet, 1963:**
 Every compact operator on \(C[0,1] \) satisfies (DE).

2. **Lozanoskii, 1966:**
 Every compact operator on \(L_1[0,1] \) satisfies (DE).

3. **Abramovich, Holub, and more, 80’s:**
 \(X = C(K) \), \(K \) perfect compact space
 or \(X = L_1(\mu) \), \(\mu \) atomless measure
 \(\implies \) every weakly compact \(T \in L(X) \) satisfies (DE).
The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).
The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)
A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results
Let X be a Banach space with the Daugavet property. Then

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.
- X does not embed into a Banach space with unconditional basis.

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.
- X does not embed into a Banach space with unconditional basis.
- **Geometric characterization**: X has the Daugavet property iff for each $x \in S_X$

$$
\overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X.
$$

The Daugavet property II
More examples

The following spaces have the Daugavet property.

- **Wojtaszczyk, 1992:** The disk algebra and H^∞.
- **Werner, 1997:** “Nonatomic” function algebras.
- **Oikhberg, 2005:** Non-atomic C^*-algebras and preduals of non-atomic von Neumann algebras.
- **Becerra–M., 2005:** Non-atomic JB^*-triples and their preduals.
- **Becerra–M., 2006:** Preduals of $L_1(\mu)$ without Fréchet-smooth points.
- **Ivankhno, Kadets, Werner, 2007:** $\text{Lip}(K)$ when $K \subseteq \mathbb{R}^n$ is compact and convex.
Daugavet–type inequalities

Benyamini–Lin, 1985:
For every $1 < p < \infty$, $p \neq 2$, there exists ψ_p: $(0, \infty) \rightarrow (0, \infty)$ such that
$$\| \operatorname{Id} + T \| \geq 1 + \psi_p(\|T\|)$$
for every compact operator T on $L^p[0, 1]$.

If $p = 2$, then there is a non-null compact T on $L^2[0, 1]$ such that
$$\| \operatorname{Id} + T \| = 1.$$

Boyko–Kadets, 2004:
If ψ_p is the best possible function above, then
$$\lim_{p \to 1^+} \psi_p(t) = t$$
for $t > 0$.

Oikhberg, 2005:
If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then
$$\| \operatorname{Id} + T \| \geq 1 + \frac{1}{8\sqrt{2}}\|T\|$$
for every compact T on X.
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \rightarrow (0, \infty)$ such that
 \[
 \| \text{Id} + T \| \geq 1 + \psi_p(\| T \|)
 \]
 for every compact operator T on $L_p[0,1]$.

- **Boyko–Kadets, 2004:**
 If ψ_p is the best possible function above, then
 \[
 \lim_{p \to 1^+} \psi_p(t) = t (t > 0).
 \]

- **Oikhberg, 2005:**
 If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then
 \[
 \| \text{Id} + T \| \geq 1 + \frac{1}{8\sqrt{2}} \| T \|
 \]
 for every compact T on X.

Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:** For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \rightarrow (0, \infty)$ such that
 \[
 \|\text{Id} + T\| \geq 1 + \psi_p(\|T\|)
 \]
 for every compact operator T on $L_p[0,1]$.
 - If $p = 2$, then there is a non-null compact T on $L_2[0,1]$ such that
 \[
 \|\text{Id} + T\| = 1.
 \]
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that
 \[\|\text{Id} + T\| \geq 1 + \psi_p(\|T\|) \]
 for every compact operator T on $L_p[0,1]$.
 - If $p = 2$, then there is a non-null compact T on $L_2[0,1]$ such that
 \[\|\text{Id} + T\| = 1. \]

- **Boyko–Kadets, 2004:**
 If ψ_p is the best possible function above, then
 \[\lim_{p \to 1^+} \psi_p(t) = t \quad (t > 0). \]
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that
 \[\| \text{Id} + T \| \geq 1 + \psi_p(\|T\|) \]
 for every compact operator T on $L_p[0, 1]$.
 - If $p = 2$, then there is a non-null compact T on $L_2[0, 1]$ such that
 \[\| \text{Id} + T \| = 1. \]

- **Boyko–Kadets, 2004:**
 If ψ_p is the best possible function above, then
 \[\lim_{p \to 1^+} \psi_p(t) = t \quad (t > 0). \]

- **Oikhberg, 2005:**
 If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then
 \[\| \text{Id} + T \| \geq 1 + \frac{1}{8\sqrt{2}} \|T\| \]
 for every compact T on X.

Extremely non-complex

Motivation
Extremely non-complex

Motivation

Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely

We looked for non-trivial norm equalities of the forms

\[
\|Id + T\| = f(\|T\|)
\]

or

\[
\|g(T)\| = f(\|T\|)
\]

or

\[
\|Id + g(T)\| = f(\|g(T)\|)
\]

(\(g\) analytic, \(f\) arbitrary) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities.
Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?
Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely

We looked for non-trivial norm equalities of the forms

\[\| \text{Id} + T \| = f(\| T \|) \quad \text{or} \quad \| g(T) \| = f(\| T \|) \quad \text{or} \quad \| \text{Id} + g(T) \| = f(\| g(T) \|) \]

\((g \text{ analytic, } f \text{ arbitrary}) \) satisfied by all rank-one operators on a Banach space.
Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely

We looked for non-trivial norm equalities of the forms

\[\| \text{Id} + T \| = f(\| T \|) \quad \text{or} \quad \| g(T) \| = f(\| T \|) \quad \text{or} \quad \| \text{Id} + g(T) \| = f(\| g(T) \|) \]

(\(g \) analytic, \(f \) arbitrary) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities...
Equalities of the form $\|\text{Id} + T\| = f(\|T\|)$
Equalities of the form $\|\text{Id} + T\| = f(\|T\|)$

Proposition

X real or complex, $f : \mathbb{R}_0^+ \rightarrow \mathbb{R}$ arbitrary, $a, b \in K$. If the norm equality

$$\|a \text{Id} + b T\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, then

$$f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+).$$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.
Equalities of the form $\|\text{Id} + T\| = f(\|T\|)$

Proposition

X real or complex, $f : \mathbb{R}_0^+ \to \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$\|a \text{Id} + b T\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, then

$$f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+)$$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which $\text{Id} + T$ is replaced by something different.
Proof

We have...

\[\| a \text{Id} + bT \| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]
Proof

We have...
\[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

?

