Numerical index theory

Miguel Martín
http://www.ugr.es/local/mmartins

Advanced Training School in Mathematics

Workshop on Geometry of Banach spaces and its Applications

June 2009 – Indian Statistical Institute, Bangalore (India)
Schedule of the talk

1. Basic notation
2. Numerical range of operators
3. Two results on surjective isometries
4. Numerical index of Banach spaces
5. The alternative Daugavet property
6. Lush spaces
7. Slicely countably determined spaces
8. Remarks on two recent results
9. Extremely non-complex Banach spaces
Basic notation

- K base field (\mathbb{R} or \mathbb{C}):
 - T modulus-one scalars,
 - $\text{Re} z$ real part of z ($\text{Re} z = z$ if $K = \mathbb{R}$).
- H Hilbert space: $\langle \cdot | \cdot \rangle$ denotes the inner product.
- X Banach space:
 - S_X unit sphere, B_X unit ball,
 - X^* dual space,
 - $L(X)$ bounded linear operators,
 - $W(X)$ weakly compact linear operators,
 - $\text{Iso}(X)$ surjective linear isometries,
- X Banach space, $T \in L(X)$:
 - $\text{Sp}(T)$ spectrum of T.
 - $T^* \in L(X^*)$ adjoint operator of T.

Miguel Martín (University of Granada (Spain))
Numerical index theory
Bangalore, June 2009
Basic notation

X Banach space, $B \subset X$, C convex subset of X:

- B is *rounded* if $TB = B$,
- $\text{co}(B)$ convex hull of B,
- $\text{co}(B)$ closed convex hull of B,
- $\text{aconv}(B) = \text{co}(T B)$ absolutely convex hull of B,
- $\text{ext}(C)$ extreme points of C,
- *slice* of C:

$$S(C, x^*, \alpha) = \{ x \in C : \text{Re} x^*(x) > \sup \text{Re} x^*(C) - \alpha \}$$

where $x^* \in X^*$ and $0 < \alpha < \sup \text{Re} x^*(C)$.
Numerical range of operators

- Definitions and first properties
- The exponential function
- Numerical ranges and isometries

F. F. Bonsall and J. Duncan

numerical ranges. Vol I and II.

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

- A $n \times n$ real or complex matrix

 $$W(A) = \{ (Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1 \}.$$

- H real or complex Hilbert space, $T \in L(H)$,

 $$W(T) = \{ (Tx \mid x) : x \in H, \|x\| = 1 \}.$$
Hilbert space numerical range (Toeplitz, 1918)

- A $n \times n$ real or complex matrix

 $$W(A) = \{(Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1\}.$$

- H real or complex Hilbert space, $T \in L(H)$,

 $$W(T) = \{(Tx \mid x) : x \in H, \|x\| = 1\}.$$

Remark

- Given $T \in L(H)$ we associate
 - a sesquilinear form $\varphi_T(x, y) = (Tx \mid y)$ ($x, y \in H$),
 - a quadratic form $\widehat{\varphi}_T(x) = \varphi_T(x, x) = (Tx \mid x)$ ($x \in H$).

- Then, $W(T) = \widehat{\varphi}_T(S_H)$.

Remark
Numerical range of operators
Definitions and first properties

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

- A $n \times n$ real or complex matrix
 \[W(A) = \{(Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1\}. \]

- H real or complex Hilbert space, $T \in L(H)$,
 \[W(T) = \{(Tx \mid x) : x \in H, \|x\| = 1\}. \]

Remark

- Given $T \in L(H)$ we associate
 - a sesquilinear form \(\varphi_T(x, y) = (Tx \mid y) \) \((x, y \in H) \),
 - a quadratic form \(\widehat{\varphi}_T(x) = \varphi_T(x, x) = (Tx \mid x) \) \((x \in H) \).

- Then, \(W(T) = \widehat{\varphi}_T(S_H) \). Therefore:
 - \(\widehat{\varphi}_T(B_H) = [0, 1]W(T) \),
 - \(\widehat{\varphi}_T(H) = \mathbb{R}^+W(T) \).
 - But we cannot get $W(T)$ from $\widehat{\varphi}_T(B_H)$!

Some properties

Hilbert space, $T \in L(H)$:

- $(\text{Toeplitz-Hausdorff})$ $W(T)$ is convex.

- For $T, S \in L(H)$, $\alpha, \beta \in K$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.

- $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.

- $\text{Sp}(T) \subseteq W(T)$.

- If T is normal, then $W(T) = \text{co} \text{Sp}(T)$.

- In the real case ($\dim(H) > 1$), there is $T \in L(H)$, $T \neq 0$ with $W(T) = \{0\}$.

- In the complex case, $\sup \{|(Tx)| : x \in \mathcal{S}H\} \geq \frac{1}{2} \|T\|$. If T is actually self-adjoint, then $\sup \{|(Tx)| : x \in \mathcal{S}H\} = \|T\|$.
Some properties

H Hilbert space, **T** ∈ **L**(H):

- **(Toeplitz-Hausdorff)** *W*(**T**) is convex.
Some properties

H Hilbert space, \(T \in L(H) \):

- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):

 \[W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \]

 \[W(\alpha \text{Id} + S) = \alpha + W(S) \]

 \[W(U^*TU) = W(T) \] for every \(T \in L(H) \) and every unitary \(U \).

\[\text{Sp}(T) \subseteq W(T) \]

If \(T \) is normal, then \(W(T) = \text{co Sp}(T) \).

In the real case (\(\dim(H) > 1 \)), there is \(T \in L(H), T \neq 0 \) with \(W(T) = \{0\} \).

In the complex case, \(\sup \{ |(Tx|_x) : x \in \mathbb{S}_H \} \geq \frac{1}{2} \|T\| \).

If \(T \) is actually self-adjoint, then \(\sup \{ |(Tx|_x) : x \in \mathbb{S}_H \} = \|T\| \).

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.

$T, S \in L(H), \alpha, \beta \in \mathbb{K}$:

- $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.

$T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:

- $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
- $W(\alpha \text{Id} + S) = \alpha + W(S)$.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
- $W(U^* TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
- $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
- $\text{Sp}(T) \subseteq \overline{W(T)}$.

Some properties

H Hilbert space, $T \in L(H)$:
- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
- $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
- $\text{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)} = \overline{\text{co Sp}(T)}$.
Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S)$;
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
- $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
- $\text{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)} = \overline{\text{coSp}(T)}$.
- In the real case ($\dim(H) > 1$), there is $T \in L(H)$, $T \neq 0$ with $W(T) = \{0\}$.
Some properties

H Hilbert space, \(T \in L(H) \):

- (Toeplitz-Hausdorff) \(W(T) \) is convex.
- \(T, S \in L(H), \alpha, \beta \in \mathbb{K} \):
 - \(W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S) \);
 - \(W(\alpha \text{Id} + S) = \alpha + W(S) \).

- \(W(U^*TU) = W(T) \) for every \(T \in L(H) \) and every \(U \) unitary.
- \(\text{Sp}(T) \subseteq \overline{W(T)} \).
- If \(T \) is normal, then \(\overline{W(T)} = \overline{\text{co} \text{Sp}(T)} \).
- In the real case (\(\dim(H) > 1 \)), there is \(T \in L(H), T \neq 0 \) with \(W(T) = \{0\} \).
- **In the complex case,**

\[
\sup\{ \| (Tx \mid x) \mid : x \in S_H \} \geq \frac{1}{2} \|T\|.
\]

If \(T \) is actually self-adjoint, then

\[
\sup\{ \| (Tx \mid x) \mid : x \in S_H \} = \|T\|.
\]
H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{(Tx \mid x) : x \in S_H\} \geq \frac{1}{2} \|T\|.$$
Proving a result

\(H \) complex Hilbert space, \(T \in L(H) \), then

\[
M := \sup \{|(Tx \mid x)| : x \in S_H \} \geq \frac{1}{2} \|T\|.
\]

For \(x, y \in S_H \) fixed, use the polarization formula:

\[
(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y) \right. \\
\left. + \ i \ (T(x + iy) \mid x + iy) - i \ (T(x - iy) \mid x - iy) \right].
\]
Proving a result

Let H be a complex Hilbert space, $T \in L(H)$, then

$$M := \sup \{ |(Tx \mid x)| : x \in S_H \} \geq \frac{1}{2} \|T\|.$$

- For $x, y \in S_H$ fixed, use the polarization formula:

$$|(Tx \mid y)| \leq \frac{1}{4} M \left[\|x + y\|^2 + \|x - y\|^2 + \|x + iy\|^2 + \|x - iy\|^2 \right].$$
H complex Hilbert space, $T \in L(H)$, then

\[
M := \sup \{ |(Tx \mid x)| : x \in S_H \} \geq \frac{1}{2} \|T\|.
\]

- For $x, y \in S_H$ fixed, use the polarization formula:

\[
(Tx \mid y) = \frac{1}{4} \left[(T(x + y) \mid x + y) - (T(x - y) \mid x - y) \\
+ i (T(x + iy) \mid x + iy) - i (T(x - iy) \mid x - iy) \right].
\]

- $| (Tx \mid y) | \leq \frac{1}{4} M [\|x + y\|^2 + \|x - y\|^2 + \|x + iy\|^2 + \|x - iy\|^2]$.

- By the parallelogram’s law:

\[
| (Tx \mid y) | \leq \frac{1}{4} M [2\|x\|^2 + 2\|y\|^2 + 2\|x\|^2 + 2\|iy\|^2] = 2M.
\]
Proving a result

Let H be a complex Hilbert space, $T \in L(H)$, then

$$M := \sup \{ |(Tx \mid x)| : x \in S_H \} \geq \frac{1}{2} \|T\|.$$

- For $x, y \in S_H$ fixed, use the polarization formula:

$$|(Tx \mid y)| \leq \frac{1}{4} M \left[\|x + y\|^2 + \|x - y\|^2 + \|x + iy\|^2 + \|x - iy\|^2 \right].$$

- By the parallelogram's law:

$$|(Tx \mid y)| \leq \frac{1}{4} M \left[2\|x\|^2 + 2\|y\|^2 + 2\|x\|^2 + 2\|iy\|^2 \right] = 2M.$$

- We just take supremum on $x, y \in S_H$.

Miguel Martín (University of Granada (Spain))

Numerical index theory

Bangalore, June 2009

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator, etc.

Example

Consider

\[A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix} \] and

\[B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix} \].

\[\text{Sp}(A) = \{0\}, \quad \text{Sp}(B) = \{0\}. \]

\[\text{Sp}(A + B) = \{\pm \sqrt{M \varepsilon}\} \subseteq W(A + B) \subseteq W(A) + W(B), \]

so the spectral radius of \(A + B \) is bounded above by \(\frac{1}{2} (|M| + |\varepsilon|) \).

Some reasons to study numerical ranges

It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.

It is a comfortable way to study the spectrum.

It is useful to estimate spectral radii of small perturbations of matrices.

It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator, ...
Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.

Example

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

$\text{Sp}(A) = \{0\}$, $\text{Sp}(B) = \{0\}$.

$\text{Sp}(A+B) \subseteq \text{W}(A+B) \subseteq \text{W}(A) + \text{W}(B)$,

so the spectral radius of $A+B$ is bounded above by $\frac{1}{2}(|M|+|\varepsilon|)$.

Numerical range of operators Definitions and first properties

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.

Example

Consider $A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

- $\text{Sp}(A) = \{0\}$, $\text{Sp}(B) = \{0\}$.
- $\text{Sp}(A + B) = \{\pm \sqrt{M\varepsilon}\} \subseteq W(A + B) \subseteq W(A) + W(B)$, so the spectral radius of $A + B$ is bounded above by $\frac{1}{2}(|M| + |\varepsilon|)$.

Some reasons to study numerical ranges

- It gives a “picture” of the matrix/operator which allows to “see” many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator...
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1 \}$$
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1\}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
Numerical range of operators
Definitions and first properties

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space and $T \in L(X)$.

Then the numerical range $V(T)$ is defined as:

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1\}$$

Some properties

Let X be a Banach space and $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + S) = \alpha + V(S)$.
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + S) = \alpha + V(S)$.
- $\text{Sp}(T) \subseteq \overline{V(T)}$.
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, \ x \in S_X, \ x^*(x) = 1\}$$

Some properties

Let X be a Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \ \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + S) = \alpha + V(S)$.
- $\text{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger–Crabb) Actually, $\overline{\text{co}(\text{Sp}(T))} \subseteq \overline{V(T)}$.

Numerical range of operators Definitions and first properties
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]
\[V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\} \]

Some properties

\[X \text{ Banach space, } T \in L(X). \]

- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \alpha, \beta \in \mathbb{K} : \)
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S); \)
 - \(V(\alpha \text{Id} + S) = \alpha + V(S). \)

- \(\text{Sp}(T) \subseteq \overline{V(T)}. \)

- (Zenger–Crabb) Actually, \(\overline{\text{co}}(\text{Sp}(T)) \subseteq \overline{V(T)}. \)

- \(\overline{\text{co}}\text{Sp}(T) = \bigcap\{V_p(T) : p \text{ equivalent norm}\} \) where \(V_p(T) \) is the numerical range of \(T \) in the Banach space \((X,p) \).
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

\[X \text{ Banach space, } T \in L(X), \]

\[V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Some properties

\[X \text{ Banach space, } T \in L(X). \]

- \(V(T) \) is connected but not necessarily convex.
- \(T, S \in L(X), \alpha, \beta \in \mathbb{K} : \)
 - \(V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S); \)
 - \(V(\alpha \text{Id} + S) = \alpha + V(S). \)
- \(\text{Sp}(T) \subseteq \overline{V(T)}. \)
- (Zenger–Crabb) Actually, \(\overline{\text{co}(\text{Sp}(T))} \subseteq \overline{V(T)}. \)
- \(\overline{\text{coSp}}(T) = \bigcap \{ V_p(T) : p \text{ equivalent norm} \} \)
 where \(V_p(T) \) is the numerical range of \(T \) in the Banach space \((X, p) \).
- \(V(U^{-1}TU) = V(T) \) for every \(T \in L(X) \) and every \(U \in \text{Iso}(X). \)
Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

Let X be a Banach space, $T \in L(X)$, then

$$V(T) = \{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Some properties

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S)$;
 - $V(\alpha \text{Id} + S) = \alpha + V(S)$.
- $\text{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger–Crabb) Actually, $\overline{\text{co}(\text{Sp}(T))} \subseteq \overline{V(T)}$.
- $\overline{\text{co} \text{Sp}(T)} = \bigcap \{ V_p(T) : p \text{ equivalent norm} \}$
 where $V_p(T)$ is the numerical range of T in the Banach space (X, p).
- $V(U^{-1}TU) = V(T)$ for every $T \in L(X)$ and every $U \in \text{Iso}(X)$.
- $V(T) \subseteq V(T^*) \subseteq \overline{V(T)}$.
Observation

The numerical range depends on the base field:

- X complex Banach space $\Rightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in \mathcal{L}(X) = \Rightarrow T_{\mathbb{R}} \in \mathcal{L}(X_{\mathbb{R}})$ is T view as a real operator.

Then $V(T_{\mathbb{R}}) = \text{Re} V(T)$.

Consequence:

- X complex, then there is $S \in \mathcal{L}(X_{\mathbb{R}})$ with $\|S\| = 1$ and $V(S) = \{0\}$.

Some motivation for the numerical range

It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators. . .

It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $\mathcal{B}\mathcal{L}(X)$ (MLUR point).
Observation

The numerical range depends on the base field:

- \(X \) complex Banach space \(\implies X_\mathbb{R} \) real space underlying \(X \).
Observation

The numerical range depends on the base field:

- X complex Banach space $\Rightarrow X_R$ real space underlying X.
- $T \in L(X) \Rightarrow T_R \in L(X_R)$ is T view as a real operator.

Some motivation for the numerical range

It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators.

It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $B_L(X_R)$ (MLUR point).
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \text{Re} V(T)$.
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \text{Re} V(T)$.

- Consequence:
 X complex, then there is $S \in L(X_{\mathbb{R}})$ with $\|S\| = 1$ and $V(S) = \{0\}$.
Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.

Consequence:
X complex, then there is $S \in L(X_\mathbb{R})$ with $\|S\| = 1$ and $V(S) = \{0\}$.

Some motivation for the numerical range

It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...

It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

It gives an easy and quantitative proof of the fact that Id is a strongly extreme point of $B(L(X))$ (MLUR point).
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.

Consequence:

X complex, then there is $S \in L(X_\mathbb{R})$ with $\|S\| = 1$ and $V(S) = \{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.

Consequence:

X complex, then there is $S \in L(X_\mathbb{R})$ with $\|S\| = 1$ and $V(S) = \{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
Observation

The numerical range depends on the base field:

- X complex Banach space $\implies X_\mathbb{R}$ real space underlying X.
- $T \in L(X) \implies T_\mathbb{R} \in L(X_\mathbb{R})$ is T view as a real operator.
- Then $V(T_\mathbb{R}) = \text{Re} V(T)$.

Consequence:

- X complex, then there is $S \in L(X_\mathbb{R})$ with $\|S\| = 1$ and $V(S) = \{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
- It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $B_{L(X)}$ (MLUR point).
Numerical radius: definition and properties
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$,

\[
v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}
\]

\[
= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}
\]
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$,

\[v(T) = \sup \{ |\lambda| : \lambda \in V(T) \} \]
\[= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Elementary properties

Let X be a Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
Numerical radius: definition and properties

Numerical radius

\[X \text{ real or complex Banach space, } T \in L(X), \]
\[v(T) = \sup \{ |\lambda| : \lambda \in V(T) \} \]
\[= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \} \]

Elementary properties

\[X \text{ Banach space, } T \in L(X) \]
- \(v(\cdot) \) is a seminorm, i.e.
 - \(v(T + S) \leq v(T) + v(S) \) for every \(T, S \in L(X) \).
 - \(v(\lambda T) = |\lambda|v(T) \) for every \(\lambda \in \mathbb{K}, T \in L(X) \).
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$, then

$$v(T) = \sup \{|\lambda| : \lambda \in V(T)\}$$

$$= \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Elementary properties

Let X be a Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda|v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.

- $\sup |\text{Sp}(T)| \leq v(T)$.
Numerical radius: definition and properties

Numerical radius

Let X be a real or complex Banach space, $T \in L(X)$, then the numerical radius of T is defined as

$$v(T) = \sup \{|\lambda| : \lambda \in V(T)\}$$

and

$$v(T) = \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Elementary properties

Let X be a Banach space, $T \in L(X)$, then

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T + S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.
 - $\sup |\text{Sp}(T)| \leq v(T)$.
 - $v(U^{-1}TU) = v(T)$ for every $U \in \text{Iso}(X)$.
Numerical radius: definition and properties

Numerical radius

In a real or complex Banach space X, let $T \in \mathcal{L}(X)$.

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

$$= \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Elementary properties

In a Banach space X, let $T \in \mathcal{L}(X)$.

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T+S) \leq v(T) + v(S)$ for every $T, S \in \mathcal{L}(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in \mathcal{L}(X)$.
- $\sup |\text{Sp}(T)| \leq v(T)$.
- $v(U^{-1}TU) = v(T)$ for every $U \in \text{Iso}(X)$.
- $v(T^*) = v(T)$.
Numerical radius: examples
Numerical range of operators Definitions and first properties

Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$ implies that there exists $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. $X = L^1(\mu) \Rightarrow v(T) = \|T\|$ for every $T \in L(X)$.

3. $X^* \equiv L^1(\mu) \Rightarrow v(T) = \|T\|$ for every $T \in L(X)$.

In particular, this is the case for $X = C(K)$.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 13 / 136
Some examples

1. H real Hilbert space $\dim(H) > 1$ implies there exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2} \|T\|$,
Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \[\implies \exists T \in L(X) \text{ with } v(T) = 0 \text{ and } \|T\| = 1. \]

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2}\|T\|$,
 - the constant $\frac{1}{2}$ is optimal.
Numerical radius: examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | H real Hilbert space $\dim(H) > 1$
\implies exist $T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$. |
| 2 | H complex Hilbert space $\dim(H) > 1$
- $v(T) \geq \frac{1}{2}\|T\|$,
- the constant $\frac{1}{2}$ is optimal. |
| 3 | $X = L_1(\mu) \implies v(T) = \|T\|$ for every $T \in L(X)$. |
Some examples

1. H real Hilbert space $\dim(H) > 1$ implies $\exists T \in L(X)$ with $v(T) = 0$ and $\|T\| = 1$.

2. H complex Hilbert space $\dim(H) > 1$
 - $v(T) \geq \frac{1}{2}\|T\|$,
 - the constant $\frac{1}{2}$ is optimal.

3. $X = L_1(\mu) \Rightarrow v(T) = \|T\|$ for every $T \in L(X)$.

4. $X^* \equiv L_1(\mu) \Rightarrow v(T) = \|T\|$ for every $T \in L(X)$.
Numerical radius: examples

Some examples

1. H real Hilbert space $\dim(H) > 1$
 \[\Rightarrow \text{ exist } T \in L(X) \text{ with } v(T) = 0 \text{ and } \|T\| = 1. \]

2. H complex Hilbert space $\dim(H) > 1$
 \[v(T) \geq \frac{1}{2}\|T\|, \]
 \[\text{the constant } \frac{1}{2} \text{ is optimal.} \]

3. $X = L_1(\mu) \Rightarrow v(T) = \|T\| \text{ for every } T \in L(X).$

4. $X^* \equiv L_1(\mu) \Rightarrow v(T) = \|T\| \text{ for every } T \in L(X).$

5. In particular, this is the case for $X = C(K).$
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]
Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|Tf_0(\xi_0)| \sim \|T\|$.

$X = C(K) \implies v(T) = \|T\|$ for every $T \in L(X)$.

If $f_0(\xi_0) \sim 1$, then we were done. This is our goal. Consider the non-empty open set $V = \{\xi \in \mathbb{R} : f_0(\xi) \sim f_0(\xi_0)\}$ and find $\varphi : [0,1] \times [0,1] \to [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

Write $f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 - \varphi) f_0 + \varphi \omega_i$ for $i = 1, 2$.

Then, $f_i \in C(K)$, $\|f_i\| \leq 1$, and $\|f_0 - (\lambda f_1 + (1 - \lambda) f_2)\| \sim 0$. Therefore, there is $i \in \{1, 2\}$ such that $|f_i(\xi_0)| \sim \|T\|$, but now $|f_i(\xi_0)| = 1$.

Equivalently, $|\delta \xi_0(T(f_i))| \sim \|T\|$ and $|\delta \xi_0(f_i)| = 1$, meaning that $v(T) \sim \|T\|$.
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|Tf_0(\xi_0)| \sim \|T\| \).

If \(f_0(\xi_0) \sim 1 \), then we were done. This our goal.
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in [0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : [0,1] \times [0,1] \rightarrow [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).
Proving a result

\[X = C(K) \implies \nu(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|T f_0(\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in [0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : [0,1] \times [0,1] \longrightarrow [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1-\lambda)\omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1-\varphi)f_0 + \varphi \omega_i \text{ for } i = 1,2. \]
Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|Tf_0(\xi_0)| \sim \|T\|$.

Consider the non-empty open set

$$V = \{ \xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \}$$

and find $\varphi : [0,1] \times [0,1] \rightarrow [0,1]$ continuous with $\text{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

Write $f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions

$$f_i = (1 - \varphi) f_0 + \varphi \omega_i \text{ for } i = 1,2.$$

Then, $f_i \in C(K)$, $\|f_i\| \leq 1$, and

$$\|f_0 - (\lambda f_1 + (1 - \lambda) f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0.$$
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|Tf_0(\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in [0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : [0,1] \times [0,1] \rightarrow [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1 \), and
 \[\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|[T(f_i)](\xi_0)| \sim \|T\| \), but now \(|f_i(\xi_0)| = 1 \).
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|[Tf_0](\xi_0)| \sim \|T\| \).

- Consider the non-empty open set
 \[V = \{ \xi \in [0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \} \]
 and find \(\varphi : [0,1] \times [0,1] \to [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \), and consider the functions
 \[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1 \), and
 \[\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|[T(f_i)](\xi_0)| \sim \|T\| \), but now \(|f_i(\xi_0)| = 1 \).

- Equivalently,
 \[|\delta_{\xi_0}(T(f_i))| \sim \|T\| \quad \text{and} \quad |\delta_{\xi_0}(f_i)| = 1, \]
 meaning that \(v(T) \sim \|T\|. \)\(\checkmark \)
Proving a result

\[X = C(K) \implies v(T) = \|T\| \text{ for every } T \in L(X). \]

- Fix \(T \in L(C(K)) \). Find \(f_0 \in X(E) \) and \(\xi_0 \in K \) such that \(|Tf_0(\xi_0)| \sim \|T\| \).

- Consider the non-empty open set

\[V = \{ \xi \in [0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0) \} \]

and find \(\varphi : [0,1] \times [0,1] \longrightarrow [0,1] \) continuous with \(\text{supp}(\varphi) \subset V \) and \(\varphi(\xi_0) = 1 \).

- Write \(f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda) \omega_2 \) with \(|\omega_i| = 1 \), and consider the functions

\[f_i = (1 - \varphi)f_0 + \varphi \omega_i \text{ for } i = 1, 2. \]

- Then, \(f_i \in C(K), \|f_i\| \leq 1 \), and

\[\|f_0 - (\lambda f_1 + (1 - \lambda)f_2)\| = \|\varphi f_0 - \varphi f_0(\xi_0)\| \sim 0. \]

- Therefore, there is \(i \in \{1, 2\} \) such that \(|T(f_i)(\xi_0)| \sim \|T\| \), but now \(|f_i(\xi_0)| = 1 \).

- Equivalently,

\[|\delta_{\xi_0}(T(f_i))| \sim \|T\| \quad \text{and} \quad |\delta_{\xi_0}(f_i)| = 1, \]

meaning that \(v(T) \sim \|T\|. \)

If \(X = L_1(\mu) \), then \(X^* \equiv C(K_\mu) \). Therefore, \(v(T) = v(T^*) = \|T^*\| = \|T\|. \)
Numerical radius: real and complex spaces

Example

X complex Banach space, define $T \in L(X) \mapsto \mathbb{R}$ by $T(x) = ix$ ($x \in X$).

$\|T\| = 1$ and $v(T) = 0$ if viewed in $X \mathbb{R}$.

$\|T\| = 1$ and $V(T) = \{i\}$, so $v(T) = 1$ if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)

X complex Banach space, $T \in L(X)$:

$v(T) \geq 1 e^{\|T\|}$.

The constant $1 e^{\|T\|}$ is optimal: $\exists X$ two-dimensional complex, $\exists T \in L(X)$ with $\|T\| = e$ and $v(T) = 1$.
Example

X complex Banach space, define $T \in L(X_{\mathbb{R}})$ by

$$T(x) = i\, x \quad (x \in X).$$

- $\|T\| = 1$ and $v(T) = 0$ if viewed in $X_{\mathbb{R}}$.
- $\|T\| = 1$ and $V(T) = \{i\}$, so $v(T) = 1$ if viewed in (complex) X.
Example

X complex Banach space, define $T \in L(X_{\mathbb{R}})$ by

$$T(x) = ix \quad (x \in X).$$

- $\|T\| = 1$ and $v(T) = 0$ if viewed in $X_{\mathbb{R}}$.
- $\|T\| = 1$ and $V(T) = \{i\}$, so $v(T) = 1$ if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)

X complex Banach space, $T \in L(X)$:

$$v(T) \geq \frac{1}{e} \|T\|.$$

The constant $\frac{1}{e}$ is optimal:

$\exists X$ two-dimensional complex, $\exists T \in L(X)$ with $\|T\| = e$ and $v(T) = 1$.

Numerical radius: real and complex spaces
Numerical index: definition and properties

Numerical index

\[n(X) = \max \left\{ k \geq 0 : \|K\|T\| \leq v(T) \quad \forall T \in L(X) \right\} = \inf \left\{ v(T) : T \in L(X), \|T\| = 1 \right\}. \]

Elementary properties

- In the real case, \(0 \leq n(X) \leq 1 \).
- In the complex case, \(\frac{1}{e} \leq n(X) \leq 1 \).
- Actually, the above inequalities are best possible:
 \[\left\{ n(X) : X \text{ complex Banach space} \right\} = \left[e^{-1}, 1 \right], \left\{ n(X) : X \text{ real Banach space} \right\} = \left[0, 1 \right]. \]

\(v \) norm on \(L(X) \) equivalent to the given norm \(\iff \) \(n(X) > 0 \).

\(v(T) = \|T\| \) for every \(T \in L(X) \) \(\iff \) \(n(X) = 1 \).

\(n(X^*) \leq n(X) \).
Numerical index: definition and properties

Numerical index

\(X \) real or complex Banach space

\[
 n(X) = \max\{k \geq 0 : K \|T\| \leq \nu(T) \ \forall T \in L(X)\}
 = \inf \{\nu(T) : T \in L(X), \|T\| = 1\}.
\]
Numerical index: definition and properties

Numerical index

X real or complex Banach space

\[
n(X) = \max \{ k \geq 0 : K \| T \| \leq v(T) \ \forall T \in L(X) \} \\
= \inf \{ v(T) : T \in L(X), \| T \| = 1 \}.
\]

Elementary properties

X Banach space.

- In the real case, \(0 \leq n(X) \leq 1\).
- In the complex case, \(1/e \leq n(X) \leq 1\).
Numerical index: definition and properties

Numerical index

\[X \text{ real or complex Banach space} \]

\[n(X) = \max \{ k \geq 0 : K \|T\| \leq v(T) \ \forall T \in L(X) \} \]
\[= \inf \{ v(T) : T \in L(X), \|T\| = 1 \}. \]

Elementary properties

\[X \text{ Banach space.} \]

- In the real case, \(0 \leq n(X) \leq 1 \).
- In the complex case, \(1/e \leq n(X) \leq 1 \).
- Actually, the above inequalities are best possible:

\[\{ n(X) : X \text{ complex Banach space} \} = [e^{-1}, 1], \]
\[\{ n(X) : X \text{ real Banach space} \} = [0, 1]. \]
Numerical index: definition and properties

Numerical index

Given a real or complex Banach space X, the numerical index $n(X)$ is defined as:

$$n(X) = \max \{ k \geq 0 : K \|T\| \leq \nu(T) \quad \forall T \in L(X) \}$$

where K is a constant, $\|T\|$ is the norm of T, and $\nu(T)$ is an additional norm on $L(X)$.

This definition can be equivalently written as:

$$n(X) = \inf \{ \nu(T) : T \in L(X), \|T\| = 1 \}.$$

Elementary properties

For X a Banach space:

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $\{ n(X) : X \text{ complex Banach space} \} = [e^{-1}, 1]$,

 $\{ n(X) : X \text{ real Banach space} \} = [0, 1]$.

- ν norm on $L(X)$ equivalent to the given norm $\iff n(X) > 0$.
Numerical index: definition and properties

Numerical index

Let X be a real or complex Banach space.

$$n(X) = \max\{k \geq 0 : K \|T\| \leq \nu(T) \quad \forall T \in L(X)\}$$

$$= \inf \{\nu(T) : T \in L(X), \|T\| = 1\}.$$

Elementary properties

Let X be a Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $$\{n(X) : X \text{ complex Banach space}\} = [e^{-1}, 1],$$
 $$\{n(X) : X \text{ real Banach space}\} = [0, 1].$$

- ν norm on $L(X)$ equivalent to the given norm $\iff n(X) > 0$.
- $\nu(T) = \|T\|$ for every $T \in L(X) \iff n(X) = 1$.
Numerical index:

X real or complex Banach space

\[
n(X) = \max\{k \geq 0 : K \|T\| \leq v(T) \quad \forall T \in L(X)\} = \inf \{v(T) : T \in L(X), \|T\| = 1\}.
\]

Elementary properties

- \(X\) Banach space.
 - In the real case, \(0 \leq n(X) \leq 1\).
 - In the complex case, \(1/e \leq n(X) \leq 1\).
 - Actually, the above inequalities are best possible:
 \[
 \{n(X) : X \text{ complex Banach space}\} = [e^{-1}, 1],
 \{n(X) : X \text{ real Banach space}\} = [0, 1].
 \]
 - \(v\) norm on \(L(X)\) equivalent to the given norm \(\iff n(X) > 0\).
 - \(v(T) = \|T\|\) for every \(T \in L(X)\) \(\iff n(X) = 1\).
 - \(n(X^*) \leq n(X)\).
Numerical range of operators
Definitions and first properties

Numerical index: examples

Some examples

1. Hilbert, \(\dim(H) > 1\):
 - \(n(H) = \begin{cases} 0 & \text{real case,} \\ 1 & \text{complex case.} \end{cases}\)

2. Complex space \(X\):
 - \(n(X_R) = 0\).

3. \(n(L_1(\mu)) = 1\), \(\mu\) positive measure.

4. \(X^* \equiv L_1(\mu) \Rightarrow n(X) = 1\).

5. In particular,
 - \(n(C(K)) = 1\),
 - \(n(C_0(L)) = 1\),
 - \(n(L_\infty(\mu)) = 1\).

6. \(n(A(D)) = 1\) and \(n(H_\infty) = 1\).
Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases}
0 & \text{real case,} \\
\frac{1}{2} & \text{complex case.}
\end{cases}$$
Some examples

1. **H Hilbert, $\dim(H) > 1$:**

 $$n(H) = \begin{cases}
 0 & \text{real case,} \\
 \frac{1}{2} & \text{complex case.}
 \end{cases}$$

2. **X complex space $\implies n(X_\mathbb{R}) = 0$.**
Some examples

1. H Hilbert, $\dim(H) > 1$:

 $$n(H) = \begin{cases}
 0 & \text{real case,} \\
 \frac{1}{2} & \text{complex case.}
 \end{cases}$$

2. X complex space $\Rightarrow n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.
Numerical index: examples

Some examples

1. H Hilbert, $\dim(H) > 1$:

 $n(H) = \begin{cases} 0 & \text{real case,} \\ \frac{1}{2} & \text{complex case.} \end{cases}$

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.
Numerical index: examples

Some examples

1. H Hilbert, $\dim(H) > 1$:
 \[
 n(H) = \begin{cases}
 0 & \text{real case,} \\
 \frac{1}{2} & \text{complex case.}
 \end{cases}
 \]

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.

5. In particular,
 \[
 n(C(K)) = 1, \quad n(C_0(L)) = 1, \quad n(L_\infty(\mu)) = 1.
 \]
Some examples

1. H Hilbert, $\dim(H) > 1$:

$$n(H) = \begin{cases} 0 & \text{real case,} \\ \frac{1}{2} & \text{complex case.} \end{cases}$$

2. X complex space $\implies n(X_{\mathbb{R}}) = 0$.

3. $n(L_1(\mu)) = 1$, μ positive measure.

4. $X^* \equiv L_1(\mu) \implies n(X) = 1$.

5. In particular,

$$n(C(K)) = 1, \quad n(C_0(L)) = 1, \quad n(L_\infty(\mu)) = 1.$$

6. $n(A(\mathbb{D})) = 1$ and $n(H^\infty) = 1$.

The exponential function. Definition

\begin{equation}
\exp(T) = \sum_{n=0}^{\infty} \frac{T^n}{n!}
\end{equation}

where

\begin{align*}
T_0 &= \text{Id} \\
T_n &= T \circ \cdots \circ T
\end{align*}

It is well-defined since the series is absolutely convergent.

\[\|\exp(T)\| \leq e \|T\| \]

We will improve this inequality in the sequel.
The exponential function.

Definition

For a Banach space X and $T \in \mathcal{L}(X)$, the exponential function is defined as

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where $T^0 = \text{Id}$ and $T^n = T \circ \cdots \circ T$. It is well-defined since the series is absolutely convergent.

$$\|\exp(T)\| \leq e \|T\|.$$
The exponential function

Let X be a Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where $T^0 = \text{Id}$ and $T^n = T \circ \cdots \circ T$.

- It is well-defined since the series is absolutely convergent.
The exponential function. Definition

The exponential function

Let X be a Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where $T^0 = \text{Id}$ and $T^n = T \circ \cdots \circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp(T)\| \leq e^{\|T\|}$.
The exponential function

Definition

Let X be a Banach space and $T \in L(X)$. The exponential function $\exp(T)$ is defined as

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where $T^0 = \text{Id}$ and $T^n = T \circ \cdots \circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp(T)\| \leq e^\|T\|$.
- We will improve this inequality in the sequel.
The exponential function: properties

Let X be a Banach space, $T, S \in \mathcal{L}(X)$. Then

\[TS = ST \Rightarrow \exp(T + S) = \exp(T) \exp(S) \]

\[\exp(T) \exp(-T) = \exp(0) = \text{Id} \Rightarrow \exp(T) \text{ is surjective isomorphism.} \]

The exponential formula

Let X be a Banach space, $T \in \mathcal{L}(X)$:

\[\sup \text{Re} V(T) = \sup \alpha > 0 \log \| \exp(\alpha T) \|_{\alpha} = \lim_{\alpha \to 0} \alpha \log \| \exp(\alpha T) \|_{\alpha}. \]

Consequence

Let X be a Banach space, $T \in \mathcal{L}(X)$:

\[\| \exp(\lambda T) \| \leq e |\lambda| v(T) (\lambda \in K) \]

$v(T)$ is the best possible constant.
Properties

\(X \) Banach space, \(T, S \in L(X) \).

- \(TS = ST \implies \exp(T + S) = \exp(T) \exp(S) \).
The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}^+_0\}$ exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$
\sup \Re V(T) = \sup_{\alpha > 0} \log \| \exp(\alpha T) \| \alpha = \lim_{\alpha \downarrow 0} \log \| \exp(\alpha T) \| \\
\|
\| \exp(\lambda T) \| \leq e|\lambda| v(T) \quad (\lambda \in \mathbb{K})
\|

$v(T)$ is the best possible constant.
The exponential function: properties

Properties

X Banach space, \(T, S \in L(X) \).
- \(TS = ST \implies \exp(T + S) = \exp(T) \exp(S) \).
- \(\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T) \text{ surjective isomorphism} \).
- \(\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \) exponential one-parameter semigroup generated by \(T \).

The exponential formula

X Banach space, \(T \in L(X) \):

\[
\sup \Re V(T) = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha T) \|}{\alpha} = \lim_{\alpha \downarrow 0} \frac{\log \| \exp(\alpha T) \|}{\alpha}.
\]
The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho\ T) : \rho \in \mathbb{R}_0^+\}$ exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$\sup \text{Re} \ V(T) = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha\ T) \|}{\alpha} = \lim_{\alpha \downarrow 0} \frac{\log \| \exp(\alpha\ T) \|}{\alpha}.$$

Consequence

X Banach space, $T \in L(X)$:

- $\|\exp(\lambda\ T)\| \leq e^{\|\lambda\|\ v(T)}$ ($\lambda \in \mathbb{K}$).
- $v(T)$ is the best possible constant.
A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).

- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \text{Id}$).
A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).
- $\operatorname{Re}(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^* B = BB^* = \operatorname{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:

- $\operatorname{Re} W(T) = \{0\}$.
- $\exp(\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.
Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).
- $\Re(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \text{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:

- $\Re W(T) = \{0\}$.
- $\exp(\rho T) \in \text{Iso}(H)$ for every $\rho \in \mathbb{R}$.

For general Banach spaces

X Banach space, $T \in L(X)$. TFAE:

- $\Re V(T) = \{0\}$.
- $\exp(\rho T) \in \text{Iso}(X)$ for every $\rho \in \mathbb{R}$.
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re } V(T) = \{0\}$ (\textit{T} is \textbf{skew-hermitian}).
- $\|\exp(\rho T)\| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\|\text{Id} + \rho T\| - 1}{\rho} = 0$.
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re} V(T) = \{0\}$ (i.e., T is skew-hermitian).
- $\| \exp(\rho T) \| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\| \text{Id} + \rho T \| - 1}{\rho} = 0$.