We want...
\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+) \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{\overline{b}}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
Proof

We have...

\[\|a \text{Id} + b T\| = f(\|T\|) \ \forall T \in L(X) \text{ rank-one} \]

We want...

\[f(t) = |a| + |b| t \ \ (t \in \mathbb{R}^+_0). \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, \ x_0^* \in S_{X^*} \text{ with } x_0^*(x_0) = \omega_0 \) and consider

\[T_t = t \ x_0^* \otimes x_0 \in L(X) \ \ (t \in \mathbb{R}_0^+). \]
Proof

We have...
\[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

\[\Rightarrow \]

We want...
\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}^+_0). \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, x_0^* \in S_{X^*} \) with \(x_0^*(x_0) = \omega_0 \) and consider
 \[T_t = t x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}^+_0). \]
- Since \(\|T_t\| = t \), we have
 \[f(t) = \|a \text{Id} + b T_t\| \quad (t \in \mathbb{R}^+_0). \]
Proof

We have...\[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

We want...\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+) \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, \ x_0^* \in S_{X^*} \text{ with } x_0^*(x_0) = \omega_0 \) and consider

\[T_t = t x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}_0^+) \]

- Since \(\|T_t\| = t \), we have

\[f(t) = \|a \text{Id} + b T_t\| \quad (t \in \mathbb{R}_0^+) \]

- It follows that

\[|a| + |b| t \geq f(t) = \|a \text{Id} + b T_t\| \geq \|[a \text{Id} + b T_t](x_0)\| \]

\[= \|a x_0 + b \omega_0 t x_0\| = |a + b \omega_0 t| \|x_0\| = \left| a + b \frac{b}{|b|} \frac{a}{|a|} t \right| = |a| + |b t| \geq |a| + |b| t \]

Finally, for rank-one \(T \in L(X) \), write \(S = a b^T \) and observe

\[|a| (1 + \|T\|) \geq |a| + |b| \|S\| = \|a \text{Id} + b S\| = |a| + |b| t \]

\[\blacksquare \]
Proof

We have...

\[\| a \text{Id} + b T \| = f(\| T \|) \quad \forall T \in L(X) \quad \text{rank-one} \]

\[\implies \]

We want...

\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+) \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, \ x_0^* \in S_{X^*} \) with \(x_0^*(x_0) = \omega_0 \) and consider
 \[T_t = t \ x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}_0^+) \].
- Since \(\| T_t \| = t \), we have
 \[f(t) = \| a \text{Id} + b T_t \| \quad (t \in \mathbb{R}_0^+) \].
- It follows that
 \[|a| + |b| t \geq f(t) = \| a \text{Id} + b T_t \| \geq \|[a \text{Id} + b T_t](x_0)\| \]
 \[= \|a \ x_0 + b \omega_0 t \ x_0\| = |a + b \omega_0 t| \|x_0\| = \left| a + b \frac{\bar{b}}{|b|} \frac{a}{|a|} t \right| = |a| + |b| t \).
- Finally, for rank-one \(T \in L(X) \), write \(S = \frac{a}{b} T \) and observe
 \[|a|(1 + \|T\|) = |a| + |b| \|S\| = \|a \text{Id} + b S\| = |a| \|\text{Id} + T\|. \]
Equalities of the form $\|g(T)\| = f(\|T\|)$
Equalities of the form $\|g(T)\| = f(\|T\|)$

Theorem

Let X be real or complex with $\dim(X) \geq 2$. Suppose that the norm equality

$$\|g(T)\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, where

- $g : \mathbb{K} \to \mathbb{K}$ is analytic,
- $f : \mathbb{R}_0^+ \to \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$g(\zeta) = a + b \zeta \quad (\zeta \in \mathbb{K}).$$
Equalities of the form $\|g(T)\| = f(\|T\|)$

Theorem

X real or complex with $\dim(X) \geq 2$. Suppose that the norm equality

$$\|g(T)\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, where

- $g : \mathbb{K} \to \mathbb{K}$ is analytic,
- $f : \mathbb{R}_0^+ \to \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$g(\zeta) = a + b \zeta \quad (\zeta \in \mathbb{K}).$$

Corollary

Only three norm equalities of the form

$$\|g(T)\| = f(\|T\|)$$

are possible:

- $b = 0$: $\|a \text{Id}\| = |a|$,
- $a = 0$: $\|b \, T\| = |b| \|T\|$, \hspace{1cm} (trivial cases)
- $a \neq 0, b \neq 0$: $\|a \text{Id} + b \, T\| = |a| + |b| \|T\|$, \hspace{1cm} (Daugavet property)
Proof (complex case)

\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

We want...

\[g \text{ is affine} \]
Proof (complex case)

We have . . .

\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).

\[? \]

We want . . .

\(g \) is affine

\[\tilde{g} = \tilde{g}(\lambda) T_1 \quad (\lambda \in \mathbb{C}) \]

\[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\| \]

We use the triangle inequality to get

\[|\tilde{g}(\lambda)| \leq 2 |a_0| + |a_1| |\lambda| \quad (\lambda \in \mathbb{C}) \]

and so \(\tilde{g} \) is a degree-one polynomial by Cauchy inequalities.