This follows from the exponential formula

$$\sup \text{Re} V(T) = \lim_{\beta \downarrow 0} \frac{\| \text{Id} + \beta T \| - 1}{\beta} = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha T) \|}{\alpha}.$$
Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re} \ V(T) = \{0\}$ (\textit{T} is skew-hermitian).
- $\|\exp(\rho T)\| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}^+_0 \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\|\text{Id} + \rho T\| - 1}{\rho} = 0$.

Remark

If X is complex, there always exists exponential one-parameter semigroups of surjective isometries:

$$ t \mapsto e^{it} \text{Id} \quad \text{generator: } i \text{Id}. $$
Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)

Let X be a real or complex Banach space, $T \in L(X)$. TFAE:

- $\text{Re } V(T) = \{0\}$ (T is skew-hermitian).
- $\| \exp(\rho T) \| \leq 1$ for every $\rho \in \mathbb{R}$.
- $\{ \exp(\rho T) : \rho \in \mathbb{R}_0^+ \} \subset \text{Iso}(X)$.
- T belongs to the tangent space to $\text{Iso}(X)$ at Id.
- $\lim_{\rho \to 0} \frac{\| \text{Id} + \rho T \| - 1}{\rho} = 0$.

Main consequence

If X is a real Banach space such that $V(T) = \{0\}$, then $\text{Iso}(X)$ is “small”:

- it does not contain any exponential one-parameter semigroup,
- the tangent space of $\text{Iso}(X)$ at Id is zero.
Two results on surjective isometries

- Isometries on finite-dimensional spaces
- Isometries and duality

M. Martín
The group of isometries of a Banach space and duality.

M. Martín, J. Merí, and A. Rodríguez-Palacios.
Finite-dimensional spaces with numerical index zero.

H. P. Rosenthal
The Lie algebra of a Banach space.
Isometries in finite-dimensional spaces

Theorem

\[\text{Iso}(X) \text{ is infinite.} \]
\[n(X) = 0. \]

There is \(T \in L(X) \), \(T \neq 0 \), with \(v(T) = 0 \).

Examples of spaces of this kind

2. \(X \mathbb{R} \), the real space subjacent to any complex space \(X \).
3. An absolute sum of any real space and one of the above.
4. Moreover, if \(X = X_0 \oplus X_1 \) where \(X_1 \) is complex and
\[\| x_0 + x_1 \| = \| x_0 \| + |e^{i\theta} x_1| \] (Note that the other 3 cases are included here)

Question

Can every Banach space \(X \) with \(n(X) = 0 \) be decomposed as in \(\)?
Theorem

X finite-dimensional \underline{real} space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. $X = \mathbb{R}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and $\|x_0 + e^{i\theta}x_1\| = \|x_0 + x_1\|$ ($x_0 \in X_0$, $x_1 \in X_1$, $\theta \in \mathbb{R}$).

(Note that the other 3 cases are included here)
Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. \mathbb{R}, the real space subjacent to any complex space.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and $\|x_0 + e^{i\theta}x_1\| = \|x_0 + x_1\|$ ($x_0 \in X_0$, $x_1 \in X_1$, $\theta \in \mathbb{R}$).

(Note that the other 3 cases are included here.)

Question

Can every Banach space X with $n(X) = 0$ be decomposed as in...
Two results on surjective isometries

Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $v(T) = 0$.

Examples of spaces of this kind

- Hilbert spaces.
Two results on surjective isometries

Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $\text{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $\nu(T) = 0$.

Examples of spaces of this kind

2. $X_\mathbb{R}$, the real space subjacent to any complex space X.
Two results on surjective isometries Isometries on finite-dimensional spaces

Isometries in finite-dimensional spaces

Theorem

\(X \) finite-dimensional real space. TFAE:

- \(\text{Iso}(X) \) is infinite.
- \(n(X) = 0 \).
- There is \(T \in L(X), \ T \neq 0, \) with \(v(T) = 0 \).

Examples of spaces of this kind

2. \(X_{\mathbb{R}} \), the real space subjacent to any complex space \(X \).
3. An absolute sum of any real space and one of the above.

(Note that the other 3 cases are included here)
Isometries in finite-dimensional spaces

Theorem

Let X be a finite-dimensional real space. TFAE:

- $	ext{Iso}(X)$ is infinite.
- $n(X) = 0$.
- There is $T \in L(X)$, $T \neq 0$, with $v(T) = 0$.

Examples of spaces of this kind

2. $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
3. An absolute sum of any real space and one of the above.
4. Moreover, if $X = X_0 \oplus X_1$ where X_1 is complex and
 \[\left\| x_0 + e^{i\theta} x_1 \right\| = \left\| x_0 + x_1 \right\| \quad (x_0 \in X_0, \ x_1 \in X_1, \ \theta \in \mathbb{R}). \]

(Note that the other 3 cases are included here)
Isometries in finite-dimensional spaces

Theorem

Let \(X \) be a finite-dimensional real space. TFAE:

- \(\text{Iso}(X) \) is infinite.
- \(n(X) = 0 \).
- There is \(T \in L(X), \ T \neq 0 \), with \(v(T) = 0 \).

Examples of spaces of this kind

2. \(X_\mathbb{R} \), the real space subjacent to any complex space \(X \).
3. An absolute sum of any real space and one of the above.
4. Moreover, if \(X = X_0 \oplus X_1 \) where \(X_1 \) is complex and
 \[
 \| x_0 + e^{i\theta} x_1 \| = \| x_0 + x_1 \| \quad (x_0 \in X_0, \ x_1 \in X_1, \ \theta \in \mathbb{R}).
 \]
 (Note that the other 3 cases are included here)

Question

Can every Banach space \(X \) with \(n(X) = 0 \) be decomposed as in 4?
Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain c_0 isometrically.

An easy example is $X = \bigoplus_{n \geq 2} X_n$, where X_n is the two-dimensional space whose unit ball is the regular polygon of 2^n vertices.

Note that such an example is not possible in the finite-dimensional case.
Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.
Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

$$X = \left[\bigoplus_{n \geq 2} X_n \right]_{c_0}$$

X_n is the two-dimensional space whose unit ball is the regular polygon of $2n$ vertices.
Negative answer

Infinite-dimensional case
There is an infinite-dimensional real Banach space X with $n(X) = 0$ but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

$$X = \left[\bigoplus_{n \geq 2} X_n \right]_{c_0}$$

X_n is the two-dimensional space whose unit ball is the regular polygon of $2n$ vertices.

Note
Such an example is not possible in the finite-dimensional case.
Quasi affirmative answer

Finite-dimensional case

Let X be a finite-dimensional real space. TFAE:

1. $(X) = 0$
2. $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$
 such that X_0 is a (possible null) real space, X_1, \ldots, X_n are non-null complex spaces,
 there are ρ_1, \ldots, ρ_n rational numbers, such that

 $\|x_0 + e^{i\rho_1 \theta} x_1 + \cdots + e^{i\rho_n \theta} x_n\| = \|x_0 + x_1 + \cdots + x_n\|

 for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark

The theorem is due to Rosenthal, but with real ρ_i's.

The fact that the ρ_i's may be chosen as rational numbers is due to M.-Merí–Rodríguez-Palacios.
Two results on surjective isometries
Isometries on finite-dimensional spaces

Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

- $n(X) = 0$.

- $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X_0 is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,

there are ρ_1, \ldots, ρ_n rational numbers, such that

$$
\left\| x_0 + e^{i\rho_1 \theta} x_1 + \cdots + e^{i\rho_n \theta} x_n \right\| = \left\| x_0 + x_1 + \cdots + x_n \right\|
$$

for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark

The theorem is due to Rosenthal, but with real ρ’s. The fact that the ρ’s may be chosen as rational numbers is due to M.-Merí–Rodríguez-Palacios.
Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

- $n(X) = 0$.
- $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X_0 is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,

there are ρ_1, \ldots, ρ_n rational numbers, such that

$$\|x_0 + e^{i\rho_1 \theta} x_1 + \cdots + e^{i\rho_n \theta} x_n\| = \|x_0 + x_1 + \cdots + x_n\|$$

for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark

- The theorem is due to Rosenthal, but with real ρ’s.
- The fact that the ρ’s may be chosen as rational numbers is due to M.–Merí–Rodríguez-Palacios.
Sketch of the proof

Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$. We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.

Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$. You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j's are the eigenspaces of T^2.

Use Kronecker's Approximation Theorem to change the eigenvalues of T^2 by rational numbers.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.

A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains an isometry in $L(H)$. Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$. You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j's are the eigenspaces of T^2. Use Kronecker's Approximation Theorem to change the eigenvalues of T^2 by rational numbers.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $\nu(T) = 0$.

- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.

- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
Sketch of the proof

- Fix \(T \in L(X) \) with \(\|T\| = 1 \) and \(v(T) = 0 \).

- We get that \(\| \exp(\rho T) \| = 1 \) for every \(\rho \in \mathbb{R} \).

- A Theorem by Auerbach: there exists a Hilbert space \(H \) with \(\dim(H) = \dim(X) \) such that every surjective isometry in \(L(X) \) remains isometry in \(L(H) \).

- Apply the above to \(\exp(\rho T) \) for every \(\rho \in \mathbb{R} \).
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $v(T) = 0$.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j’s are the eigenspaces of T^2.
Sketch of the proof

- Fix $T \in L(X)$ with $\|T\| = 1$ and $\nu(T) = 0$.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in $L(H)$, so $T^* = -T$ and T^2 is self-adjoint. The X_j’s are the eigenspaces of T^2.
- Use Kronecker’s Approximation Theorem to change the eigenvalues of T^2 by rational numbers.
A simple case of getting rational numbers

Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t. $\|x_0 + e^{i\rho x_1} + e^{i\alpha \rho x_2}\| = \|x_0 + x_1 + x_2\|$ $\forall \rho$, $\forall x_0, x_1, x_2$.

Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho} (x_1 + e^{i(\alpha - 1)\rho} x_2)\|$ $\forall \rho$.

Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.

Then $\|x_0 + (x_1 + x_2)\| = \|x_0 + e^{i2\pi k} (x_1 + x_2)\|$ $\forall k \in \mathbb{Z}$.

But $\{2\pi k/(\alpha - 1) : k \in \mathbb{Z}\}$ is dense in \mathbb{T}, so $\|x_0 + (x_1 + x_2)\| = \|x_0 + e^{i\rho} (x_1 + x_2)\|$ $\forall \rho \in \mathbb{R}$ and $X = X_0 \oplus \mathbb{Z}$ where $\mathbb{Z} = \mathbb{Z}_1 \oplus \mathbb{Z}_2$ is a complex space.
A simple case of getting rational numbers

Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho}x_1 + e^{i\alpha \rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2.$$
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\left\| x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2 \right\| = \left\| x_0 + x_1 + x_2 \right\| \forall \rho, \forall x_0, x_1, x_2.$$

- Then $\left\| x_0 + x_1 + x_2 \right\| = \left\| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha-1)\rho} x_2 \right) \right\| \forall \rho$.
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.
 \[\|x_0 + e^{i\rho}x_1 + e^{i\alpha\rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \forall x_0, x_1, x_2. \]

- Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho}(x_1 + e^{i(\alpha - 1)\rho}x_2)\| \quad \forall \rho.$

- Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}.$
A simple case of getting rational numbers

- Let $X = X_0 \oplus X_1 \oplus X_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.
 \[\|x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2\| = \|x_0 + x_1 + x_2\| \ \forall \rho, \ \forall x_0, x_1, x_2. \]

- Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha - 1)\rho} x_2\right)\| \ \forall \rho.$

- Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.

- Then $\|x_0 + (x_1 + x_2)\| = \|x_0 + e^{i \frac{2\pi k}{\alpha - 1}} (x_1 + x_2)\| \ \forall k \in \mathbb{Z}$
A simple case of getting rational numbers

Let \(X = X_0 \oplus X_1 \oplus X_2 \) and \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \) s.t.
\[
\| x_0 + e^{i\rho} x_1 + e^{i\alpha \rho} x_2 \| = \| x_0 + x_1 + x_2 \| \quad \forall \rho, \quad \forall x_0, x_1, x_2.
\]

Then \(\| x_0 + x_1 + x_2 \| = \| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha-1)\rho} x_2 \right) \| \quad \forall \rho. \)

Take \(\rho = \frac{2\pi k}{\alpha - 1} \) with \(k \in \mathbb{Z}. \)

Then \(\| x_0 + (x_1 + x_2) \| = \| x_0 + e^{i \frac{2\pi k}{\alpha - 1}} (x_1 + x_2) \| \quad \forall k \in \mathbb{Z} \)

But \(\left\{ \frac{2\pi k}{\alpha - 1} : k \in \mathbb{Z} \right\} \) is dense in \(\mathbb{T} \), so
\[
\| x_0 + (x_1 + x_2) \| = \| x_0 + e^{i\rho} (x_1 + x_2) \| \quad \forall \rho \in \mathbb{R}
\]

and \(X = X_0 \oplus Z \) where \(Z = X_1 \oplus X_2 \) is a complex space
Consequences

If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.

If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question: Are all finite-dimensional X's with $n(X) = 0$ of the form $X = X_0 \oplus X_1$?

Answer: No.

Example: $X = (\mathbb{R}^4, \| \cdot \|)$,

$$
\| (a, b, c, d) \| = \frac{1}{4} \int_0^{2\pi} \left| \Re \left(e^{2it}(a + ib) + e^{it}(c + id) \right) \right| dt.
$$

Then $n(X) = 0$ but the unique possible decomposition is $X = \mathbb{C} \oplus \mathbb{C}$ with

$$
\| e^{it}x_1 + e^{2it}x_2 \| = \| x_1 + x_2 \|.
$$
Consequences

Corollary

X real space with $n(X) = 0$.

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).
Consequences

Corollary

X real space with \(n(X) = 0 \).
- If \(\dim(X) = 2 \), then \(X \cong \mathbb{C} \).
- If \(\dim(X) = 3 \), then \(X \cong \mathbb{R} \oplus \mathbb{C} \) (absolute sum).

Natural question

Are all finite-dimensional X’s with \(n(X) = 0 \) of the form \(X = X_0 \oplus X_1 \) ?
Consequences

Corollary

X real space with $n(X) = 0$.
- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with $n(X) = 0$ of the form $X = X_0 \oplus X_1$?

Answer

No.
Consequences

Corollary

Let X be a real space with $n(X) = 0$. Then:

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with $n(X) = 0$ of the form $X = X_0 \oplus X_1$?

Answer

No.

Example

Let $X = (\mathbb{R}^4, \| \cdot \|)$, where $\| (a, b, c, d) \| = \frac{1}{4} \int_0^{2\pi} \left| \text{Re} \left(e^{2it} (a + ib) + e^{it} (c + id) \right) \right| \, dt$. Then $n(X) = 0$ but the unique possible decomposition is $X = \mathbb{C} \oplus \mathbb{C}$ with

$$\left\| e^{it} x_1 + e^{2it} x_2 \right\| = \| x_1 + x_2 \|.$$
The Lie-algebra of a Banach space

The Lie-algebra of a Banach space is defined as the set of all linear operators \(T \) on the Banach space \(X \) such that \(v(T) = 0 \) for all \(v \) in the dual space \(X' \). When \(X \) is finite-dimensional, \(\text{Iso}(X) \) is a Lie-group and \(Z(X) \) is its tangent space (i.e., its Lie-algebra).

\[\dim(X) = n \Rightarrow \dim(Z(X)) \leq n(n-1)/2. \]

Equality holds if and only if \(X \) is a Hilbert space.

An open problem: Given \(n \geq 3 \), which are the possible \(\dim(Z(X)) \) over all \(n \)-dimensional \(X \)’s?

Observation (Javier Merí, PhD): When \(\dim(X) = 3 \), \(\dim(Z(X)) \) cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

- Let X be a real Banach space, then $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.
 - When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $Z(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $Z(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\dim(X) = n \implies \dim(Z(X)) \leq \frac{n(n-1)}{2}$.
- Equality holds $\iff H$ Hilbert space.
The Lie-algebra of a Banach space

Lie-algebra

An X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$.
- Equality holds $\iff H$ Hilbert space.

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?
The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$.
- Equality holds $\iff H$ Hilbert space.

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

Let X be a real Banach space, $\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Proof

If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

Remark

- If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

Let X be a real Banach space, then
$$\mathcal{Z}(X) = \{ T \in L(X) : v(T) = 0 \}.$$
- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Proof

If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).
- If $\oplus = \oplus_2$, then X is a Hilbert space and $\dim(\mathcal{Z}(X)) = 3$. ✓

Remark

- If $\oplus \neq \oplus_2$, then isometries respect summands and $\dim(\mathcal{Z}(X)) = 1$. ✓

An open problem

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

- When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
The Lie-algebra of a Banach space

Lie-algebra

Let X be a real Banach space, then $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}$.

- When X is finite-dimensional, $\text{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e., its Lie-algebra).

Proof

If $\dim(X) = 3$, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

- If $\oplus = \oplus_2$, then X is a Hilbert space and $\dim(\mathcal{Z}(X)) = 3$.
- If $\oplus \neq \oplus_2$, then isometries respect summands and $\dim(\mathcal{Z}(X)) = 1$.

Remark

Given $n \geq 3$, which are the possible $\dim(\mathcal{Z}(X))$ over all n-dimensional X’s?

Observation (Javier Merí, PhD)

When $\dim(X) = 3$, $\dim(\mathcal{Z}(X))$ cannot be 2.
Remark

X Banach space.

$T \in \text{Iso}(X) \Rightarrow T^* \in \text{Iso}(X^*)$.

$\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.

The problem

How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?

Is it possible that $\mathbb{Z}(\text{Iso}(X^*))$ is big while $\mathbb{Z}(\text{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.
Semigroups of surjective isometries and duality

Remark

\(X\) Banach space.

- \(T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)\).
- \(\text{Iso}(X^*)\) can be bigger than \(\text{Iso}(X)\).
Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)$.
- $\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.

The problem

- How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?
- Is it possible that $\mathcal{Z}(\text{Iso}(X^*))$ is big while $\mathcal{Z}(\text{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.
Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \text{Iso}(X) \implies T^* \in \text{Iso}(X^*)$.
- $\text{Iso}(X^*)$ can be bigger than $\text{Iso}(X)$.

The problem

- How much bigger can be $\text{Iso}(X^*)$ than $\text{Iso}(X)$?
- Is it possible that $\mathcal{Z}(\text{Iso}(X^*))$ is big while $\mathcal{Z}(\text{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.
Semigroups of surjective isometries and duality

\[\mathcal{E}(K \parallel L) = \{ f \in \mathcal{C}(K) : f|_L \in E \} \]

Theorem \[\mathcal{E}(K \parallel L)^* \equiv E^* \oplus 1 \mathcal{C}_0(K \parallel L)^* \]
Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$
Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}$.

Theorem

$C_E(K\|L)^* \cong E^* \oplus_1 C_0(K\|L)^*$ \quad \& \quad n(C_E(K\|L)) = 1.$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$
 $$\implies C_0(K\|L) \text{ is an } M\text{-ideal of } C_E(K\|L).$$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \cong E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$
 $$\implies C_0(K\|L)$$ is an M-ideal of $C_E(K\|L)$.

- Meaning that $C_E(K\|L)^* \cong C_0(K\|L)^\perp \oplus_1 C_0(K\|L)^*$.

\[\square\]
Spaces $C_E(K\parallel L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\parallel L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\parallel L)^* \equiv E^* \oplus_1 C_0(K\parallel L)^* \quad \& \quad n(C_E(K\parallel L)) = 1.$$

Proof.

- $C_0(K\parallel L)$ is an M-ideal of $C(K)$
 $$\implies C_0(K\parallel L)$$

- Meaning that $C_E(K\parallel L)^* \equiv C_0(K\parallel L)^\perp \oplus_1 C_0(K\parallel L)^*$.