✓
Proof (complex case)

We have... \[\|g(T)\| = f(\|T\|) \forall T \in L(X) \text{ rank-one} \]

We want... \[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1, \]
and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
Proof (complex case)

<table>
<thead>
<tr>
<th>We have...</th>
<th>?</th>
<th>We want...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|g(T)| = f(|T|)$ $\forall T \in L(X)$ rank-one</td>
<td>\Rightarrow</td>
<td>g is affine</td>
</tr>
</tbody>
</table>

- Write $g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$ and $\tilde{g} = g - a_0$.
- Take $x_0, x_1 \in S_X$ and $x_0^*, x_1^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$.
 and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.
- Then $g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0$ and $g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1$ ($\lambda \in \mathbb{C}$).
Proof (complex case)

We have...
\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

\[? \]

We want...
\[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that \(x_0^*(x_0) = 0 \) and \(x_1^*(x_1) = 1 \),
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0 \) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1 \) \((\lambda \in \mathbb{C})\).
- Therefore, for \(\lambda \in \mathbb{C} \) we have
 \[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]
Proof (complex case)

We have...

\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

We want...

\[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1, \]
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0 \quad \text{and} \quad g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1 \) \((\lambda \in \mathbb{C}) \).
- Therefore, for \(\lambda \in \mathbb{C} \) we have
 \[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]
- We use the triangle inequality to get
 \[|\tilde{g}(\lambda)| \leq 2|a_0| + |a_1| |\lambda| \quad (\lambda \in \mathbb{C}), \]
Proof (complex case)

We have... \[
\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one}
\]

\[?\]

We want... \[g \text{ is affine}\]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k\) y
 \(\tilde{g} = g - a_0\).

- Take \(x_0, x_1 \in S_X\) and \(x_0^*, x_1^* \in S_{X^*}\) such that
 \(x_0^*(x_0) = 0\) and \(x_1^*(x_1) = 1\),
 and define the operators \(T_0 = x_0^* \otimes x_0\) and \(T_1 = x_1^* \otimes x_1\).

- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0\) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1\)
 \((\lambda \in \mathbb{C})\).

- Therefore, for \(\lambda \in \mathbb{C}\) we have
 \[
 \|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|.
 \]

- We use the triangle inequality to get
 \[
 |\tilde{g}(\lambda)| \leq 2|a_0| + |a_1||\lambda| \quad (\lambda \in \mathbb{C}),
 \]

- and so \(\tilde{g}\) is a degree-one polynomial by Cauchy inequalities. \(\checkmark\)
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
- From now on, we have to separate the complex and the real case.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**
Equality of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**

Proposition

X complex, $\dim(X) \geq 2$. Suppose that

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one $T \in L(X)$, where

- $g : \mathbb{C} \rightarrow \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}_0^+ \rightarrow \mathbb{R}$ continuous.

Then

$$\|(1 + g(0))\text{Id} + T\|$$

$$= |1 + g(0)| - |g(0)| + \|g(0)\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

We obtain two different cases:

- $|1 + g(0)| - |g(0)| \neq 0$ or
- $|1 + g(0)| - |g(0)| = 0$.

$133 / 152$
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**

Proposition

X complex, $\dim(X) \geq 2$. Suppose that

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one $T \in L(X)$, where

- $g : \mathbb{C} \to \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}_0^+ \to \mathbb{R}$ continuous.

Then

$$\|(1 + g(0))\text{Id} + T\|$$

$$= |1 + g(0)| - |g(0)| + \|g(0)\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

We obtain two different cases:

- $|1 + g(0)| - |g(0)| \neq 0$ or
- $|1 + g(0)| - |g(0)| = 0$.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Complex case

Theorem

If $\text{Re} g(0) \neq -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then X has the **Daugavet property**.
Equality of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Complex case

Theorem

If $\Re g(0) \neq -1/2$ and $\|\text{Id} + g(T)\| = f(\|g(T)\|)$ for every rank-one T, then X has the Daugavet property.

Theorem

If $\Re g(0) = -1/2$ and $\|\text{Id} + g(T)\| = f(\|g(T)\|)$ for every rank-one T, then there exists $\theta_0 \in \mathbb{R}$ such that $\|\text{Id} + e^{i\theta_0} T\| = \|\text{Id} + T\|$ for every rank-one $T \in L(X)$.

Example

If $X = C[0,1] \oplus_2 C[0,1]$, then $\|\text{Id} + e^{i\theta} T\| = \|\text{Id} + T\|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$. X does not have the Daugavet property.
Extremely non-complex Motivation

Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Complex case

Theorem
If $\text{Re } g(0) \neq -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then X has the Daugavet property.

Theorem
If $\text{Re } g(0) = -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then exists $\theta_0 \in \mathbb{R}$ s.t.

$$\|\text{Id} + e^{i\theta_0} T\| = \|\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

Example
If $X = C[0, 1] \oplus_2 C[0, 1]$, then

- $\|\text{Id} + e^{i\theta} T\| = \|\text{Id} + T\|$
 for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does not have the Daugavet property.
Equalities of the form $\|Id + g(T)\| = f(\|g(T)\|)$. **Real case**

- **Real case:**
Equalities of the form $\|\text{Id} + g(T)\| = f(||g(T)||)$. Real case

- **Real case:**

Remarks

- The proofs are not valid (we use Picard’s Theorem).
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

Remarks
- The proofs are not valid (we use Picard’s Theorem).
- They work when g is onto.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

Remarks

- The proofs are not valid (we use Picard’s Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\|\text{Id} + T^2\| = 1 + \|T^2\|$,
 - $\|\text{Id} - T^2\| = 1 + \|T^2\|$.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

 Remarks
 - The proofs are not valid (we use Picard’s Theorem).
 - They work when g is onto.
 - But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\|\text{Id} + T^2\| = 1 + \|T^2\|$,
 - $\|\text{Id} - T^2\| = 1 + \|T^2\|$.