- $C_0(K\parallel L)^\perp \equiv (C_E(K\parallel L)/C_0(K\parallel L))^* \equiv E^*$.
Two results on surjective isometries

Isometries and duality

Semigroups of surjective isometries and duality

Spaces \(C_E(K\|L) \)

- \(K \) compact, \(L \subset K \) closed nowhere dense, \(E \subset C(L) \).
- \(C_E(K\|L) = \{ f \in C(K) : f|_L \in E \} \).

Theorem

\[C_E(K\|L)^\ast \equiv E^\ast \oplus_1 C_0(K\|L)^\ast \quad \& \quad n(C_E(K\|L)) = 1. \]

Proof.

- \(C_0(K\|L) \) is an \(M \)-ideal of \(C(K) \)
 \[\implies C_0(K\|L) \text{ is an } M \text{-ideal of } C_E(K\|L). \]

- Meaning that \(C_E(K\|L)^\ast \equiv C_0(K\|L)^\perp \oplus_1 C_0(K\|L)^\ast \).

- \(C_0(K\|L)^\perp \equiv (C_E(K\|L)/C_0(K\|L))^\ast \equiv E^\ast : \)

- \(\Phi : C_E(K\|L) \longrightarrow E \), \(\Phi(f) = f|_L \).
 - \(\|\Phi\| \leq 1 \) and \(\ker \Phi = C_0(K\|L) \).
 - \(\tilde{\Phi} : C_E(K\|L)/C_0(K\|E) \longrightarrow E \) onto isometry:
 \[\{ g \in E : \|g\| < 1 \} \subseteq \Phi(\{ f \in C_E(K\|L) : \|f\| < 1 \}). \]
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $C_0(K\|L)$ is an M-ideal of $C(K)$
 \[\implies C_0(K\|L) \text{ is an } M\text{-ideal of } C_E(K\|L). \]

- **Meaning that** $C_E(K\|L)^* \equiv C_0(K\|L)^\perp \oplus_1 C_0(K\|L)^*$

- $C_0(K\|L)^\perp \equiv (C_E(K\|L)/C_0(K\|L))^* \equiv E^*$:

- $\Phi : C_E(K\|L) \longrightarrow E$, $\Phi(f) = f|_L$.
 - $\|\Phi\| \leq 1$ and $\ker \Phi = C_0(K\|L)$.
 - $\widetilde{\Phi} : C_E(K\|L)/C_0(K\|L) \longrightarrow E$ onto isometry:
 - $\{g \in E : \|g\| < 1\} \subseteq \Phi(\{f \in C_E(K\|L) : \|f\| < 1\}).$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 31 / 136
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $A = \{ (0, \delta_t) : t \in K \setminus L \} \subset S_{C_E(K\|L)^*}$ is norming for $X = C_E(K\|L)$.

Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}$.

Theorem

$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^*$ and $n(C_E(K\|L)) = 1$.

Proof.

- $A = \{(0, \delta_t) : t \in K \setminus L\} \subset S_{C_E(K\|L)^*}$ is norming for $X = C_E(K\|L)$.
- $|x^{**}(a^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $a^* \in A$.
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1.$$

Proof.

- $\mathcal{A} = \{(0, \delta_t) : t \in K \setminus L\} \subset S_{C_E(K\|L)^*}$ is norming for $X = C_E(K\|L)$.
- $|x^{**}(a^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $a^* \in \mathcal{A}$.
- This gives $n(C_E(K\|L)) = 1$:
 - $T \in L(X), \varepsilon > 0$, take $a^* \in \mathcal{A}$ with $\|T^*(a^*)\| > \|T\| - \varepsilon$,
 - Take $x^{**} \in \text{ext}(B_{X^{**}})$ with $|x^{**}(T^*(a^*))| > \|T\| - \varepsilon$,
 - Since $|x^{**}(a^*)| = 1$, we have
 $$\nu(T) = \nu(T^*) \geq |x^{**}(T^*(a^*))| > \|T\| - \varepsilon. \checkmark$$
Semigroups of surjective isometries and duality

Spaces $C_E(K\|L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

\[C_E(K\|L) = \{ f \in C(K) : f|_L \in E \}. \]

Theorem

\[C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^* \quad \& \quad n(C_E(K\|L)) = 1. \]

Consequence: the example

Take $K = [0, 1]$, $L = \Delta$ (Cantor set), $E = \ell_2 \subset C(\Delta)$.

- $\text{Iso}(C_{\ell_2}([0,1]\|\Delta))$ has no exponential one-parameter semigroups.
- $C_{\ell_2}([0,1]\|\Delta)^* \equiv \ell_2 \oplus_1 C_0([0,1]\|\Delta)^*$, so taken $S \in \text{Iso}(\ell_2)$.

\[\implies T = \begin{pmatrix} S & 0 \\ 0 & \text{Id} \end{pmatrix} \in \text{Iso}(C_{\ell_2}([0,1]\|\Delta)^*) \]

Then, $\text{Iso}(C_{\ell_2}([0,1]\|\Delta)^*)$ contains infinitely many exponential one-parameter semigroups.
Some comments
Some comments

In terms of linear dynamical systems

In $C_\ell^2(\mathbb{R}_+ \to C_\ell^2(\mathbb{R}_0,1\|\Delta))$ there is no $A \in \mathcal{L}(X)$ such that the solution to the linear dynamical system $x' = A x$ ($x: \mathbb{R}_+ \to C_\ell^2(\mathbb{R}_0,1\|\Delta)$) is given by a semigroup of isometries. There are infinitely many such A's in $C_\ell^2(\mathbb{R}_0,1\|\Delta)^*$, in $C_\ell^2(\mathbb{R}_0,1\|\Delta)^{**}$.

Further results (Koszmider–M.–Merí., 2009)

There are unbounded A's on $C_\ell^2(\mathbb{R}_0,1\|\Delta)$ such that the solution to the linear dynamical system $x'(t) = A x(t)$ is a one-parameter C_0 semigroup of isometries. There is X such that $\text{Iso}(X) = \{-\text{Id}, \text{Id}\}$ and $X^* = \ell^2 \oplus 1 L^1(\nu)$.

Therefore, there is no semigroups in $\text{Iso}(X)$, but there are infinitely many exponential one-parameter semigroups in $\text{Iso}(X^*)$.
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = Ax \quad (x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0, 1]\|\Delta))$$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.
In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = Ax \quad (x : \mathbb{R}_0^+ \rightarrow C_{\ell_2}([0, 1]\|\Delta))$$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.
- There are infinitely many such A's in $C_{\ell_2}([0, 1]\|\Delta)^*$, in $C_{\ell_2}([0, 1]\|\Delta)^{**}$.

Some comments
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = A x \quad (x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0, 1]\|\Delta))$$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A’s in $C_{\ell_2}([0, 1]\|\Delta)^*$, in $C_{\ell_2}([0, 1]\|\Delta)^{**}$. . .

Further results (Koszmider–M.–Merí., 2009)
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0,1]|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

 $$x' = Ax \quad (x: \mathbb{R}_0^+ \rightarrow C_{\ell_2}([0,1]|\Delta))$$

 (which is $x(t) = \exp(tA)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A's in $C_{\ell_2}([0,1]|\Delta)^*$, in $C_{\ell_2}([0,1]|\Delta)^{**}$. . .

Further results (Koszmider–M.–Merí., 2009)

- There are unbounded As on $C_{\ell_2}([0,1]|\Delta)$ such that the solution to the linear dynamical system

 $$x'(t) = Ax(t)$$

 is a one-parameter C_0 semigroup of isometries.
Some comments

In terms of linear dynamical systems
- In $C_{\ell_2}([0, 1]\|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system
 \[x' = A x \quad (x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0, 1]\|\Delta)) \]
 (which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.
- There are infinitely many such A's in $C_{\ell_2}([0, 1]\|\Delta)^*$, in $C_{\ell_2}([0, 1]\|\Delta)^{**}$.

Further results (Koszmider–M.–Merí., 2009)
- There are unbounded A's on $C_{\ell_2}([0, 1]\|\Delta)$ such that the solution to the linear dynamical system
 \[x'(t) = A x(t) \]
 is a one-parameter C_0 semigroup of isometries.
- There is X such that
 $\text{Iso}(X) = \{-\text{Id}, \text{Id}\}$ and $X^* = \ell_2 \oplus_1 L_1(\nu)$.
Some comments

In terms of linear dynamical systems

- In $C_{\ell_2}([0, 1]|\Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$x' = A x \quad (x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0, 1]|\Delta))$$

(which is $x(t) = \exp(tA)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A's in $C_{\ell_2}([0, 1]|\Delta)^*$, in $C_{\ell_2}([0, 1]|\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2009)

- There are unbounded A's on $C_{\ell_2}([0, 1]|\Delta)$ such that the solution to the linear dynamical system

$$x'(t) = A x(t)$$

is a one-parameter C_0 semigroup of isometries.

- There is X such that

$\text{Iso}(X) = \{-\text{Id}, \text{Id}\}$ and $X^* = \ell_2 \oplus_1 L_1(\nu)$.

- Therefore, there is no semigroups in $\text{Iso}(X)$, but there are infinitely many exponential one-parameter semigroups in $\text{Iso}(X^*)$.
Numerical index of Banach spaces

- Basic definitions and examples
- Stability properties
- Duality
- The isomorphic point of view
- Banach spaces with numerical index one
 - Isomorphic properties
 - Isometric properties
 - Asymptotic behavior
- How to deal with numerical index 1 property?

V. Kadets, M. Martín, and R. Payá.
Recent progress and open questions on the numerical index of Banach spaces.
RACSAM (2006)
Numerical radius

Let X be a Banach space, $T \in L(X)$. The numerical radius of T is

$$v(T) = \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$
Numerical index of Banach spaces: definitions

Numerical radius

Let X be a Banach space, $T \in L(X)$. The **numerical radius** of T is

$$v(T) = \sup \{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Remark

The numerical radius is a continuous seminorm in $L(X)$. Actually, $v(\cdot) \leq \|\cdot\|$
Numerical index of Banach spaces: definitions

Numerical radius

\(X \) Banach space, \(T \in L(X) \). The **numerical radius** of \(T \) is

\[
v(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}
\]

Remark

The numerical radius is a continuous seminorm in \(L(X) \). Actually, \(v(\cdot) \leq \|\cdot\| \)

Numerical index (Lumer, 1968)

\(X \) Banach space, the **numerical index** of \(X \) is

\[
n(X) = \inf \{ v(T) : T \in L(X), \|T\| = 1 \}
\]

\[
= \max \{ k \geq 0 : k \|T\| \leq v(T) \ \forall \ T \in L(X) \}
\]

\[
= \inf \left\{ M \geq 0 : \exists T \in L(X), \|T\| = 1, \| \exp(\rho T) \| \leq e^{\rho M} \ \forall \rho \in \mathbb{R} \right\}
\]
Recalling some basic properties

\[n(X) = 1 \iff v \text{ and } \|\cdot\| \text{ coincide.} \]

\[n(X) = 0 \iff v \text{ is not an equivalent norm in } L(X). \]

\[X \text{ complex} \Rightarrow n(X) \geq \frac{1}{e}. \]

(Bohnenblust–Karlin, 1955; Glickfeld, 1970)

Actually,

\[\{ n(X): X \text{ complex, dim}(X) = 2 \} = \left[e^{-1}, 1 \right] \]

\[\{ n(X): X \text{ real, dim}(X) = 2 \} = [0, 1] \]

(Duncan–McGregor–Pryce–White, 1970)
Recalling some basic properties

- $n(X) = 1$ iff v and $\| \cdot \|$ coincide.
- $n(X) = 0$ iff v is not an equivalent norm in $L(X)$
Recalling some basic properties

- $n(X) = 1$ iff v and $\| \cdot \|$ coincide.
- $n(X) = 0$ iff v is not an equivalent norm in $L(X)$

- X complex $\Rightarrow n(X) \geq 1/e$.
 (Bohnenblust–Karlin, 1955; Glickfeld, 1970)
Recalling some basic properties

- \(n(X) = 1 \) iff \(v \) and \(\| \cdot \| \) coincide.
- \(n(X) = 0 \) iff \(v \) is not an equivalent norm in \(L(X) \)

- \(X \) complex \(\Rightarrow \) \(n(X) \geq 1/e. \)
 (Bohnenblust–Karlin, 1955; Glickfeld, 1970)

- Actually,

\[
\{ n(X) : X \text{ complex, } \dim(X) = 2 \} = [e^{-1}, 1] \\
\{ n(X) : X \text{ real, } \dim(X) = 2 \} = [0, 1]
\]

(Duncan–McGregor–Pryce–White, 1970)
Some examples

1. H Hilbert space, $\dim(H) > 1$,

\[
\begin{align*}
n(H) &= 0 \quad \text{if } H \text{ is real} \\
n(H) &= 1/2 \quad \text{if } H \text{ is complex}
\end{align*}
\]
Numerical index of Banach spaces: examples (I)

Some examples

1. H Hilbert space, $\dim(H) > 1$,

 $n(H) = 0$ if H is real
 $n(H) = 1/2$ if H is complex

2. $n(L_1(\mu)) = 1$ μ positive measure
 $n(C(K)) = 1$ K compact Hausdorff space

 (Duncan et al., 1970)
Some examples

1. H Hilbert space, $\dim(H) > 1$,

 \[n(H) = 0 \quad \text{if } H \text{ is real} \]
 \[n(H) = 1/2 \quad \text{if } H \text{ is complex} \]

2. $n(L_1(\mu)) = 1$ \quad μ positive measure
 \[n(C(K)) = 1 \quad K \text{ compact Hausdorff space} \]
 (Duncan et al., 1970)

3. If A is a C^*-algebra \(\Rightarrow \)

 \[\begin{aligned}
 n(A) &= 1 \quad &\text{A commutative} \\
 n(A) &= 1/2 \quad &\text{A not commutative}
 \end{aligned} \]

 (Huruya, 1977; Kaidi–Morales–Rodríguez, 2000)
Numerical index of Banach spaces: examples (I)

Some examples

1. H Hilbert space, $\dim(H) > 1$,

 $n(H) = 0$ if H is real
 $n(H) = 1/2$ if H is complex

2. $n(L_1(\mu)) = 1$ μ positive measure
 $n(C(K)) = 1$ K compact Hausdorff space

 (Duncan et al., 1970)

3. If A is a C^*-algebra $\Rightarrow \begin{cases} n(A) = 1 & A$ commutative \\ n(A) = 1/2 & A$ not commutative \end{cases}$

 (Huruya, 1977; Kaidi–Morales–Rodríguez, 2000)

4. If A is a function algebra $\Rightarrow n(A) = 1$

 (Werner, 1997)
For \(n \geq 2 \), the unit ball of \(X_n \) is a \(2n \) regular polygon:

\[
\begin{align*}
 n(X_n) &= \begin{cases}
 \tan \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is even}, \\
 \sin \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is odd}.
\end{cases}
\end{align*}
\]

(M.–Merí, 2007)
5 For \(n \geq 2 \), the unit ball of \(X_n \) is a \(2n \) regular polygon:

\[
n(X_n) = \begin{cases}
\tan \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is even}, \\
\sin \left(\frac{\pi}{2n} \right) & \text{if } n \text{ is odd}.
\end{cases}
\]

(M.–Merí, 2007)

6 Every finite-codimensional subspace of \(C[0,1] \) has numerical index 1

(Boyko–Kadets–M.–Werner, 2007)
Even more examples

Numerical index of L_p-spaces, $1 < p < \infty$:

\[n(\ell_p(\mathbb{2})) = \lim_{m \to \infty} n(\ell_p(m)) \leq M_p \leq n(\ell_2(\mathbb{2})) \]

(M.–Merí, 2009)

In the real case,
\[\max\{\frac{1}{2}, \frac{1}{2} \cdot \frac{1}{p}\} M_p \leq n(\ell_p(\mathbb{2})) \leq M_p = \max(t \in [0,1] | t^p - (1-t)^p) \]

(M.–Merí–Popov, 2009)

In particular,
\[n(\ell_p(\mathbb{2})) > 0 \]

for $p \neq 2$.

(M.–Merí–Popov, 2009)
Numerical index of Banach spaces: some examples (III)

Even more examples

- **Numerical index of L_p-spaces, $1 < p < \infty$:**

 \[n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^m). \]

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
Even more examples

- Numerical index of L_p-spaces, $1 < p < \infty$:
 - $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.
 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
 - $n(\ell_p^{(2)})$?
Even more examples

Numerical index of L_p-spaces, $1 < p < \infty$:

1. $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.

 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

2. $n(\ell_p^{(2)})$?

3. In the real case,

 $$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$

 and $M_p = \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

 (M.-Merí, 2009)
Even more examples

- Numerical index of L_p-spaces, $1 < p < \infty$:
 - $n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.
 (Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
 - $n(\ell_p^{(2)})$?
 - In the real case,
 $\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$
 and $M_p = \nu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} |t^{p-1} - t|$
 $\frac{1 + t^p}{1 + t^p}$
 (M.–Merí, 2009)
 - In the real case, $n(L_p(\mu)) \geq \frac{M_p}{8e}$.
 (M.–Merí–Popov, 2009)
Even more examples

- **Numerical index of L_p-spaces, $1 < p < \infty$:**
 - $n(L_p[0, 1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)})$.
 - $(\text{Ed-Dari, 2005} \& \text{Ed-Dari-Khamsi, 2006})$

- $n(\ell_p^{(2)})$?

- In the real case,

 $$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leq n(\ell_p^{(2)}) \leq M_p$$

 and $M_p = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

 (M.--Merí, 2009)

- In the real case, $n(L_p(\mu)) \geq \frac{M_p}{8e}$.

- In particular, $n(L_p(\mu)) > 0$ for $p \neq 2$.

 $(\text{M.--Merí--Popov, 2009})$
Numerical index: open problems on computing

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell(2)_p) = \text{M}_p$ (real case)?

3. Is $n(\ell(2)_p) = \left(\frac{1}{p} + \frac{1}{q}\right)^{-1}$ (complex case)?

4. Compute the numerical index of real C^*-algebras.

5. Compute the numerical index of more classical Banach spaces: $C_m[0,1]$, $\text{Lip}(K)$, Lorentz spaces, Orlicz spaces, ...
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell^p(2)) = M_p$ (real case)?

3. Is $n(\ell^p(2)) = (p_1^{1/p_2} + q_1^{1/q_2})^{-1}$ (complex case)?

4. Compute the numerical index of real C^*-algebras.

5. Compute the numerical index of more classical Banach spaces: $C_m[0,1]$, $\text{Lip}(K)$, Lorentz spaces, Orlicz spaces, ...
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?
Numerical index: open problems on computing

Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case)?

3. Is $n(\ell_p^{(2)}) = \left(p \frac{1}{p} q \frac{1}{q} \right)^{-1}$ (complex case)?
Open problems

1. Compute \(n(L_p[0,1]) \) for \(1 < p < \infty, \ p \neq 2 \).

2. Is \(n(\ell_p^{(2)}) = M_p \) (real case) ?

3. Is \(n(\ell_p^{(2)}) = \left(p^{\frac{1}{p}} q^{\frac{1}{q}} \right)^{-1} \) (complex case) ?

4. Compute the numerical index of real \(C^* \)-algebras.
Open problems

1. Compute $n(L_p[0,1])$ for $1 < p < \infty$, $p \neq 2$.

2. Is $n(\ell_p^{(2)}) = M_p$ (real case) ?

3. Is $n(\ell_p^{(2)}) = \left(p^{\frac{1}{p}} q^{\frac{1}{q}} \right)^{-1}$ (complex case) ?

4. Compute the numerical index of real C^*-algebras.

5. Compute the numerical index of more classical Banach spaces: $C^m[0,1]$, Lip(K), Lorentz spaces, Orlicz spaces. . .
Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

\[n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{c_0} = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{\ell_1} = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{\ell_\infty} = \inf_{\lambda} n\left(X_{\lambda}\right) \]
Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

\[
n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{c_0} = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{\ell_1} = n\left(\bigoplus_{\lambda \in \Lambda} X_\lambda\right)_{\ell_\infty} = \inf_{\lambda} n(X_\lambda)
\]

Consequences

- There is a real Banach space \(X \) such that

 \[\nu(T) > 0 \quad \text{when} \quad T \neq 0,\]

 but \(n(X) = 0 \)

 (i.e. \(\nu(\cdot) \) is a norm on \(L(X) \) which is not equivalent to the operator norm).
Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

\[n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{c_0} = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{\ell_1} = n\left(\bigoplus_{\lambda \in \Lambda} X_{\lambda}\right)_{\ell_\infty} = \inf_{\lambda} n(X_{\lambda}) \]

Consequences

- There is a real Banach space \(X \) such that
 \[v(T) > 0 \quad \text{when} \ T \neq 0, \]
 but \(n(X) = 0 \)
 (i.e. \(v(\cdot) \) is a norm on \(L(X) \) which is not equivalent to the operator norm).

- For every \(t \in [0, 1] \), there exist a real \(X_t \) isomorphic to \(c_0 \) (or \(\ell_1 \) or \(\ell_\infty \)) with \(n(X_t) = t \).

- For every \(t \in [e^{-1}, 1] \), there exist a complex \(Y_t \) isomorphic to \(c_0 \) (or \(\ell_1 \) or \(\ell_\infty \)) with \(n(Y_t) = t \).
Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$n(C(K, E)) = n(C_w(K, E)) = n(L_1(\mu, E)) = n(L_\infty(\mu, E)) = n(E),$$

and $n(C_w^*(K, E^*)) \leq n(E)$
Numerical index Stability properties

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$n(C(K, E)) = n(C_w(K, E)) = n(L_1(\mu, E)) = n(L_\infty(\mu, E)) = n(E),$$

and $n(C_w^*(K, E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X\tilde{\otimes}_\varepsilon Y)$ nor for $n(X\tilde{\otimes}_\pi Y)$:

- $n(\ell_1^{(4)} \tilde{\otimes}_\pi \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\varepsilon \ell_\infty^{(4)}) = 1.$
- $n(\ell_1^{(4)} \tilde{\otimes}_\varepsilon \ell_1^{(4)}) = n(\ell_\infty^{(4)} \tilde{\otimes}_\pi \ell_\infty^{(4)}) < 1.$
Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$n(C(K,E)) = n(C_w(K,E)) = n(L_1(\mu,E)) = n(L_{\infty}(\mu,E)) = n(E),$$

and $n(C_w^*(K,E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X \tilde{\otimes}_\varepsilon Y)$ nor for $n(X \tilde{\otimes}_\pi Y)$:

- $n(\ell_1^{(4)} \tilde{\otimes}_\pi \ell_1^{(4)}) = n(\ell_{\infty}^{(4)} \tilde{\otimes}_\varepsilon \ell_{\infty}^{(4)}) = 1$.
- $n(\ell_1^{(4)} \tilde{\otimes}_\varepsilon \ell_1^{(4)}) = n(\ell_{\infty}^{(4)} \tilde{\otimes}_\pi \ell_{\infty}^{(4)}) < 1$.

$$n(L_p([0,1],E)) = n(\ell_p(E)) = \lim_{m \to \infty} n(E \oplus_p^m \oplus_p E).$$
Proposition

Let \(X \) be a Banach space, \(T \in \mathcal{L}(X) \). Then

\[
\sup \text{Re} \, V(T) = \lim_{\alpha \to 0^+} \|\text{Id} + \alpha T\| - 1/\alpha.
\]

Then, \(v(T^*) = v(T) \) for every \(T \in \mathcal{L}(X) \).

Therefore, \(n(X^*) \leq n(X) \).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is \(n(X) = n(X^*) \)?

Negative answer (Boyko–Kadets–M.–Werner, 2007)

Consider the space \(X = \{(x, y, z) \in c \oplus \ell^\infty \oplus \ell^\infty : \lim x + \lim y + \lim z = 0 \} \).

Then, \(n(X) = 1 \) but \(n(X^*) < 1 \).
Proposition

Let X be a Banach space, $T \in L(X)$. Then

$$\sup \Re V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}.$$

(Duncan–McGregor–Pryce–White, 1970)
Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \text{Re } V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}$.

- Then, $\nu(T^*) = \nu(T)$ for every $T \in L(X)$.

(Duncan–McGregor–Pryce–White, 1970)
Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \text{Re} \, V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}$.

- Then, $v(T^*) = v(T)$ for every $T \in L(X)$.

- Therefore, $n(X^*) \leq n(X)$.

(Duncan–McGregor–Pryce–White, 1970)
Proposition

X Banach space, \(T \in L(X) \). Then

\[
\sup \Re V(T) = \lim_{\alpha \to 0^+} \frac{\|\Id + \alpha T\| - 1}{\alpha}.
\]

Then, \(v(T^*) = v(T) \) for every \(T \in L(X) \).

Therefore, \(n(X^*) \leq n(X) \).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is \(n(X) = n(X^*) \) ?
Proposition

Let X be a Banach space, $T \in L(X)$. Then

1. \[\sup \text{Re} V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}. \]

2. Then, $v(T^*) = v(T)$ for every $T \in L(X)$.

3. Therefore, $n(X^*) \leq n(X)$.

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970's)

Is $n(X) = n(X^*)$?

Negative answer (Boyko–Kadets–M.–Werner, 2007)

Consider the space

\[X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}. \]

Then, $n(X) = 1$ but $n(X^*) < 1$.
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in \mathbb{C} \oplus_{\infty} \mathbb{C} \oplus_{\infty} \mathbb{C} : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]
Numerical index and duality. Proof of main example

\[X = \{(x, y, z) \in c \oplus \infty c \oplus \infty c : \lim x + \lim y + \lim z = 0\} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1), \) we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]
Numerical index and duality. Proof of main example

\[
X = \{ (x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0 \}:
\]

\[
n(X) = 1 \quad \text{but} \quad n(X^*) < 1.
\]

Proof

- \(c^* = \ell_1 \oplus_1 \mathbb{K} \lim \quad \Rightarrow \quad X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[
 X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*.
 \]

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1), \) we can identify

\[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)

- Then \(B_{X^*} = \overline{\text{aco}}{(w^*) (A)} \) and

\[|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \text{ext}(B_{X^{**}}) \ \forall \ a \in A. \]
Numerical index theory

Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \[c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^* \right] / (\lim, \lim, \lim). \]

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_{\infty} \ell_\infty \oplus_{\infty} \ell_\infty \oplus_{\infty} Z^* . \]

- \[A = \{ (e_n, 0, 0, 0) : n \in \mathbb{N} \} \cup \{ (0, e_n, 0, 0) : n \in \mathbb{N} \} \cup \{ (0, 0, e_n, 0) : n \in \mathbb{N} \} \subset X^*. \]

- Then \(B_{X^*} = \overline{\text{co}}^w (A) \) and
 \[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \forall a \in A. \]

- Fix \(T \in L(X), \varepsilon > 0. \) Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon. \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus c \oplus c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus \mathbb{K} \lim \Rightarrow X^* = [c^* \oplus c^* \oplus c^*] / (\lim, \lim, \lim). \)

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify

\[X^* \equiv \ell_1 \oplus \ell_1 \oplus \ell_1 \oplus \ell_1 \oplus Z, \quad X^{**} \equiv \ell_\infty \oplus \ell_\infty \oplus \ell_\infty \oplus \ell_\infty \oplus Z^*. \]

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*. \)

- Then \(B_{X^*} = \overline{\text{aco}}(A) \) and

\[|x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \quad \forall a \in A. \]

- Fix \(T \in L(X), \varepsilon > 0. \) Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon. \)

- Then we find \(x^{**} \in \text{ext}(B_{X^{**}}) \) such that

\[|x^{**}(T^*(a))| = \|T^*(a)\| > \|T^*\| - \varepsilon. \]
Numerical index and duality. Proof of main example

\begin{align*}
X &= \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:
\end{align*}

\begin{align*}
n(X) &= 1 \quad \text{but} \quad n(X^*) < 1.
\end{align*}

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \rightarrow X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim) \).
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify
 \begin{align*}
 X^* &\equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \\
 X^{**} &\equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*.
 \end{align*}

- \(A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^* \).
- Then \(B_{X^*} = \overline{\text{aco } w^*}(A) \) and
 \begin{align*}
 |x^{**}(a)| = 1 \quad \forall x^{**} \in \text{ext}(B_{X^{**}}) \quad \forall a \in A.
 \end{align*}

- Fix \(T \in L(X) \), \(\varepsilon > 0 \). Find \(a \in A \) with \(\|T^*(a)\| > \|T^*\| - \varepsilon \).
- Then we find \(x^{**} \in \text{ext}(B_{X^{**}}) \) such that
 \begin{align*}
 |x^{**}(T^*(a))| = \|T^*(a)\| > \|T^*\| - \varepsilon.
 \end{align*}

- Since \(|x^{**}(a)| = 1 \), this gives that \(v(T^*) > \|T^*\| - \varepsilon \), so \(v(T) = \|T\| \) and \(n(X) = 1 \). \(\checkmark \)
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus c \oplus c : \lim x + \lim y + \lim z = 0 \} : \]
\[\quad n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 \mathbf{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1), \) we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]
- \(Z \) is an \(L \)-summand of \(X^* \) so
 \[n(X^*) = n(Z). \]
Numerical index and duality. Proof of main example

\[X = \{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \} : \]

\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \[c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \]

- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1) \), we can identify

\[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(Z \) is an \(L \)-summand of \(X^* \) so

\[n(X^*) = n(Z). \]

- But \(n(Z) < 1 ! \) \(\checkmark \)
Numerical index and duality. Proof of main example

\[X = \left\{ (x, y, z) \in c \oplus_\infty c \oplus_\infty c : \lim x + \lim y + \lim z = 0 \right\} : \]
\[n(X) = 1 \quad \text{but} \quad n(X^*) < 1. \]

Proof

- \(c^* = \ell_1 \oplus_1 K \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim). \)
- Then, writing \(Z = \ell_1^{(3)} / (1, 1, 1), \) we can identify
 \[X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z, \quad X^{**} \equiv \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty \ell_\infty \oplus_\infty Z^*. \]

- \(Z \) is an \(L \)-summand of \(X^* \) so
 \[n(X^*) = n(Z). \]

- But \(n(Z) < 1! \) ✓

\[\text{Figure: } B_Z \]
The above example can be squeezed to get more counterexamples.
The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with $n(X) = 1$ and $n(X^*) = 0$.
- Exists X complex with $n(X) = 1$ and $n(X^*) = 1/e$.
The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with $n(X) = 1$ and $n(X^*) = 0$.
- Exists X complex with $n(X) = 1$ and $n(X^*) = 1/e$.

Example 2

- Given $t \in]0, 1]$, exists X real with $n(X) = t$ and $n(X^*) = 0$.
- Given $t \in]1/e, 1]$, exists X complex with $n(X) = 1$ and $n(X^*) = 1/e$.
Some positive partial answers

\[n(X) = n(X^*) \]

when \(X \) is reflexive (evident).

\(X \) is a \(C^* \)-algebra or a von Neumann predual (1970’s – 2000’s).

\(X \) is \(L \)-embedded in \(X^{**} \) (M., 2009).

If \(X \) has RNP and \(n(X) = 1 \), then \(n(X^*) = 1 \) (M., 2002).

If \(X \) is \(M \)-embedded in \(X^{**} \) and \(n(X) = 1 \), then \(n(Y) = 1 \) for \(X \subseteq Y \subseteq X^{**} \).

Example \(X = C_K(\ell_2([0, 1])) \). Then \(n(X) = 1 \) and

\[X^* \equiv K(\ell_2) \oplus 1 C_0(K \parallel \Delta) \]

and

\[X^{**} \equiv L(\ell_2) \oplus \infty C_0(K \parallel \Delta) \]

Therefore, \(X^{**} \) is a \(C^* \)-algebra, but \(n(X^*) = 1/2 < n(X) = 1 \).
Some positive partial answers

One has \(n(X) = n(X^*) \) when

- \(X \) is reflexive (evident).
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
- X is L-embedded in X^{**} (M., 2009).
Numerical index and duality (III)

Some positive partial answers

One has \(n(X) = n(X^*) \) when

- \(X \) is reflexive (evident).
- \(X \) is a \(C^* \)-algebra or a von Neumann predual (1970’s – 2000’s).
- \(X \) is \(L \)-embedded in \(X^{**} \) (M., 2009).
- If \(X \) has RNP and \(n(X) = 1 \), then \(n(X^*) = 1 \) (M., 2002).
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and $n(X) = 1$, then $n(X^*) = 1$ (M., 2002).
- If X is M-embedded in X^{**} and $n(X) = 1$
 \[\implies n(Y) = 1 \text{ for } X \subseteq Y \subseteq X^{**}. \]
Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^*-algebra or a von Neumann predual (1970’s – 2000’s).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and $n(X) = 1$, then $n(X^*) = 1$ (M., 2002).
- If X is M-embedded in X^{**} and $n(X) = 1$
 $\implies n(Y) = 1$ for $X \subseteq Y \subseteq X^{**}$.

Example

$X = C_K(\ell_2)([0, 1] \Vert \Delta)$. Then $n(X) = 1$ and

$$X^* \equiv K(\ell_2)^* \oplus_1 C_0(K \Vert \Delta)^* \quad \text{and} \quad X^{**} \equiv L(\ell_2) \oplus_\infty C_0(K \Vert \Delta)^{**}.$$

Therefore, X^{**} is a C^*-algebra, but $n(X^*) = 1/2 < n(X) = 1$.
Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $\pi(X) = \pi(X^*)$.

Question 1

If Z has a unique predual X, does $\pi(X) = \pi(X^*)$?

Question 2

If Z is a dual space, does there exist a predual X such that $\pi(X) = \pi(X^*)$?

Question 4

If X has the RNP, does $\pi(X) = \pi(X^*)$?
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2

If Z dual space, does there exists a predual X such that $n(X) = n(X^*)$?
Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2

Z dual space, does there exists a predual X such that $n(X) = n(X^*)$?

Question 4

If X has the RNP, does $n(X) = n(X^*)$?
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payà, 2003)

\((X, \| \cdot \|) \) (separable or reflexive) Banach space. Then

Real case:

\[[0, 1] \subseteq \{ n(\mathcal{N}(\mathcal{D})) : |\cdot| \simeq \| \cdot \| \} \]

Complex case:

\[[e^{-1}, 1] \subseteq \{ n(\mathcal{N}(\mathcal{D})) : |\cdot| \simeq \| \cdot \| \} \]

Open question

The result is known to be true when \(X \) has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of \(n(\mathcal{N}(\mathcal{D})) \) but 1 is isomorphically trivial.

⋆ What about the value 1?
Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

$(X, \| \cdot \|)$ (separable or reflexive) Banach space. Then

- **Real case:**
 \[[0, 1) \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

- **Complex case:**
 \[[e^{-1}, 1) \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of $n(X)$ but 1 is isomorphically trivial.
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then

- **Real case:**
 \([0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}\)

- **Complex case:**
 \([e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \}\)

Open question

The result is known to be true when \(X\) has a long biorthogonal system. Is it true in general?
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then

- **Real case:**
 \[[0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

- **Complex case:**
 \[[e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

Open question

The result is known to be true when \(X\) has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of \(n(X)\) but 1 is isomorphically trivial.
The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)

\((X, \| \cdot \|)\) (separable or reflexive) Banach space. Then

- Real case:
 \[[0, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

- Complex case:
 \[[e^{-1}, 1] \subseteq \{ n(X, | \cdot |) : | \cdot | \simeq \| \cdot \| \} \]

Open question

The result is known to be true when \(X\) has a long biorthogonal system. Is it true in general?

Remark

In some sense, any other value of \(n(X)\) but 1 is isomorphically trivial.

★ What about the value 1?
Numerical index

Recall that X has **numerical index one** ($n(X) = 1$) iff

$$\|T\| = \sup \{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. $v(T) = \|T\|$) for every $T \in L(X)$.

Numerical index Banach spaces with numerical index one

Recall that X has **numerical index one** ($n(X) = 1$) iff

$$
\|T\| = \sup \{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}
$$

(i.e. $\nu(T) = \|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$
\|T\| = \sup \{|\langle Tx, x \rangle| : x \in S_X\}
$$

which is known to be valid for every self-adjoint operator T.
Recall that X has numerical index one ($n(X) = 1$) iff

$$\|T\| = \sup \{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. $v(T) = \|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$\|T\| = \sup \{ |\langle Tx, x \rangle| : x \in S_X \}$$

which is known to be valid for every self-adjoint operator T.

Examples

$C(K), L_1(\mu), A(\mathbb{D}), H^\infty, \text{finite-codimensional subspaces of } C[0,1] \ldots$
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1.
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.

More details on this later on.
Question
Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)
Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and $n(X) = 1$, then $X \supset \ell_1$.
Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then $n(X) < 1$.
- Actually, if X is real, X^{**}/X separable and $n(X) = 1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and $n(X) = 1$, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)

If X is real, $\dim(X) = \infty$ and $n(X) = 1$, then $X^* \supset \ell_1$.

More details on this later on.
Lemma

Let $\mathcal{B}X$ be a Banach space, and $n(\mathcal{B}X) = 1$. Then $\|x^* - 0(x_0)\| = 1$ for all $x^* \in \text{ext}(\mathcal{B}X^*)$ and all denting point x_0 of $\mathcal{B}X$.

Proof:

Fix $\varepsilon > 0$. As x_0 is a denting point, there exists $y^* \in S_{\mathcal{B}X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in \mathcal{B}X^*$ satisfies $\Re(y^*(z)) > 1 - \alpha$.

(Choquet's lemma): $x^* \in \text{ext}(\mathcal{B}X^*)$, there exists $y \in S_{\mathcal{B}X}$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in \mathcal{B}X^*$ satisfies $\Re(z^*(y)) > 1 - \beta$.

Let $T = y^* \otimes y \in L(\mathcal{B}X)$. Then $\|T\| = 1 = \|v(T)\|$. We may find $x \in S_{\mathcal{B}X}$, $x^* \in S_{\mathcal{B}X^*}$ such that $x^*_0(x_0) = 1$ and $|x^*_0(Tx) - x^*_0(x_0)| > 1 - \min\{\alpha, \beta\}$.

By choosing suitable $s, t \in T$ we have $\Re(y^*(sx)) = |y^*(x_0)| > 1 - \alpha$ and $\Re(tx^* (y)) = |x^*_0(y)| > 1 - \beta$.

It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^* (x_0) - x^*_0(x_0)| < \varepsilon$, and so $1 - |x^*_0(x_0)| \leq |tx^*_0(sx) - x^*_0(x_0)| \leq |tx^*_0(sx) - tx^*_0(x_0)| + |tx^*_0(x_0)| < 2\varepsilon$.\[\square\]
Lemma

Let X be a Banach space with $n(X) = 1$. Then for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X, we have $|x^*_0(x_0)| = 1$.

Proof: Fix $\varepsilon > 0$. As x_0 is a denting point, there exist $y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re} y^*(z) > 1 - \alpha$. (Choquet's lemma: $x^*_0 \in \text{ext}(B_{X^*})$, then $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(y) - x^*_0(y)| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re} z^*(y) > 1 - \beta$.)

Let $T = y^* \otimes y \in L(X)$. Then $\|T\| = 1$ implies $v(T) = 1$. We may find $x \in S_X$, $x^* \in S_{X^*}$ such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)| > 1 - \min\{\alpha, \beta\}$. By choosing suitable $s, t \in T$ we have $\text{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$ and $\text{Re} tx^*(y) = |x^*(y)| > 1 - \beta$. It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x^*_0(x_0)| < \varepsilon$, and so $1 - |x^*_0(x_0)| \leq |tx^*(sx) - x^*_0(x_0)| \leq |tx^*(sx)| + |tx^*(x_0)| < 2\varepsilon$.