 $g(0) = -1/2$:

 Example
 If $X = C[0,1] \oplus_2 C[0,1]$, then
 - $\|\text{Id} - T\| = \|\text{Id} + T\|$ for every rank-one $T \in L(X)$.
 - X does not have the Daugavet property.
The question

Godefroy, private communication

Is there any real Banach space X (with $\dim(X) > 1$) such that

$$\|\text{Id} + T^2\| = 1 + \|T^2\|$$

for every operator $T \in L(X)$?

In other words, are there extremely non-complex spaces other than \mathbb{R}?
The first attempts

The first attempts

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

2. Dieudonné, 1952: the James' space J ($J^{\ast\ast} \equiv J \oplus \mathbb{R}$).

5. Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.

X is even if admits a complex structure but its hyperplanes do not. X is odd if its hyperplanes are even (and so X does not admit a complex structure).

(Un)fortunately...

This did not work and we moved to $C(K)$ spaces.
The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

2. Dieudonné, 1952: the James' space J (since $J^{**} \equiv J \oplus \mathbb{R}$).

5. Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.

X is even if admits a complex structure but its hyperplanes does not. X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Unfortunately, this did not work and we moved to $C(K)$ spaces.
The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

1. If \(\dim(X) < \infty \), \(X \) has complex structure iff \(\dim(X) \) is even.
2. **Dieudonné, 1952**: the James’ space \(J \) (since \(J^{**} \equiv J \oplus \mathbb{R} \)).
3. **Szarek, 1986**: uniformly convex examples.
5. **Ferenczi-Medina Galego, 2007**: there are odd and even infinite-dimensional spaces \(X \).
 - \(X \) is even if admits a complex structure but its hyperplanes does not.
 - \(X \) is odd if its hyperplanes are even (and so \(X \) does not admit a complex structure).
The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

1. If \(\dim(X) < \infty \), \(X \) has complex structure iff \(\dim(X) \) is even.
2. Dieudonné, 1952: the James’ space \(J \) (since \(J^{**} \equiv J \oplus \mathbb{R} \)).
5. Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces \(X \).
 - \(X \) is even if admits a complex structure but its hyperplanes does not.
 - \(X \) is odd if its hyperplanes are even (and so \(X \) does not admit a complex structure).

(Un)fortunately. . .

This did not work and we moved to \(C(K) \) spaces.
The first example: weak multiplications
The first example: weak multiplications

Koszmider, 2004; Plebanek, 2004

There are compact spaces K such that $C(K)$ has “few operators”: every operator is a weak multiplication.
The first example: weak multiplications

Koszmider, 2004; Plebanek, 2004

There are compact spaces K such that $C(K)$ has “few operators”: every operator is a weak multiplication.

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplication** if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.
The first example: weak multiplications

Koszmider, 2004; Plebanek, 2004

There are compact spaces K such that $C(K)$ has “few operators”: every operator is a weak multiplication.

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

If K is perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = gI + S$, $\max \|I + T\| = 1$ (true for every K and every T) $\|I + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect).

We need $\|I + T^2\| = 1 + \|T^2\|$. If $T = gI + S$, then $T^2 = g^2I + S'$ with S' weakly compact.

We will prove that $\|I + g^2I + S\| = 1 + \|g^2I + S\|$ for $g \in C(K)$ and S weakly compact.

Step 1: We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Step 2: We can avoid the assumption that $\min g^2(K) > 0$.

Step 3: Finally, for every g the above gives $\|I + g^2I + S\| = 1 + \|g^2I + S\|$ which gives us the result. ✓
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

We need

$\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g \text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g \text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.

We need

- $\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.

We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2\text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

We need $\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have \(X = C(K), K \) perfect, \(T = g\text{Id} + S \)

- \(\max \|\text{Id} \pm T\| = 1 + \|T\| \) (true for every \(K \) and every \(T \))
- \(\|\text{Id} + S\| = 1 + \|S\| \) (if \(S \in W(X), K \) perfect)

We need \(\|\text{Id} + T^2\| = 1 + \|T^2\| \)

- If \(T = g\text{Id} + S \), then \(T^2 = g^2\text{Id} + S' \) with \(S' \) weakly compact.
- We will prove that \(\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\| \)
 for \(g \in C(K) \) and \(S \) weakly compact.
- **Step 1:** We assume \(\|g^2\| \leq 1 \) and \(\min g^2(K) > 0 \).

Proof

- It is enough to show that
 \[\|\text{Id} - (g^2\text{Id} + S)\| < 1 + \|g^2\text{Id} + S\|. \]
Proof of the theorem

We have \(X = C(K) \), \(K \) perfect, \(T = g\text{Id} + S \)

- \(\max \|\text{Id} \pm T\| = 1 + \|T\| \) (true for every \(K \) and every \(T \))
- \(\|\text{Id} + S\| = 1 + \|S\| \) (if \(S \in W(X) \), \(K \) perfect)

- If \(T = g\text{Id} + S \), then \(T^2 = g^2 \text{Id} + S' \) with \(S' \) weakly compact.

- We will prove that \(\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\| \)
 for \(g \in C(K) \) and \(S \) weakly compact.

- **Step 1:** We assume \(\|g^2\| \leq 1 \) and \(\min g^2(K) > 0 \).

Proof

- It is enough to show that
 \[
 \|\text{Id} - (g^2 \text{Id} + S)\| < 1 + \|g^2 \text{Id} + S\|.
 \]

- \(\|\text{Id} - (g^2 \text{Id} + S)\| \leq \|(1 - g^2)\text{Id}\| + \|S\| = 1 - \min g^2(K) + \|S\|. \)
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

We need

$\|\text{Id} + T^2\| = 1 + \|T^2\|$

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

Step 1: We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Proof

- It is enough to show that

 $\|\text{Id} - (g^2 \text{Id} + S)\| < 1 + \|g^2 \text{Id} + S\|.