\hfill ✓
Lemma

Let \(X \) be a Banach space, \(n(X) = 1 \).

\[|x^*_0(x_0)| = 1 \] for all \(x^*_0 \in \text{ext}(B_{X^*}) \) and all denting point \(x_0 \) of \(B_X \).

Proof:

Fix \(\varepsilon > 0 \).

As \(x_0 \) is a denting point, there exists \(y^* \in S_{X^*} \) and \(\alpha > 0 \) such that

\[\|z - x_0\| < \varepsilon \] whenever \(z \in B_{X^*} \) satisfies

\[\text{Re} y^*(z) > 1 - \alpha. \]

(Choquet's lemma):

\(x^*_0 \in \text{ext}(B_{X^*}) \),

there exists \(y \in S_X \) and \(\beta > 0 \) such that

\[|z^*(x_0) - x^*_0(x_0)| < \varepsilon \] whenever \(z^* \in B_{X^*} \) satisfies

\[\text{Re} z^*(y) > 1 - \beta. \]

Let \(T = y^* \otimes y \in L(X) \).

\[\|T\| = 1 = \Rightarrow v(T) = 1. \]

We may find \(x \in S_X \), \(x^* \in S_{X^*} \), such that

\[x^*(x) = 1 \] and

\[|x^*_0(Tx)| > 1 - \min\{\alpha, \beta\}. \]

By choosing suitable \(s \), \(t \in T \) we have

\[\text{Re} y^*(sx) = |y^*(x)| > 1 - \alpha \]

and

\[\text{Re} tx^*(y) = |x^*(y)| > 1 - \beta. \]

It follows that

\[\|sx - x_0\| < \varepsilon \] and

\[|tx^*(x_0) - x^*_0(x_0)| < \varepsilon, \]

and so

\[1 - |x^*_0(x_0)| \leq |tx^*(sx) - x^*_0(x_0)(x_0)| \leq \varepsilon. \]

\[\blacksquare \]
Lemma

Let X be a Banach space, $n(X) = 1$.

Then $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\epsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $$\|z - x_0\| < \epsilon \quad \text{whenever } z \in B_{X^*} \text{ satisfies } \Re y^*(z) > 1 - \alpha.$$
Proving the 1999 results (I)

Lemma

Let X be a Banach space, $n(X) = 1$ implies $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re} \ y^*(z) > 1 - \alpha$.

- (Choquet's lemma): $x^*_0 \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} \ z^*(y) > 1 - \beta$.

Lemma

X Banach space, \(n(X) = 1 \)
\[\implies |x_0^*(x_0)| = 1 \text{ for all } x_0^* \in \text{ext } (B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X. \]

Proof:
- Fix \(\varepsilon > 0 \). AS \(x_0 \) denting point, \(\exists y^* \in S_{X^*} \) and \(\alpha > 0 \) such that
 \[\|z - x_0\| < \varepsilon \quad \text{whenever } z \in B_{X^*} \text{ satisfies } \text{Re } y^*(z) > 1 - \alpha. \]
- (Choquet’s lemma): \(x_0^* \in \text{ext } (B_{X^*}) \), \(\exists y \in S_X \) and \(\beta > 0 \) such that
 \[|z^*(x_0) - x_0^*(x_0)| < \varepsilon \quad \text{whenever } z^* \in B_{X^*} \text{ satisfies } \text{Re } z^*(y) > 1 - \beta. \]
- Let \(T = y^* \otimes y \in L(X) \). \(\|T\| = 1 \implies v(T) = 1. \)
Proving the 1999 results (I)

Lemma

\(X \) Banach space, \(n(X) = 1 \)
\[\implies |x_0^*(x_0)| = 1 \quad \text{for all} \quad x_0^* \in \text{ext} \,(B_{X^*}) \quad \text{and all denting point} \quad x_0 \quad \text{of} \quad B_X. \]

Proof:
- Fix \(\varepsilon > 0 \). AS \(x_0 \) denting point, \(\exists y^* \in S_{X^*} \) and \(\alpha > 0 \) such that
 \[\|z - x_0\| < \varepsilon \quad \text{whenever} \quad z \in B_{X^*} \quad \text{satisfies} \quad \Re y^*(z) > 1 - \alpha. \]
- (Choquet’s lemma): \(x_0^* \in \text{ext} \,(B_{X^*}) \), \(\exists y \in S_X \) and \(\beta > 0 \) such that
 \[|z^*(x_0) - x_0^*(x_0)| < \varepsilon \quad \text{whenever} \quad z^* \in B_{X^*} \quad \text{satisfies} \quad \Re z^*(y) > 1 - \beta. \]
- Let \(T = y^* \otimes y \in L(X) \). \(\|T\| = 1 \implies v(T) = 1. \)
- We may find \(x \in S_X, \ x^* \in S_{X^*}, \) such that
 \[x^*(x) = 1 \quad \text{and} \quad |x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}. \]
Lemma

Let X be a Banach space, $n(X) = 1$ implies $|x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:
- Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re} y^*(z) > 1 - \alpha$.
- (Choquet’s lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies v(T) = 1$.
- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.
- By choosing suitable $s, t \in \mathbb{T}$ we have $\text{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$ and $\text{Re} tx^*(y) = |x^*(y)| > 1 - \beta$.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009
Lemma

Let X be a Banach space, $n(X) = 1$ implies $|x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext } (B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re } y^*(z) > 1 - \alpha$.
- (Choquet’s lemma): $x^*_0 \in \text{ext } (B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x^*_0(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re } z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies v(T) = 1$.
- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.
- By choosing suitable $s, t \in \mathbb{T}$ we have $\text{Re } y^*(sx) = |y^*(x)| > 1 - \alpha$ and $\text{Re } tx^*(y) = |x^*(y)| > 1 - \beta$.
- It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x^*_0(x_0)| < \varepsilon$.
Lemma

Let X be a Banach space, $n(X) = 1$.

$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proof:

- Fix $\varepsilon > 0$. As x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that $\|z - x_0\| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\text{Re} y^*(z) > 1 - \alpha$.

- (Choquet’s lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\text{Re} z^*(y) > 1 - \beta$.

- Let $T = y^* \otimes y \in L(X)$. $\|T\| = 1 \implies v(T) = 1$.

- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that $x^*(x) = 1$ and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}$.

- By choosing suitable $s, t \in \mathbb{T}$ we have $\text{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$ and $\text{Re} tx^*(y) = |x^*(y)| > 1 - \beta$.

- It follows that $\|sx - x_0\| < \varepsilon$ and $|tx^*(x_0) - x_0^*(x_0)| < \varepsilon$, and so

$$1 - |x_0^*(x_0)| \leq |tx^*(sx) - x_0^*(x_0)| \leq |tx^*(sx) - tx^*(x_0)| + |tx^*(x_0) - x_0^*(x_0)| < 2\varepsilon. \checkmark$$
Numerical index Banach spaces with numerical index one

Proving the 1999 results (II)

Proposition

Let X be a real Banach space, $A \subset S_X$ be infinite with $|x^*| = 1$ for all $x^* \in \text{ext}(B_{X^*})$, and $a \in A$. Then $X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

$X \supseteq \ell_1 \checkmark$ (Rosenthal ℓ_1-theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy. Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.

$$\|a_n - a_m\| = 2$$ if $n \neq m$ $\Rightarrow \dim(Y) = \infty$.

(Krein-Milman theorem): every $y^* \in \text{ext}(B_{Y^*})$ has an extension which belongs to $\text{ext}(B_{X^*})$.

So, $|y^*(a_n)| = 1$ for all $y^* \in \text{ext}(B_{Y^*})$, $n \in \mathbb{N}$.

$\{a_n\}$ weak Cauchy $\Rightarrow \{y^*(a_n)\}$ is eventually 1 or -1.

Then $\text{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$ where $E_k = \{y^* \in \text{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k\}$.

$\{a_n\}$ separates points of Y^* $\Rightarrow E_k$ finite, so $\text{ext}(B_{Y^*})$ countable.

(Fonf): $Y \supseteq c_0$. So, $X \supseteq c_0$. \checkmark
Proposition

\(X \) real, \(A \subset S_X \) infinite with \(|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_X^*) \), \(\forall a \in A \).

\(\Rightarrow \quad X \supseteq c_0 \) or \(X \supseteq \ell_1 \).
Proposition

\[X \text{ real}, \ A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \ \forall a \in A. \]

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

\[\text{Proof:} \]

\[\text{Proof:} \]

\[\text{Proof:} \]

\[\text{Proof:} \]
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext } (B_{X^*})$, $\forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

- $X \supseteq \ell_1$ ✔
Proving the 1999 results (II)

Proposition

Let X be real, $A \subset S_X$ infinite such that $|x^*(a)| = 1 \ \forall x^* \in \text{ext} \ (B_X^*)$, $\forall a \in A$.

$$\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$$

Proof:

- $X \supseteq \ell_1$ ✔️

- (Rosenthal ℓ_1-theorem): Otherwise, $\exists \{a_n\} \subset A$ non-trivial weak Cauchy.
Proposition

\[X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \quad \forall x^* \in \text{ext} (B_{X^*}), \quad \forall a \in A. \]

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \checkmark \)
- **(Rosenthal \(\ell_1 \)-theorem):** Otherwise, \(\exists \{a_n\} \subset A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
Proposition

\(\text{real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext (}B_{X^*}\text{)}, \ \forall a \in A. \)
\(\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \)

Proof:

- \(X \supseteq \ell_1 \checkmark \)
- \((\text{Rosenthal } \ell_1\text{-theorem}): \) Otherwise, \(\exists \ \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n \mid n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \text{ if } n \neq m \implies \dim(Y) = \infty. \)
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} \ (B_{X^*}), \ \forall a \in A.$

$\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Proof:

- $X \supseteq \ell_1 \ \checkmark$
- (Rosenthal ℓ_1-theorem): Otherwise, $\exists \ \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $\|a_n - a_m\| = 2 \text{ if } n \neq m \implies \dim(Y) = \infty.$
- (Krein-Milman theorem): every $y^* \in \text{ext} \ (B_{Y^*})$ has an extension which belongs to $\text{ext} \ (B_{X^*})$.

\[\text{(Fonf)}: Y \supseteq c_0. \text{ So, } X \supseteq c_0. \ \checkmark\]
Proposition

\(X \) real, \(A \subset S_X \) infinite with \(|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \ \forall a \in A. \)
\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \)
- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n \ : \ n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \text{ if } n \neq m \implies \dim(Y) = \infty. \)
- (Krein-Milman theorem): every \(y^* \in \text{ext} (B_{Y^*}) \) has an extension which belongs to \(\text{ext} (B_{X^*}) \).
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} (B_{Y^*}), \ \forall n \in \mathbb{N}. \)
Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \ \forall a \in A.$

$\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Proof:

- $X \supseteq \ell_1 \ \checkmark$

- $(\text{Rosenthal } \ell_1\text{-theorem}):$ Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.

 Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}.$

 $\|a_n - a_m\| = 2$ if $n \neq m \implies \dim(Y) = \infty.$

- $(\text{Krein-Milman theorem}):$ every $y^* \in \text{ext}(B_{Y^*})$ has an extension which belongs to $\text{ext}(B_{X^*}).$

 So, $|y^*(a_n)| = 1 \ \forall y^* \in \text{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$

- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or $-1.$
Proving the 1999 results (II)

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_X^*)$, $\forall a \in A$.

$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Proof:

- $X \supseteq \ell_1$ ✓
- (Rosenthal ℓ_1-theorem): Otherwise, $\exists \{a_n\} \subset A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $\|a_n - a_m\| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in \text{ext} (B_Y^*)$ has an extension which belongs to $\text{ext} (B_X^*)$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} (B_Y^*)$, $\forall n \in \mathbb{N}$.
- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or -1.
- Then $\text{ext} (B_Y^*) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$ where
 $$E_k = \{y^* \in \text{ext} (B_Y^*) : y^*(a_n) = 1 \text{ for } n \geq k\}.$$
Proposition

\[X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}\ (B_{X^*}), \ \forall a \in A. \]
\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \[X \supseteq \ell_1 \] ✓

- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \ \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \) if \(n \neq m \) \(\implies \dim(Y) = \infty. \)

- (Krein-Milman theorem): every \(y^* \in \text{ext}\ (B_{Y^*}) \) has an extension which belongs to \(\text{ext}\ (B_{X^*}) \).
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext}\ (B_{Y^*}), \forall n \in \mathbb{N}. \)
- \(\{a_n\} \) weak Cauchy \(\implies \{y^*(a_n)\} \) is eventually 1 or \(-1.\)
- Then \(\text{ext}\ (B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k) \) where
 \[E_k = \{y^* \in \text{ext}\ (B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k\}. \]
 \(\{a_n\} \) separates points of \(Y^* \) \(\implies E_k \) finite, so \(\text{ext}\ (B_{Y^*}) \) countable.
Proving the 1999 results (II)

Proposition

\(X \) real, \(A \subset S_X \) infinite with \(|x^*(a)| = 1 \ \forall x^* \in \text{ext} (B_{X^*}), \forall a \in A. \)

\[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Proof:

- \(X \supseteq \ell_1 \) ✅
- (Rosenthal \(\ell_1 \)-theorem): Otherwise, \(\exists \{a_n\} \subseteq A \) non-trivial weak Cauchy.
- Consider \(Y \) the closed linear span of \(\{a_n : n \in \mathbb{N}\} \).
- \(\|a_n - a_m\| = 2 \) if \(n \neq m \) \(\implies \dim(Y) = \infty. \)
- (Krein-Milman theorem): every \(y^* \in \text{ext} (B_{Y^*}) \) has an extension which belongs to \(\text{ext} (B_{X^*}). \)
- So, \(|y^*(a_n)| = 1 \ \forall y^* \in \text{ext} (B_{Y^*}), \forall n \in \mathbb{N}. \)
- \(\{a_n\} \) weak Cauchy \(\implies \{y^*(a_n)\} \) is eventually 1 or \(-1.\)
- Then \(\text{ext} (B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k) \) where

\[E_k = \{y^* \in \text{ext} (B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \geq k\}. \]

- \(\{a_n\} \) separates points of \(Y^* \) \(\implies E_k \) finite, so \(\text{ext} (B_{Y^*}) \) countable.
- (Fonf): \(Y \supseteq c_0. \) So, \(X \supseteq c_0. \) ✅
Lemma

Let X be a Banach space, $n(X) = 1$.

\[|x_0^*(x_0)| = 1 \quad \text{for all } x_0^* \in \text{ext}(B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X. \]

Proposition

Let X be real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$.

\[X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]
Proving the 1999 results (III)

Lemma

X Banach space, $n(X) = 1$
$\implies |x^*_0(x_0)| = 1$ for all $x^*_0 \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$.
$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\text{dim}(X) = \infty$, and $n(X) = 1$
$\implies X \supseteq \ell_1$.
Proving the 1999 results (III)

Lemma

X Banach space, $n(X) = 1$
$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$.
$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1$ $\implies X \supseteq \ell_1$.

Proof.
Lemma

Let X be a Banach space with $n(X) = 1$. Then for all $x_0^* \in \text{ext} (B_{X^*})$ and all denting point x_0 of B_X,

$$|x_0^*(x_0)| = 1$$

Proposition

Let X be a real Banach space, $A \subset S_X$ infinite, and for all $x^* \in \text{ext} (B_{X^*})$ and all $a \in A$,

$$|x^*(a)| = 1$$

Then $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

If X is a real Banach space, RNP, has infinite dimension, and $n(X) = 1$, then $X \supseteq \ell_1$.

Proof.

- If X is RNP, then $X \not\supseteq c_0$.

Proof completed.
Proving the 1999 results (III)

Lemma

Let X be a Banach space, and $n(X) = 1$. Then $|x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

If X is real, $A \subset S_X$ is infinite with $|x^*(a)| = 1$ for all $x^* \in \text{ext}(B_{X^*})$ and $a \in A$. Then $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

If X is real, RNP, and $n(X) = 1$, then $X \supseteq \ell_1$.

Proof.

- If X is RNP, and $\dim(X) = \infty$, then there exist infinitely many denting points of B_X.
- Therefore, $X \supseteq c_0$ or $X \supseteq \ell_1$.
Lemma

X Banach space, $n(X) = 1$ \[\implies |x^*_0(x_0)| = 1 \text{ for all } x^*_0 \in \text{ext } (B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X.\]

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext } (B_{X^*}), \ \forall a \in A$. \[\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.\]

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1$ \[\implies X \supseteq \ell_1.\]

Proof.

- X RNP, $\dim(X) = \infty \implies \exists$ infinitely many denting points of B_X.
- Therefore, $X \supseteq c_0$ or $X \supseteq \ell_1$.
- If X RNP, then $X \not\supseteq c_0$. ✓
Proving the 1999 results (III)

Lemma

Let X be a Banach space, $n(X) = 1$
\[\Rightarrow |x_0^*(x_0)| = 1 \text{ for all } x_0^* \in \text{ext}(B_{X^*}) \text{ and all denting point } x_0 \text{ of } B_X. \]

Proposition

Let X be real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \ \forall a \in A$.
\[\Rightarrow X \supseteq c_0 \text{ or } X \supseteq \ell_1. \]

Main consequence

If X is real, RNP, $\dim(X) = \infty$, and $n(X) = 1$
\[\Rightarrow X \supseteq \ell_1. \]

Corollary

If X is real, $\dim(X) = \infty$, $n(X) = 1$.
- X is not reflexive.
- X^{**}/X is non-separable.
Lemma

Let X be a Banach space with $n(X) = 1$. Then $|x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X.

Proposition

Let X be real, and $A \subset S_X$ be infinite with $|x^*(a)| = 1$ for all $x^* \in \text{ext}(B_{X^*})$, $a \in A$. Then $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

If X is real, reflexive, and $n(X) = 1$, then $X \supseteq \ell_1$.

Corollary

Let X be real, and $\dim(X) = \infty$. If $n(X) = 1$, then X is not reflexive and X^{**} / X is non-separable.
Lemma

X Banach space, $n(X) = 1$
$\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext } (B_{X^*})$ and all denting point x_0 of B_X.

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \forall x^* \in \text{ext } (B_{X^*}), \forall a \in A$.
$\implies X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real, RNP, $\text{dim}(X) = \infty$, and $n(X) = 1$ $\implies X \supseteq \ell_1$.

Corollary

X real, $\text{dim}(X) = \infty$, $n(X) = 1$.
- X is not reflexive.
- X^{**}/X is non-separable.
Isomorphic properties (positive results)

- If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence:
If X is separable containing c_0, then there is $Z \cong X$ such that $n(Z) = 1$ and
- $n(Z^*) = 0$ in the real case,
- $n(Z^*) = e^{-1}$ in the complex case.

Open questions:
- Find isomorphic properties which assure renorming with numerical index 1.
- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980):
There is X such that $X^* \cong \ell_1$ and X has the RNP. Then, X cannot be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)

(Miguel Martín, University of Granada (Spain)) Numerical index theory Bangalore, June 2009 53 / 136
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.
Isomorphism properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

If X is separable containing c_0, then there is $Z \sim X$ such that

$$n(Z) = 1$$

and

$$\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$$
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1 \quad \text{and} \quad \begin{cases}
 n(Z^*) = 0 & \text{real case} \\
 n(Z^*) = e^{-1} & \text{complex case}
\end{cases}$$

Open questions

Find isomorphic properties which assures renorming with numerical index 1.

In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980)

There is X such that $X^* \simeq \ell_1$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 53 / 136
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \iff$ there is $Z \simeq X$ such that

\[
 n(Z) = 1 \quad \text{and} \quad \begin{cases}
 n(Z^*) = 0 & \text{real case} \\
 n(Z^*) = e^{-1} & \text{complex case}
\end{cases}
\]

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \cong X$ such that

$$n(Z) = 1 \quad \text{and} \quad \begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?
Isomorphic properties (positive results)

A renorming result (Boyko–Kadets–M.–Merí, 2009)
If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1 \quad \text{and} \quad \begin{cases}
 n(Z^*) = 0 & \text{real case} \\
 n(Z^*) = e^{-1} & \text{complex case}
\end{cases}$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1?