- $\|\text{Id} - (g^2 \text{Id} + S)\| \leq \|(1 - g^2)\text{Id}\| + \|S\| = 1 - \min g^2(K) + \|S\|.$

- $\|g^2 \text{Id} + S\| = \|\text{Id} + S + (g^2 \text{Id} - \text{Id})\| \geq \|\text{Id} + S\| - \|g^2 \text{Id} - \text{Id}\|
 = 1 + \|S\| - (1 - \min g^2(K)) = \|S\| + \min g^2(K).$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2\text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

- **Step 2:** We can avoid the assumption that $\min g^2(K) > 0$.

We need

$\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have \(X = C(K) \), \(K \) perfect, \(T = g\text{Id} + S \)

- \(\max \|\text{Id} \pm T\| = 1 + \|T\| \) (true for every \(K \) and every \(T \))
- \(\|\text{Id} + S\| = 1 + \|S\| \) (if \(S \in W(X) \), \(K \) perfect)

We need
\[
\|\text{Id} + T^2\| = 1 + \|T^2\|
\]

- If \(T = g\text{Id} + S \), then \(T^2 = g^2\text{Id} + S' \) with \(S' \) weakly compact.
- We will prove that \(\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\| \) for \(g \in C(K) \) and \(S \) weakly compact.
- **Step 1:** We assume \(\|g^2\| \leq 1 \) and \(\min g^2(K) > 0 \).
- **Step 2:** We can avoid the assumption that \(\min g^2(K) > 0 \).

Proof

Just think that the set of operators satisfying (DE) is closed.
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

- **Step 2:** We can avoid the assumption that $\min g^2(K) > 0$.

- **Step 3:** Finally, for every g the above gives

\[
\left\| \text{Id} + \frac{1}{\|g^2\|} \left(g^2 \text{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \text{Id} + S\|
\]

which gives us the result. ✓
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

Step 1: We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Step 2: We can avoid the assumption that $\min g^2(K) > 0$.

Step 3: Finally, for every g the above gives

$$\left\| \text{Id} + \frac{1}{\|g^2\|} \left(g^2 \text{Id} + S\right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \text{Id} + S\|$$

which gives us the result. ✓

Proof

If $\|u + v\| = \|u\| + \|v\|$ \Rightarrow $\|\alpha u + \beta v\| = \alpha \|u\| + \beta \|v\|$ for $\alpha, \beta \in \mathbb{R}_0^+$.

We need $\|\text{Id} + T^2\| = 1 + \|T^2\|$
The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$
The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplication** if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.
The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplication** if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.

Consequence

Therefore, there are extremely non-complex $C(K)$ spaces.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplier** if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplier** if

$$T^* = g \text{ Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplier** if

$$T^* = g \text{ Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.

Corollary

There are infinitely many non-isomorphic extremely non-complex Banach spaces.
Further examples

Proposition
There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence
There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that every operator on $C(K_i)$ is a weak multiplier, for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Theorem
There are some compactifications \tilde{K} of the above family $(K_i)_{i \in I}$ such that the corresponding $C(\tilde{K})$'s are extremely non-complex.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Theorem

There are some compactifications \tilde{K} of the above family $(K_i)_{i \in I}$ such that the corresponding $C(\tilde{K})$'s are extremely non-complex.
Further examples II

Main consequence

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$,
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.

Observation

$C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.

They are not indecomposable spaces.
Main consequence

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$,
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.
Further examples II

Main consequence

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.

Observation

- $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.
Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2
Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi : K \to K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?

We will show latter that $\phi : K \to K$ homeomorphism $\Rightarrow \phi = \text{id}$.

Extremely non-complex Banach spaces
Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.
Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2
Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi : K \to K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?
Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2

Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:

If $C(K)$ is extremely non-complex and $\psi : K \rightarrow K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?

- We will show latter than $\varphi : K \rightarrow K$ homeomorphism $\implies \varphi = \text{id}$.
Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$

Examples

There are several extremely non-complex $C(K)$ spaces:

- If $T = g\text{Id} + S$ for every $T \in L(C(K))$ (Koszmider).

- If $T^* = g\text{Id} + S$ for every $T \in L(C(K))$ (K weak Koszmider).

- One $C(K)$ containing a complemented copy of $C(\Delta)$.

- One $C(K)$ containing an isometric (1-complemented) copy of ℓ_∞.

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$

Examples

There are several extremely non-complex $C(K)$ spaces:

- If $T = g\text{Id} + S$ for every $T \in L(C(K))$ (K Koszmider).
- If $T^* = g\text{Id} + S$ for every $T \in L(C(K))$ (K weak Koszmider).
- One $C(K)$ containing a complemented copy of $C(\Delta)$.
- One $C(K)$ containing an isometric (1-complemented) copy of ℓ_∞.
Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.
Isometries on extremely non-complex spaces. 1

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>X extremely non-complex.</td>
</tr>
<tr>
<td>- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.</td>
</tr>
<tr>
<td>- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.</td>
</tr>
<tr>
<td>- $T_1, T_2 \in \text{Iso}(X) \implies |T_1 - T_2| \in {0, 2}$.</td>
</tr>
<tr>
<td>- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = {\text{Id}}$.</td>
</tr>
</tbody>
</table>

Proof.
Isometries on extremely non-complex spaces. I

Theorem

\(X \) extremely non-complex.
- \(T \in \text{Iso}(X) \implies T^2 = \text{Id} \).
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1 \).
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\} \).
- \(\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\} \).

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2} \).
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}. \)
- \(1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0. \)
Theorem

X extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}. \)
- \(1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0. \)
- Then \(\text{Id} = \frac{1}{2} T^2 + \frac{1}{2} T^{-2}. \)
Extremely non-complex Surjective isometries

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}.$
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}.$
- $\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}.$

Proof.

- Take $S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}.$
- $1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0.$
- Then $\text{Id} = \frac{1}{2} T^2 + \frac{1}{2} T^{-2}.$
- Since Id is an extreme point of $B_{L(X)} \implies T^2 = T^{-2} = \text{Id}.$ ✓
Theorem

\(X \) extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

\[
\text{Id} = (T_1 T_2)(T_1 T_2) \\
\implies T_1 T_2 = T_1(T_1 T_2 T_1 T_2)T_2 = (T_1 T_1) T_2 T_1 (T_2 T_2) = T_2 T_1. \quad \checkmark
\]
Isometries on extremely non-complex spaces. 1

Theorem

- X extremely non-complex.
 - $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
 - $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
 - $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
 - $\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

- $(\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2$.
Isometries on extremely non-complex spaces. 1

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1T_2 = T_2T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

- $(\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2$.
- So $\|\text{Id} - T\| \in \{0, 2\}$.
Extremely non-complex Surjective isometries

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

- $(\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2$.
- So $\|\text{Id} - T\| \in \{0, 2\}$.
- $\|T_1 - T_2\| = \|T_1(\text{Id} - T_1 T_2)\| = \|\text{Id} - T_1 T_2\| \in \{0, 2\}$. \checkmark
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

$$\Phi(t) = \Phi(t/2 + t/2) = \Phi(t/2)^2 = \text{Id}.$$ ✓
Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Consequences
Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
Isometries on extremely non-complex spaces. I

Theorem

- X extremely non-complex.
 - $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
 - $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
 - $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
 - $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
- $\text{Iso}(X)$ identifies with the set $\text{Unc}(X)$ of unconditional projections on X:

 $$
P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X)$$

 $$\iff P = \frac{1}{2}(\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}.$$
Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}.$
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}.$
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}.$

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
- $\text{Iso}(X)$ identifies with the set $\text{Unc}(X)$ of unconditional projections on X:

\[P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X) \]
\[\iff P = \frac{1}{2} (\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}. \]

- $\text{Iso}(X) \equiv \text{Unc}(X)$ is a Boolean algebra
 $\iff P_1 P_2 \in \text{Unc}(X)$ when $P_1, P_2 \in \text{Unc}(X)$
 $\iff \left\| \frac{1}{2} (\text{Id} + T_1 + T_2 - T_1 T_2) \right\| = 1$ for every $T_1, T_2 \in \text{Iso}(X).$
Extremely non-complex $C_E(K\|L)$ spaces.

Theorem: K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$.

Proposition: K perfect $\Rightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Observation: exists a non-$C(K)$ extremely non-complex space $C\ell_2(K\|L)$ is not isomorphic to a $C(K')$ space since $\ell_2 \subset \text{comp}-C\ell_2(K\|L)^*$.

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell_2 \subset C[0,1] \subset C(L)$:

$C\ell_2(K\|L)$ has no non-trivial one-parameter semigroup of isometries.

$C\ell_2(K\|L)^* = \ell_2 \oplus 1C_0(K\|L)^*$, so $\text{Iso}(C\ell_2(K\|L)^*) \supset \text{Iso}(\ell_2)$.

But we are able to give a better result...
Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$
$\implies C_E(K\|L)$ is extremely non-complex.
Extremely non-complex \(C_E(K\|L) \) spaces.

Theorem

\[
K \text{ perfect weak Koszmider, } L \text{ closed nowhere dense, } E \subset C(L) \implies C_E(K\|L) \text{ is extremely non-complex.}
\]

Proposition

\[
K \text{ perfect } \implies \exists L \subset K \text{ closed nowhere dense with } C[0,1] \subset C(L).
\]
Extremely non-complex $C_E(K\|L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$

$\implies C_E(K\|L)$ is extremely non-complex.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Observation: exists a non $C(K)$ extremely non-complex space

$C_{\ell^2}(K\|L)$ is not isomorphic to a $C(K')$ space since $\ell^2 \overset{\text{comp}}{\longrightarrow} C_{\ell^2}(K\|L)^*$.
Extremely non-complex \(C_E(K∥L) \) spaces.

Theorem

\(K \) perfect weak Koszmider, \(L \) closed nowhere dense, \(E \subset C(L) \)
\[\implies C_E(K∥L) \text{ is extremely non-complex.} \]

Proposition

\(K \) perfect \[\implies \exists L \subset K \text{ closed nowhere dense with} \ C[0,1] \subset C(L). \]

Observation: exists a non \(C(K) \) extremely non-complex space

\(C_{\ell_2}(K∥L) \) is not isomorphic to a \(C(K') \) space since \(\ell_2 \overset{\text{comp}}{\rightarrow} C_{\ell_2}(K∥L)^* \).

Important consequence: Example

Take \(K \) perfect weak Koszmider, \(L \subset K \text{ closed nowhere dense with} \)
\[E = \ell_2 \subset C[0,1] \subset C(L): \]
- \(C_{\ell_2}(K∥L) \) has no non-trivial one-parameter semigroup of isometries.
- \(C_{\ell_2}(K∥L)^* = \ell_2 \oplus_1 C_0(K∥L)^* \), so \(\text{Iso}(C_{\ell_2}(K∥L)^*) \supset \text{Iso}(\ell_2) \).
Extremely non-complex $C_E(K\|L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$

$\implies C_E(K\|L)$ is extremely non-complex.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Observation: exists a non $C(K)$ extremely non-complex space

$C_{\ell_2}(K\|L)$ is not isomorphic to a $C(K')$ space since $\ell_2 \overset{\text{comp}}{\hookrightarrow} C_{\ell_2}(K\|L)^*$.