Negative result (Bourgain–Delbaen, 1980)

There is X such that $X^* \simeq \ell_1$ and X has the RNP. Then, X cannot be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

x real or complex finite-dimensional space. TFAE:

1. $X = 1$.
2. $|x^* (x)| = 1$ for every $x^* \in \text{ext} (B_X^*)$, $x \in \text{ext} (B_X)$.

$B_X = aconv (F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case?
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

Let X be a real or complex finite-dimensional space. Then the following are TFAE:

- $n(X) = 1.$

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question: What is the situation in the infinite-dimensional case?
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext } (B_{X^*})$, $x \in \text{ext } (B_X)$.

Remark: This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question: What is the situation in the infinite-dimensional case?
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext} (B_{X^*})$, $x \in \text{ext} (B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:
Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

Let X be a real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.
Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X) = 1$.
- $|x^*(x)| = 1$ for every $x^* \in \text{ext} \,(B_{X^*})$, $x \in \text{ext} \,(B_X)$.
- $B_X = \text{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1:

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case?
Theorem (Kadets–M.–Merí–Payá, 2009)\n\[X \text{ infinite-dimensional Banach space, } n(X) = 1. \] Then X^* is neither smooth nor strictly convex. The norm of X cannot be Fréchet-smooth. There is no WLUR points in S_X.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 55 / 136
Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space, $n(X) = 1$. Then X^* is neither smooth nor strictly convex. The norm of X cannot be Fréchet-smooth. There is no WLUR points in S_X.
Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with numerical index $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with numerical index $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- If X is smooth, then

 $T^*_{n(X)}(x^*_{n(X)}) = x^*_{n(X)}(x) = 0$. Thus,

 $\|T^*_{n(X)}\| = 1$.

 But, since $T_{n(X)} \rightarrow T$ and $T^2 = 0$, then

 $T_{n(X)}^2 \rightarrow 0$.
Theorem (Kadets–M.–Merí–Payá, 2009)

\(X \) infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).

Proving that \(X^* \) is not smooth:

- \(\dim(X) > 1 \), exists \(x_0 \in S_X \) and \(x_0^* \in S_{X^*} \) such that \(x_0^*(x_0) = 0 \). Then, consider \(T = x_0^* \otimes x_0 \) which satisfies \(T^2 = 0 \), \(\|T\| = 1 \).

- \textbf{(AcostaPayá1993)}: exists \(\{T_n\} \longrightarrow T \) such that
 \(\|T_n\| = 1 \), \(T_n^* \) attains its numerical radius \(v(T_n^*) = v(T_n) = \|T_n\| = 1 \).
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with numerical index $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:

- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.
- (AcostaPayá1993): exists $\{T_n\} \rightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = \|T_n\| = 1$.
- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}}$ such that
 \[
 \lambda_n x_n^{**}(x_n^*) = 1 \quad \text{and} \quad [T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.
 \]
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).

Proving that \(X^* \) is not smooth:

- \(\dim(X) > 1 \), exists \(x_0 \in S_X \) and \(x_0^* \in S_{X^*} \) such that \(x_0^*(x_0) = 0 \). Then, consider \(T = x_0^* \otimes x_0 \) which satisfies \(T^2 = 0 \), \(\|T\| = 1 \).
- \((\text{AcostaPayá1993})\): exists \(\{T_n\} \rightarrow T \) such that \(\|T_n\| = 1 \), \(T_n^* \) attains its numerical radius \(v(T_n^*) = v(T_n) = \|T_n\| = 1 \).
- We may find \(\lambda_n \in \mathbb{T} \) and \((x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}} \) such that
 \[
 \lambda_n x_n^{**} (x_n^*) = 1 \quad \text{and} \quad [T_n^{**}(x_n^{**})](x_n^*) = x_n^{**} (T_n^*(x_n^*)) = 1.
 \]
- If \(X^* \) is smooth: \(T_n^{**}(x_n^{**}) = \lambda_n x_n^{**} \). Thus,
 \[
 \| [T_n^{**}]^2 (x_n^{**}) \| = \| \lambda_n^2 x_n^{**} \| = 1.
 \]
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with $n(X) = 1$. Then
- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Proving that X^* is not smooth:
- $\dim(X) > 1$, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, $\|T\| = 1$.
- (AcostaPAYÁ1993): exists $\{T_n\} \to T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = \|T_n\| = 1$.
- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} \times S_{X^{**}}$ such that
 \[
 \lambda_n x_n^{**}(x_n^*) = 1 \quad \text{and} \quad [T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.
 \]
- If X^* is smooth: $T_n^{**}(x_n^{**}) = \lambda_n x_n^{**}$. Thus,
 \[
 \| [T_n^{**}]^2 (x_n^{**}) \| = \| \lambda_n^2 x_n^{**} \| = 1.
 \]
- But, since $T_n \to T$ and $T^2 = 0$, then $[T_n^{**}]^2 \to 0$!! ☑
Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, $n(X) = 1$. Then
- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

$X = C(T)/A(D)$. $X^* = H^1$ is smooth $\implies n(X) < 1 \& n(H^1) < 1$.
Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be an infinite-dimensional Banach space with $n(X) = 1$. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

$X = C(\mathbb{T})/A(\mathbb{D})$. $X^* = H^1$ is smooth $\implies n(X) < 1 \& n(H^1) < 1$.

Example without completeness

- There is X (non-complete) strictly convex with $X^* \equiv L_1(\mu)$, so $n(X) = 1$.
- \tilde{X} completion of X. For $F \subseteq S_{\tilde{X}}$ maximal face, $B_{\tilde{X}} = \overline{\text{aconv}}(F)$.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets–M.–Merí–Payá, 2009)

\(X \) infinite-dimensional Banach space, \(n(X) = 1 \). Then

- \(X^* \) is neither smooth nor strictly convex.
- The norm of \(X \) cannot be Fréchet-smooth.
- There is no WLUR points in \(S_X \).

Corollary

\(X = C(T)/A(D) \). \(X^* = H^1 \) is smooth \(\implies n(X) < 1 \) & \(n(H^1) < 1 \).

Example without completeness

- There is \(X \) (non-complete) strictly convex with \(X^* \equiv L_1(\mu) \), so \(n(X) = 1 \).
- \(\tilde{X} \) completion of \(X \). For \(F \subseteq S_{\tilde{X}} \) maximal face, \(B_{\tilde{X}} = \overline{\text{aconv}}(F) \).

Open question

Is there \(X \) with \(n(X) = 1 \) which is smooth or strictly convex?
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\text{dist}(X, \ell^2(m)) \geq c m^{1/4}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.

Old examples

$$\text{dist}(\ell^1(m), \ell^2(m)) = \text{dist}(\ell^\infty(m), \ell^2(m)) = m^{1/2}$$

Open questions

Is there a universal constant \tilde{c} such that

$$\text{dist}(X, \ell^2(m)) \geq \tilde{c} m^{1/2}$$

for every $m \in \mathbb{N}$ and every m-dimensional X’s with $n(X) = 1$?

What is the diameter of the set of all m-dimensional X’s with $n(X) = 1$?
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant \(c \) such that

\[
\text{dist}(X, \ell_2^{(m)}) \geq c \, m^{\frac{1}{4}}
\]

for every \(m \in \mathbb{N} \) and every \(m \)-dimensional \(X \) with \(n(X) = 1 \).
Numerical index Banach spaces with numerical index one

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)
There is a universal constant c such that

$$\text{dist}(X, \ell_2^{(m)}) \geq c \, m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.

Old examples

$$\text{dist}(\ell_1^{(m)}, \ell_2^{(m)}) = \text{dist}(\ell_\infty^{(m)}, \ell_2^{(m)}) = m^{\frac{1}{2}}$$
Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\text{dist}(X, \ell_2^m) \geq c \, m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X) = 1$.

Old examples

$$\text{dist}(\ell_1^m, \ell_2^m) = \text{dist}(\ell_\infty^m, \ell_2^m) = m^{\frac{1}{2}}$$

Open questions

- Is there a universal constant \tilde{c} such that
 $$\text{dist}(X, \ell_2^m) \geq \tilde{c} \, m^{\frac{1}{2}}$$
 for every $m \in \mathbb{N}$ and every m-dimensional X's with $n(X) = 1$?
- What is the diameter of the set of all m-dimensional X's with $n(X) = 1$?
How to deal with numerical index 1 property?

One the one hand: weaker properties

In a general Banach space, we only can construct compact (actually, finite-rank) operators. Actually, we only may easily calculate the norm of rank-one operators. All the results given before for Banach spaces in which we use numerical index 1 only need \(v(T) = \|T\| \) for every rank-one operator \(T \). This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

We do not know any operator-free characterization of Banach spaces with numerical index 1. When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more. Later we will study sufficient geometrical conditions. The weakest property is called lushness.
One the one hand: weaker properties

In a general Banach space, we only can construct compact (actually, finite-rank) operators. Actually, we only may easily calculate the norm of rank-one operators. All the results given before for Banach spaces in which we use numerical index 1 only need \(v(T) = \|T\| \) for every rank-one operator \(T \). This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

We do not know any operator-free characterization of Banach spaces with numerical index 1. When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more. Later we will study sufficient geometrical conditions. The weakest property is called lushness.
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \text{ for every rank-one operator } T. \]
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \text{ for every rank-one operator } T. \]
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties
One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of *rank-one* operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \text{ for every rank-one operator } T. \]
- This is called the **alternative Daugavet property (ADP)** and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need
 \[v(T) = \|T\| \] for every rank-one operator \(T \).
- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
- The weakest property is called lushness.
How to deal with numerical index 1 property?

One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

A very interesting property appears: the slicely countably determination. We will study this property later on.
One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

- Lushness
- Numerical index 1
- ADP

A very interesting property appears: the slicely countably determination. We will study this property later on.
How to deal with numerical index 1 property?

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the slicely countably determination.

lushness \iff Numerical index 1 \iff ADP
How to deal with numerical index 1 property?

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the *slicely countably determination*.
- We will study this property later on.

![Diagram showing the relationship between lushness, numerical index 1, and ADP properties](attachment:image.png)
The alternative Daugavet property

- The Daugavet property
- The alternative Daugavet property
 - Geometric characterizations
 - C^*-algebras and preduals
 - Some results

M. Martín and T. Oikberg

An alternative Daugavet property

M. Martín

The alternative Daugavet property of C^*-algebras and JB^*-triples
The alternative Daugavet property

The Daugavet property: motivation

- In a Banach space X with the \textbf{Radon-Nikodým property} the unit ball has many denting points.
In a Banach space X with the
Radon-Nikodým property the unit ball has many denting points.

$x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has

$$x \notin \overline{co}(B_X \setminus (x + \varepsilon B_X)).$$

$B_X \setminus (x + \varepsilon B_X)$
In a Banach space \(X \) with the **Radon-Nikodým property** the unit ball has many denting points.

- \(x \in S_X \) is a **denting point** of \(B_X \) if for every \(\varepsilon > 0 \) one has
 \[
 x \notin \overline{co}(B_X \setminus (x + \varepsilon B_X)).
 \]

- \(C[0,1] \) and \(L_1[0,1] \) have an extremely opposite property: for every \(x \in S_X \) and every \(\varepsilon > 0 \)
 \[
 \overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X.
 \]
The alternative Daugavet property

The Daugavet property: motivation

- In a Banach space X with the **Radon-Nikodým property** the unit ball has many denting points.
- $x \in S_X$ is a **denting point** of B_X if for every $\varepsilon > 0$ one has
 \[x \notin \overline{\text{co}}(B_X \setminus (x + \varepsilon B_X)) . \]
- $C[0,1]$ and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$
 \[\overline{\text{co}} \left(B_X \setminus (x + (2 - \varepsilon) B_X) \right) = B_X . \]
- This geometric property is equivalent to a property of operators on the space.
The Daugavet property: definition

The Daugavet equation

\(X \) Banach space, \(T \in L(X) \)

\[\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)} \]
The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}$$

Classical examples

1. **Daugavet, 1963:**
 Every compact operator on $C[0,1]$ satisfies (DE).

2. **Lozanoskii, 1966:**
 Every compact operator on $L_1[0,1]$ satisfies (DE).

3. **Abramovich, Holub, and more, 80’s:**
 $X = C(K)$, K perfect compact space
 or $X = L_1(\mu)$, μ atomless measure
 \implies every weakly compact $T \in L(X)$ satisfies (DE).
The Daugavet property: definition

The Daugavet equation

A Banach space X is said to have the *Daugavet property* iff every rank-one operator on X satisfies (DE).

★ Then, every weakly compact operator on X satisfies (DE).

The Daugavet property: geometric characterizations

Theorem [KSSW]

Let X be a Banach space. The following are equivalent (TFAE):

- X has the Daugavet property.

Every rank-one operator $T \in L(X)$ satisfies

\[\|\text{Id} + T\| = 1 + \|T\|. \]
The Daugavet property: geometric characterizations

Theorem [KSSW]

* X Banach space. TFAE:
 1. X has the Daugavet property.
 2. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\text{Re } x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
 3. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\text{Re } y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\text{Re } x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\text{Re } y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
Theorem [KSSW]

Let X be a Banach space. TFAE:

- X has the Daugavet property.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\Re x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\Re y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 \[\overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X. \]
Some propaganda

\(X \) with the Daugavet property. Then:

- \(X \) does not have the Radon-Nikodým property.

\((\text{Wojtaszczyk, 1992}) \)
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
 \((Wojtaszczyk, 1992)\)

- Every weakly-open subset of B_X has diameter 2.
 \((Shvidkoy, 2000)\)
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- X does not have unconditional basis.

 (Kadets, 1996)
The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
 \[(Wojtaszczyk, 1992)\]

- Every weakly-open subset of B_X has diameter 2.
 \[(Shvidkoy, 2000)\]

- X contains a copy of ℓ_1. X^* contains a copy of $L_1[0,1]$.
 \[(Kadets–Shvidkoy–Sirotkin–Werner, 2000)\]

- X does not have unconditional basis.
 \[(Kadets, 1996)\]

- X does not embed into a unconditional sum of Banach spaces without a copy of ℓ_1.
 \[(Shvidkoy, 2000)\]
The alternative Daugavet property

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

For a Banach space X, $T \in \mathbb{L}(X)$:

$$\sup \Re \nu(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|.$$

X Banach space: Daugavet property (DPr): every rank-one T satisfies $\|\text{Id} + T\| = 1 + \|T\|$ (DE).

Numerical index 1: every T satisfies $\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$ (aDE).

The alternative Daugavet property (M.–Oikhberg, 2004)

Alternative Daugavet property (ADP): every rank-one $T \in \mathbb{L}(X)$ satisfies (aDE).

Then, every weakly compact operator satisfies (aDE).
Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:
Observation (Duncan-McGregor-Price-White, 1970)

Let X be a Banach space, $T \in L(X)$:
\[\sup \Re V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|. \]
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

\(X \) Banach space, \(T \in L(X) \):

- \(\sup \Re V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\| \).
- \(v(T) = \|T\| \iff \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \).
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

- $\sup \text{Re} V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|.$
- $\nu(T) = \|T\| \iff \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|.$

X Banach space:

- **Daugavet property (DPr)**: every rank-one T satisfies

$$\|\text{Id} + T\| = 1 + \|T\| \quad (\text{DE})$$
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

\[X \text{ Banach space, } T \in L(X): \]
- \[\text{sup } \text{Re } V(T) = \|T\| \iff \|\text{Id} + T\| = 1 + \|T\|. \]
- \[v(T) = \|T\| \iff \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|. \]

X Banach space:
- **Daugavet property (DPr):** every rank-one \(T \) satisfies
 \[\|\text{Id} + T\| = 1 + \|T\| \] (DE)
- **numerical index 1:** every \(T \) satisfies
 \[\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\| \] (aDE)
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

Let X be a Banach space, $T \in L(X)$:

- $\sup \Re V(T) = \|T\| \iff \|\Id + T\| = 1 + \|T\|.$
- $v(T) = \|T\| \iff \max_{\theta \in \mathbb{T}} \|\Id + \theta T\| = 1 + \|T\|.$

X Banach space:

- **Daugavet property (DPr):** every rank-one T satisfies
 \[\|\Id + T\| = 1 + \|T\| \quad \text{(DE)} \]
- **Numerical index 1:** every T satisfies
 \[\max_{\theta \in \mathbb{T}} \|\Id + \theta T\| = 1 + \|T\| \quad \text{(aDE)} \]

The alternative Daugavet property (M.–Oikhberg, 2004)

- **Alternative Daugavet property (ADP):** every rank-one $T \in L(X)$ satisfies (aDE).
 - Then, every weakly compact operator satisfies (aDE).
Relations between the properties

Example: $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1. c_0 has numerical index 1, but has not DPr.

Remark: For RNP or Asplund spaces, ADP implies numerical index 1. Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Relations between the properties

- Daugavet property \iff Numerical index 1

Examples

- \(C([0,1], K(\ell_2)) \) has DPr, but has not numerical index 1
- \(c_0 \) has numerical index 1, but has not DPr
- \(c_0 \oplus_\infty C([0,1], K(\ell_2)) \) has ADP, neither DPr nor numerical index 1

Remarks

For RNP or Asplund spaces, ADP \(\Rightarrow \) numerical index 1.

Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Relations between the properties

- Daugavet property \iff Numerical index 1
- ADP

Examples
- \(C([0,1], K(\ell_2)) \) has DPr, but has not numerical index 1
- \(c_0 \) has numerical index 1, but has not DPr
- \(c_0 \oplus \infty C([0,1], K(\ell_2)) \) has ADP, neither DPr nor numerical index 1

Remarks
- For RNP or Asplund spaces, ADP \implies numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:
- X has the ADP.

Every rank-one operator $T \in L(X)$ (equivalently, every weakly compact operator) satisfies

$$\max_{|\omega|=1} \|\text{Id} + \omega T\| = 1 + \|T\|.$$
The alternative Daugavet property

Geometric characterizations of the ADP

Theorem

* X Banach space. TFAE:
 - X has the ADP.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 $$|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon.$$
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 $$|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon.$$
Geometric characterizations of the ADP

Theorem

Let X be a Banach space. TFAE:

1. X has the ADP.
2. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
3. For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
Geometric characterizations of the ADP

Theorem

\(X\) Banach space. TFAE:

- \(X\) has the ADP.
- For every \(x \in S_X\), \(x^* \in S_{X^*}\), and \(\varepsilon > 0\), there exists \(y \in S_X\) such that
 \[|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon.\]
- For every \(x \in S_X\), \(x^* \in S_{X^*}\), and \(\varepsilon > 0\), there exists \(y^* \in S_{X^*}\) such that
 \[|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon.\]
- For every \(x \in S_X\) and every \(\varepsilon > 0\), we have
 \[B_X = \overline{\text{co}}\left(\mathbb{T} \{y \in B_X : \|x - y\| \geq 2 - \varepsilon\}\right).\]
Let V_* be the predual of the von Neumann algebra V.
Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.
Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:
- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:
- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

$V = C \oplus \infty N$, where C is commutative and N has no atomic projections.
Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:
- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:
- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

The alternative Daugavet property of V_* is equivalent to:
- the atomic projections of V are central, or
- $|v(v_*)| = 1$ for $v \in \text{ext}(B_V)$ and $v_* \in \text{ext}(B_{V^*})$, or
- $V = C \oplus_{\infty} N$, where C is commutative and N has no atomic projections.
Let X be a C^*-algebra.