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell_2 \subset C[0,1] \subset C(L)$:

- $C_{\ell_2}(K\|L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_2}(K\|L)^* = \ell_2 \oplus_1 C_0(K\|L)^*$, so $\text{Iso}(C_{\ell_2}(K\|L)^*) \supset \text{Iso}(\ell_2)$.

But we are able to give a better result...
Isometries on extremely non-complex $C_E(K\|L)$ spaces
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{ Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \longrightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Sketch of the proof.
Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \ \theta_0 \in \{-1,1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y \}$ dense in K.

Theorem (Banach-Stone like)

\[C_E(K\|L) \text{ extremely non-complex, } T \in \text{Iso}(C_E(K\|L)) \implies \text{exists } \theta : K \setminus L \to \{-1, 1\} \text{ continuous such that} \]

\[[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L)) \]

Sketch of the proof.

- \(D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \ \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y \} \text{ dense in } K. \)
- Consider \(\phi : D_0 \to D_0 \) and \(\theta : D_0 \to \{-1, 1\} \text{ with} \)

\[T^*(\delta_x) = \theta(x)\delta_{\phi(x)} \]
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \rightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \ \theta_0 \in \{-1,1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y \}$ dense in K.
- Consider $\phi : D_0 \rightarrow D_0$ and $\theta : D_0 \rightarrow \{-1,1\}$ with

 $$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

- $\phi^2 = \text{id}$, $\theta(x)\theta(\phi(x)) = 1$, ϕ homeomorphism.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y\}$ dense in K.
- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

- $\phi^2 = \text{id}$, $\theta(x)\theta(\phi(x)) = 1$, ϕ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y\}$ dense in K.
- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with
 $$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

 $\phi^2 = \text{id}, \theta(x) \theta(\phi(x)) = 1, \phi$ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
- $D_0 = K \setminus L$.
Isometries on extremely non-complex $C_E(K∥L)$ spaces

Theorem (Banach-Stone like)

$C_E(K∥L)$ extremely non-complex, $T ∈ Iso(C_E(K∥L))$ \implies \text{exists } θ : K \setminus L \rightarrow \{-1, 1\} \text{ continuous such that}

$[T(f)](x) = θ(x)f(x)$ \quad (x ∈ K \setminus L, f ∈ C_E(K∥L))

Sketch of the proof.

- $D_0 = \{x ∈ K \setminus L : \exists y ∈ K \setminus L, θ_0 ∈ \{-1, 1\} \text{ with } T^*(δ_x) = θ_0δ_y\}$ dense in K.
- Consider $φ : D_0 \rightarrow D_0$ and $θ : D_0 \rightarrow \{-1, 1\}$ with

 $T^*(δ_x) = θ(x)δ_{φ(x)}$

- $φ^2 = \text{id}$, $θ(x)θ(φ(x)) = 1$, $φ$ homeomorphism.
- $φ(x) = x$ for all $x ∈ D_0$.
- $D_0 = K \setminus L$.
- $θ$ is continuous. ✓
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \rightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Consequences: cases $E = C(L)$ and $E = 0$

- $C(K)$ extremely non-complex, $\varphi : K \rightarrow K$ homeomorphism $\implies \varphi = \text{id}$
- $C_0(K \setminus L) \equiv C_0(K\|L)$ extremely non-complex, $\varphi : K \setminus L \rightarrow K \setminus L$ homeomorphism $\implies \varphi = \text{id}$
- In both cases, the group of surjective isometries identifies with a Boolean algebra of clopen sets.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$
 \implies θ extends to the whole K and

 $$[T(f)](x) = \theta(x)f(x) \quad (x \in K, f \in C_E(K\|L))$$

 for every surjective isometry T.

If this happens, then $0 \not\in \text{ext}(B_E^*)$ w* by (V. Kadets).

But for $E = \ell^2$, $0 \in \text{ext}(B_E^*)$ w*.

148 / 152
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$
 \implies θ extends to the whole K and

 $$[T(f)](x) = \theta(x)f(x) \quad (x \in K, f \in C_E(K\|L))$$

 for every surjective isometry T.

- If this happens, then $0 \not\in \text{ext} \left(B_E^* \right)^{w^*}$ (V. Kadets).
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$

 \implies θ extends to the whole K and

 $$[T(f)](x) = \theta(x)f(x) \quad (x \in K, \ f \in C_E(K\|L))$$

 for every surjective isometry T.

- If this happens, then $0 \notin \text{ext} (B_E^*)^{w*}$ (V. Kadets).

- But for $E = \ell_2$, $0 \in \text{ext} (B_E^*)^{w*}$.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem (Banach-Stone like)

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \rightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Consequence: connected case

If K and $K \setminus L$ are connected, then

$$\text{Iso}(C_E(K\|L)) = \{-\text{Id}, +\text{Id}\}$$
The main example

Koszmider, 2004

∃K weak Koszmider space such that K \(\setminus\) F is connected if \(|F| < \infty\).

Observation on the above construction

There is \(L \subset K\) closed nowhere dense with \(K \setminus L\) connected

\([0, 1] \subseteq C(L)\)

The best example

Consider \(X = C_\ell_2(K\|L)\). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\}\]

and \(\text{Iso}(X^*) \supset \text{Iso}(\ell_2)\).

Proof.

\(K\) weak Koszmider, \(L\) nowhere dense, \(\ell_2 \subset C(L)\) = \(\Rightarrow X\) well-defined and extremely non-complex.

\(K \setminus L\) connected = \(\Rightarrow \text{Iso}(X) = \{-\text{Id}, +\text{Id}\}\).

\(X^* = \ell_2 \oplus_1 C_0(K\|L)^*,\) so \(\text{Iso}(\ell_2) \subset \text{Iso}(X^*)\).

✓
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if |F| < \infty.
The main example

Koszmider, 2004

\[\exists \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty. \]

Observation on the above construction

There is \(\mathcal{L} \subset \mathcal{K} \) closed nowhere dense with

- \(\mathcal{K} \setminus \mathcal{L} \) connected
- \(C[0,1] \subseteq C(\mathcal{L}) \)
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if |F| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with

- \mathcal{K} \setminus \mathcal{L} connected
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = \text{C}_{\ell_2}(\mathcal{K}||\mathcal{L}) \). Then:

\[
\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)
\]
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if |F| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with
- \mathcal{K} \setminus \mathcal{L} connected
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = C_{\ell_2}(\mathcal{K}||\mathcal{L}) \). Then:

\[
\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)
\]

Proof.
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K}\setminus F is connected if |F| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with
- \mathcal{K}\setminus \mathcal{L} connected
- C[0, 1] \subseteq C(\mathcal{L})

The best example

Consider \(X = C_{\ell_2}(\mathcal{K}\|\mathcal{L}) \). Then:

\[
\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)
\]

Proof.
- \(\mathcal{K} \) weak Koszmider, \(\mathcal{L} \) nowhere dense, \(\ell_2 \subset C(\mathcal{L}) \)
 \(\implies \) \(X \) well-defined and extremely non-complex.
The main example

Koszmider, 2004

\[\exists \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty. \]

Observation on the above construction

There is \(\mathcal{L} \subset \mathcal{K} \) closed nowhere dense with
- \(\mathcal{K} \setminus \mathcal{L} \) connected
- \(C[0,1] \subseteq C(\mathcal{L}) \)

The best example

Consider \(X = C_{\ell_2}(\mathcal{K} \| \mathcal{L}) \). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2) \]

Proof.

- \(\mathcal{K} \) weak Koszmider, \(\mathcal{L} \) nowhere dense, \(\ell_2 \subset C(\mathcal{L}) \)
 \[\implies X \text{ well-defined and extremely non-complex.} \]
- \(\mathcal{K} \setminus \mathcal{L} \) connected \[\implies \text{Iso}(X) = \{-\text{Id}, +\text{Id}\}. \]
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if \left| F \right| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with

- \mathcal{K} \setminus \mathcal{L} connected
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = C_{\ell_2}(\mathcal{K}||\mathcal{L})\). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)\]

Proof.

- \(\mathcal{K}\) weak Koszmider, \(\mathcal{L}\) nowhere dense, \(\ell_2 \subset C(\mathcal{L})\)
 \(\implies\) \(X\) well-defined and extremely non-complex.
- \(\mathcal{K} \setminus \mathcal{L}\) connected \(\implies\) \(\text{Iso}(X) = \{-\text{Id}, +\text{Id}\}\).
- \(X^* = \ell_2 \oplus_1 C_{0}(\mathcal{K}||\mathcal{L})^*\), so \(\text{Iso}(\ell_2) \subset \text{Iso}(X^*)\). \(\checkmark\)
Open questions on extremely non-complex Banach spaces

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if $\| \text{Id} + T \|_2 = 1 + \| T \|_2$ for every rank-one $T \in L(Y)$?
- Is it true that $\mathcal{N}(X) = 1$?
- We actually know that $\mathcal{N}(X) \geq C > 0$.
- Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?
- If $Y \leq X$ is 1-codimensional, is Y extremely non complex?
- Is it possible that $X \simeq Z \oplus Z \oplus Z$?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex
 - Does X have the Daugavet property?
Questions

X extremely non-complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if
 \[\|\text{Id} + T^2\| = 1 + \|T^2\| \quad \text{for every rank-one } T \in L(Y) \? \]
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if

\[\|\text{Id} + T^2\| = 1 + \|T^2\| \quad \text{for every rank-one } T \in L(Y) \]?

- Is it true that \(n(X) = 1 \)?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex
- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if
 \[\|\text{Id} + T^2\| = 1 + \|T^2\| \quad \text{for every rank-one } T \in L(Y) \]
- Is it true that $n(X) = 1$?
 - We actually know that $n(X) \geq C > 0$.

Extremely non-complex
Questions

Does X have the Daugavet property?

Stronger: Does Y have the Daugavet property if

$$\|\text{Id} + T^2\| = 1 + \|T^2\|$$

for every rank-one $T \in L(Y)$?

Is it true that $n(X) = 1$?

We actually know that $n(X) \geq C > 0$.

Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if
 \[\| \text{Id} + T^2 \| = 1 + \| T^2 \| \quad \text{for every rank-one } T \in L(Y)? \]
- Is it true that $n(X) = 1$?
 - We actually know that $n(X) \geq C > 0$.
- Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?
- If $Y \leq X$ is 1-codimensional, is Y extremely non complex?
Open questions on extremely non-complex Banach spaces

<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>X extremely non complex</td>
</tr>
<tr>
<td>- Does X have the Daugavet property?</td>
</tr>
<tr>
<td>- Stronger: Does Y have the Daugavet property if $|\text{Id} + T^2| = 1 + |T^2|$ for every rank-one $T \in L(Y)$?</td>
</tr>
<tr>
<td>- Is it true that $n(X) = 1$?</td>
</tr>
<tr>
<td>- We actually know that $n(X) \geq C > 0$.</td>
</tr>
<tr>
<td>- Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?</td>
</tr>
<tr>
<td>- If $Y \leq X$ is 1-codimensional, is Y extremely non complex?</td>
</tr>
<tr>
<td>- Is it possible that $X \simeq Z \oplus Z \oplus Z$?</td>
</tr>
</tbody>
</table>
That's all Folks!
Schedule of the talk

1. Basic notation
2. Numerical range of operators
3. Two results on surjective isometries
4. Numerical index of Banach spaces
5. The alternative Daugavet property
6. Lush spaces
7. Slicely countably determined spaces
8. Remarks on the containment of c_0 and ℓ_1
9. Numerical index of L_p-spaces
10. Extremely non-complex Banach spaces