Let X be a C^*-algebra.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w*-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w^*-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (L´opez–M.–Pay´a, 1999)

Not every real Banach space can be renormed with the ADP.

\[X \text{ real reflexive with ADP} \implies X \text{ finite-dimensional.} \]

Moreover, \(X \text{ real, RNP, } \dim(X) = \infty, \text{ and ADP, then } X \supset \ell_1. \)

A very recent result (Avil ´es–Kadets–M.–Mer´ı–Shepelska)

If \(X \) is real, \(\dim(X) = \infty \) and \(X \) has the ADP, then \(X^* \supset \ell_1. \)

A renorming result (Boyko–Kadets–M.–Mer´ı, 2009)

If \(X \) is separable, \(X \supset c_0, \) then \(X \) can be renormed with the ADP.
Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.
Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.
Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\implies X$ finite-dimensional.
Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\implies X$ finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.
Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.
- X real reflexive with ADP $\implies X$ finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)
If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.
Some results on the ADP: isomorphic properties

Remark
Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)
Not every real Banach space can be renormed with the ADP.
- If X is real reflexive with ADP, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)
If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.

A renorming result (Boyko–Kadets–M.–Merí, 2009)
If X is separable, $X \supset c_0$, then X can be renormed with the ADP.
Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merlí–Paya, 2009)

\(X \) infinite-dimensional with the ADP. Then \(X^* \) is neither smooth nor strictly convex. The norm of \(X \) cannot be Fréchet-smooth. There is no WLUR points in \(S_X \).

Corollary

\(X = C(T)/A(D) \). Since \(X^* = H_1 \) is smooth \(\Rightarrow \) nor \(X \) nor \(H_1 \) have the ADP.

Open question

Is there \(X \) with the ADP which is smooth or strictly convex?
Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.
Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional with the ADP. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.
The alternative Daugavet property

Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

Let X be infinite-dimensional with the ADP. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

$X = C(\mathbb{T})/A(\mathbb{D})$. Since $X^* = H^1$ is smooth \implies nor X nor H^1 have the ADP.
Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

If X is infinite-dimensional with the ADP. Then
- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X.

Corollary

\[X = C(\mathbb{T})/A(\mathbb{D}). \] Since $X^* = H^1$ is smooth \implies nor X nor H^1 have the ADP.

Open question

Is there X with the ADP which is smooth or strictly convex?
Lush spaces

- Definition and examples
- Lush renorming
- Reformulations of lushness and applications
- Lushness is not equivalent to numerical index one

K. Boyko, V. Kadets, M. Martín, and J. Merí.

K. Boyko, V. Kadets, M. Martín, and D. Werner.

V. Kadets, M. Martín, J. Merí, and R. Payá.

V. Kadets, M. Martín, J. Merí, and V. Shepelska.
Motivation

Remark

Usually, when we show that a Banach space has numerical index 1, we actually prove more. We do not have an operator-free characterization of the spaces with numerical index 1. Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) Fullerton, 1961: X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[n(X) = 1 \]
Remark

Usually, when we show that a Banach space has numerical index 1, we actually prove more.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.
Lush spaces

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
Motivation

Remark
- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions
Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964**: X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964**: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961**: X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.
Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an **almost-CL-space** if B_X is the closed absolutely convex hull of every maximal face of S_X.

$$n(X) = 1$$
Lush spaces

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X.

\[n(X) = 1 \]
Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an **almost-CL-space** if B_X is the closed absolutely convex hull of every maximal face of S_X.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>$n(X) = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation

Showing that (c) $\implies n(X) = 1$, one realizes that (c) is too much.
Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

(a) **Lindenstrauss, 1964:** X has the **3.2.I.P.** if the intersection of every family of three mutually intersecting balls is not empty.

(b) **Fullerton, 1961:** X is a **CL-space** if B_X is the absolutely convex hull of every maximal face of S_X.

(c) **Lima, 1978:** X is an **almost-CL-space** if B_X is the closed absolutely convex hull of every maximal face of S_X.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>$n(X) = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observation

Showing that $(c) \implies n(X) = 1$, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is **lush** if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, a\text{conv}(S(B_X, x^*, \varepsilon))) < \varepsilon.$$
Lush spaces

Definition and examples

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv}(S(B_X, x^*, \varepsilon)) \right) < \varepsilon.$$
Lush spaces

Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X \), \(\varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} (y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies \) \(n(X) = 1. \)
Lush spaces

Definition and examples

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is **lush** if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv} \left(S(B_X, x^*, \varepsilon) \right) \right) < \varepsilon.$$

Theorem

X lush $\implies n(X) = 1.$

Proof.
Lush spaces

Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is **lush** if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv} \left(S(B_X, x^*, \varepsilon) \right) \right) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies n(X) = 1. \)

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon \).
Lush spaces Definition and examples

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \left(y, \text{aconv} \left(S(B_X, x^*, \varepsilon) \right) \right) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies n(X) = 1. \)

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon \).
- Use lushness for \(x_0 = Ty_0 / \|Ty_0\| \) and \(y_0 \) to get \(x^* \in S_{X^*} \) and

\[
v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0,1], \sum \lambda_i = 1, \theta_i \in \mathbb{T},
\]

with \(\text{Re} \ x^*(x_0) > 1 - \varepsilon \quad \text{and} \quad \|v - y_0\| < \varepsilon. \)
Lush spaces Definition and examples

Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0 \), there is \(x^* \in S_{X^*} \) such that

\[
 x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} \,(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X \) lush \(\implies n(X) = 1. \)

Proof.

- \(T \in L(X) \) with \(\|T\| = 1, \varepsilon > 0 \). Find \(y_0 \in S_X \) which \(\|Ty_0\| > 1 - \varepsilon \).
- Use lushness for \(x_0 = Ty_0/\|Ty_0\| \) and \(y_0 \) to get \(x^* \in S_{X^*} \) and

\[
 v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0,1], \sum \lambda_i = 1, \theta_i \in \mathbb{T}, \]

with \(\text{Re} \, x^*(x_0) > 1 - \varepsilon \) \quad \text{and} \quad \|v - y_0\| < \varepsilon.

- Then \(|x^*(Tv)| = |x^*(x_0) - x^*(T(\frac{y_0}{\|Ty_0\|} - v))| \sim \|T\|. \)
Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given \(x, y \in S_X, \varepsilon > 0\), there is \(x^* \in S_{X^*}\) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist} (y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.
\]

Theorem

\(X\) lush \(\implies n(X) = 1.\)

Proof.

- \(T \in L(X)\) with \(\|T\| = 1, \varepsilon > 0\). Find \(y_0 \in S_X\) which \(\|Ty_0\| > 1 - \varepsilon.\)
- Use lushness for \(x_0 = Ty_0/\|Ty_0\|\) and \(y_0\) to get \(x^* \in S_{X^*}\) and

\[
v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0,1], \sum \lambda_i = 1, \theta_i \in \mathbb{T},
\]

with \(\text{Re } x^*(x_0) > 1 - \varepsilon\) and \(\|v - y_0\| < \varepsilon.\)

- Then \(\|x^*(Tv)\| = \|x^*(x_0) - x^*(T(\frac{y_0}{\|Ty_0\|} - v))\| \sim \|T\|.\)
- By a convexity argument, \(\exists i\) such that \(\|x^*(Tx_i)\| \sim \|T\|\) and \(\text{Re } x^*(x_i) \sim 1.\)
Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)

\(X\) is lush if given \(x, y \in S_X, \varepsilon > 0\), there is \(x^* \in S_{X^*}\) such that

\[x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad \text{dist}(y, \text{aconv}(S(B_X, x^*, \varepsilon))) < \varepsilon.\]

Theorem

\(X\) lush \(\implies n(X) = 1.\)

Proof.

1. \(T \in L(X)\) with \(\|T\| = 1, \varepsilon > 0\). Find \(y_0 \in S_X\) which \(\|Ty_0\| > 1 - \varepsilon\).
2. Use lushness for \(x_0 = Ty_0 / \|Ty_0\|\) and \(y_0\) to get \(x^* \in S_{X^*}\) and

\[v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \lambda_i \in [0, 1], \sum \lambda_i = 1, \theta_i \in \mathbb{T},\]

with \(\text{Re} x^*(x_0) > 1 - \varepsilon\) and \(\|v - y_0\| < \varepsilon.\)

3. Then \(|x^*(Tv)| = \left| x^*(x_0) - x^* \left(T \left(\frac{y_0}{\|Ty_0\|} - v \right) \right) \right| \sim \|T\|\).
4. By a convexity argument, \(\exists i\) such that \(|x^*(Tx_i)| \sim \|T\|\) and \(\text{Re} x^*(x_i) \sim 1.\)
5. Then \(\max_{\omega \in \mathbb{T}} \|\text{Id} + \omega T\| \sim 1 + \|T\| \implies v(T) \sim \|T\|.\) \(\checkmark\)
Examples of lush spaces

 In particular, \(C(K), L^1(\mu), C_0(L) \), . . .

2. Preduals of \(L^1(\mu) \)-spaces.

3. C-rich subspaces
 \(K \) compact, \(X \) subspace of \(C(K) \) is C-rich iff
 \[\forall U \text{ open nonempty and } \forall \epsilon > 0 \text{ exists } h : K \to [0, 1] \text{ continuous, } \text{supp}(h) \subseteq U \text{ such that } \text{dist}(h, X) < \epsilon. \]

4. More examples of lush spaces
 C-rich subspaces of \(C(K) \).

5. In particular, finite-codimensional subspaces of \(C[0, 1] \).

6. \(C_E(K \| L) \), where \(L \) nowhere dense in \(K \) and \(E \subseteq C(L) \).

7. \(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).
Examples of lush spaces

- Almost-CL-spaces.
Examples of lush spaces

2. In particular, \(C(K) \), \(L_1(\mu) \), \(C_0(L) \)…

Miguel Martín (University of Granada (Spain))

Numerical index theory

Bangalore, June 2009
Examples of lush spaces

- Almost-CL-spaces.
- In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$. . .
- Preduals of $L_1(\mu)$-spaces.
Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

Let K be compact, X a subspace of $C(K)$, and X is called C-rich iff for every open nonempty set U and every $\varepsilon > 0$ there exists a continuous function $h : K \to [0, 1]$ with support in U such that $\text{dist}(h, X) < \varepsilon$.

Examples of lush spaces
Examples of lush spaces

- Almost-CL-spaces.
- In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
- Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is **C-rich** iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \rightarrow [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.

More examples of lush spaces

- C-rich subspaces of $C(K)$.
Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$...
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is **C-rich** iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h : K \rightarrow [0, 1]$ continuous, $\text{supp}(h) \subseteq U$ such that $\text{dist}(h, X) < \varepsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
5. In particular, finite-codimensional subspaces of $C[0, 1]$.
Examples of lush spaces

2. In particular, $C(K)$, $L_1(\mu)$, $C_0(L)$.
3. Preduals of $L_1(\mu)$-spaces.

C-rich subspaces

A compact, X subspace of $C(K)$ is C-rich if and only if for all open nonempty U and all $\varepsilon > 0$, there exists a continuous function $h : K \rightarrow [0, 1]$ with support in U such that $\text{dist}(h, X) < \varepsilon$.

More examples of lush spaces

4. C-rich subspaces of $C(K)$.
5. In particular, finite-codimensional subspaces of $C[0, 1]$.
6. $C_E(K\|L)$, where L nowhere dense in K and $E \subseteq C(L)$.
Examples of lush spaces

2. In particular, \(C(K), L_1(\mu), C_0(L) \ldots \)
3. Preduals of \(L_1(\mu) \)-spaces.

C-rich subspaces

\(K \) compact, \(X \) subspace of \(C(K) \) is C-rich iff \(\forall U \) open nonempty and \(\forall \varepsilon > 0 \) exists \(h : K \rightarrow [0,1] \) continuous, \(\text{supp}(h) \subseteq U \) such that \(\text{dist}(h, X) < \varepsilon \).

More examples of lush spaces

4. C-rich subspaces of \(C(K) \).
5. In particular, finite-codimensional subspaces of \(C[0,1] \).
6. \(C_E(K\|L) \), where \(L \) nowhere dense in \(K \) and \(E \subseteq C(L) \).
7. \(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).
Lush renorming

The goal

When we may get a lush equivalent norm?
Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

X separable, X ⊇ c₀ → exists ∥·∥ ≃ ∥·∥ and T : (X, ∥·∥) → ℓₘ with T isometric embedding & c₀ ⊆ T(X) (canonical copy).
The goal

When we may get a lush equivalent norm?

Proposition

\(X\) separable, \(X \supseteq c_0 \implies\) exists \(\|\cdot\| \simeq \|\cdot\|\) and \(T : (X, \|\cdot\|) \to \ell_\infty\) with \(T\) isometric embedding & \(c_0 \subseteq T(X)\) (canonical copy).

Recall this family of examples of lush spaces

\(Y\) if \(c_0 \subseteq Y \subseteq \ell_\infty\) (canonical copies).
The goal

When we may get a lush equivalent norm?

Proposition

\(X \) separable, \(X \supseteq c_0 \implies \text{exists } \| \cdot \| \simeq \| \cdot \| \text{ and } T : (X, \| \cdot \|) \to \ell_\infty \) with
\(T \) isometric embedding & \(c_0 \subseteq T(X) \) (canonical copy).

Recall this family of examples of lush spaces

\(Y \) if \(c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).

Theorem

\(X \) separable, \(X \supseteq c_0 \implies X \text{ admits an equivalent lush norm.} \)
Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

\[X \text{ separable, } X \supseteq c_0 \implies \exists \| \cdot \| \simeq \| \cdot \| \text{ and } T : (X, \| \cdot \|) \to \ell_\infty \text{ with } T \text{ isometric embedding } \& \ c_0 \subseteq T(X) \text{ (canonical copy)}. \]

Recall this family of examples of lush spaces

\[Y \text{ if } c_0 \subseteq Y \subseteq \ell_\infty \text{ (canonical copies)}. \]

Theorem

\[X \text{ separable, } X \supseteq c_0 \implies X \text{ admits an equivalent lush norm}. \]

Corollary

Every closed subspace of \(c_0 \) admits an equivalent lush norm.
The goal

When we may get a lush equivalent norm?

Proposition

If X separable, $X \supseteq c_0 = \ell_\infty$, then there exists an equivalent lush norm and T isometric embedding such that $c_0 \subseteq T(X)$ (canonical copies).

Open problems

Recall this family of examples of lush spaces

Theorem

If X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.
Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

When \(X \) separable, \(X \supseteq c_0 = \ell^\infty \Rightarrow \exists \| \cdot \| \simeq \| \cdot \| \) and \(T : (X, \| \cdot \|) \rightarrow \ell^\infty \) with \(T \) isometric embedding & \(c_0 \subseteq T(X) \) (canonical copy).

Open problems

- Find more sufficient conditions to get equivalent lush norms.

Recall

- \(Y \uparrow c_0 \subseteq Y \subseteq \ell^\infty \) (canonical copies).

Theorem

When \(X \) separable, \(X \supseteq c_0 \Rightarrow X \) admits an equivalent lush norm.

Corollary

Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Lush renorming

The goal
When we may get a lush equivalent norm?

Proposition

- \(\text{X separable, } X \supseteq c_0 \Rightarrow \exists ||| \cdot ||| \cong \| \cdot \| \text{ and } T: (X, ||| \cdot |||) \to \ell_\infty \text{ with } T \text{ isometric embedding } \& c_0 \subseteq T(X) \) (canonical copy).

Recall this family of examples of lush spaces

- \(\text{Y if } c_0 \subseteq Y \subseteq \ell_\infty \) (canonical copies).

Open problems
- Find more sufficient conditions to get equivalent lush norms.
- When \(X \supseteq \ell_1 \)?

Theorem

- \(X \text{ separable, } X \supseteq c_0 \Rightarrow X \text{ admits an equivalent lush norm.} \)

Corollary

- Every closed subspace of \(c_0 \) admits an equivalent lush norm.
Lush renorming

The goal

When we may get a lush equivalent norm?

Proposition

X separable, $X \supseteq c_0 = \Rightarrow \exists ||| \cdot ||| \simeq \| \cdot \|

and $T: (X, ||| \cdot |||) \to \ell_\infty$ with T isometric embedding & $c_0 \subseteq T(X)$ (canonical copy).

Open problems

- Find more sufficient conditions to get equivalent lush norms.
- When $X \supseteq \ell_1$?
- When $X \supseteq \ell_\infty$?

Recall this family of examples of lush spaces Y if $c_0 \subseteq Y \subseteq \ell_\infty$ (canonical copies).

Theorem

X separable, $X \supseteq c_0 \Rightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.
Observation

(a) Exists \(A \subset B_{X^*} \) norming, \(|x^{**}(a^*)| = 1 \) \(\forall a^* \in A \) and \(\forall x^{**} \in \text{ext}(B_{X^{**}}) \).

(b) For \(x \in S_{X} \) and \(\varepsilon > 0 \), exists \(x^* \in S_{X^*} \) such that \(x \in S_{(B_{X}, x^*, \varepsilon)} \) and \(B_{X} = \text{aconv}(S_{(B_{X}, x^*, \varepsilon)}) \).

\[a = = = = \]

\[b = = = = \]

lushness

Definition (Werner, 1997)

\(X \) is nicely embedded in \(C_b(\Omega) \) if exists \(J: X \rightarrow C_b(\Omega) \) linear isometry with

1. \(\|J^* \delta_s\| = 1 \) \(\forall s \in \Omega \),
2. span\((J^* \delta_s)\) \(L \)-summand in \(X^* \) \(\forall s \in \Omega \).

Even more examples of lush spaces

Nicely embedded Banach spaces (they fulfil (a)).

In particular, function algebras (as \(A(D) \) and \(H_\infty \)).
Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1$ $\forall a^* \in A$ and $\forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).$$

(a) \iff (b) \iff lushness
Observation

X Banach space. Consider the following assertions.

(a) Exists \(A \subset B_{X^*} \) norming, \(|x^{**}(a^*)| = 1 \ \forall a^* \in A \) and \(\forall x^{**} \in \text{ext}(B_{X^{**}}) \).

(b) For \(x \in S_X \) and \(\varepsilon > 0 \), exists \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).
\]

\[\begin{align*}
(a) \quad \Longrightarrow \quad & (b) \quad \Longrightarrow \quad \text{lushness}
\end{align*}\]

Definition (Werner, 1997)

X is **nicely embedded** in \(C_b(\Omega) \) if exists \(J : X \longrightarrow C_b(\Omega) \) linear isometry with

(N1) \(\|J^* \delta_s\| = 1 \ \forall s \in \Omega \),

(N2) \(\text{span}(J^* \delta_s) \) \(L \)-summand in \(X^* \) \(\forall s \in \Omega \).
Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1 \ \forall a^* \in A$ and $\forall x^{**} \in \text{ext} \left(B_{X^{**}} \right)$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J : X \longrightarrow C_b(\Omega)$ linear isometry with

\[(N1) \quad \|J^* \delta_s\| = 1 \ \forall s \in \Omega,\]

\[(N2) \quad \text{span}(J^* \delta_s) \ L\text{-summand in } X^* \ \forall s \in \Omega.\]

Even more examples of lush spaces
Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.

(a) Exists \(A \subset B_{X^*} \) norming, \(|x^{**}(a^*)| = 1 \ \forall a^* \in A \) and \(\forall x^{**} \in \text{ext}(B_{X^{**}}) \).

(b) For \(x \in S_X \) and \(\varepsilon > 0 \), exists \(x^* \in S_{X^*} \) such that

\[
x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).
\]

Definition (Werner, 1997)

X is **nicely embedded** in \(C_b(\Omega) \) if exists \(J : X \rightarrow C_b(\Omega) \) linear isometry with

\[
(N1) \quad \|J^* \delta_s\| = 1 \ \forall s \in \Omega,
\]

\[
(N2) \quad \text{span}(J^* \delta_s) \text{ } L\text{-summand in } X^* \ \forall s \in \Omega.
\]

Even more examples of lush spaces

- Nicely embedded Banach spaces (they fulfil (a)).
Even more examples of lush spaces

Observation

Let X be a Banach space. Consider the following assertions.

(a) Exists $A \subset B_{X^*}$ norming, $|x^{**}(a^*)| = 1 \forall a^* \in A$ and $\forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For $x \in S_X$ and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{aconv}}(S(B_X, x^*, \varepsilon)).$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if there exists $J : X \longrightarrow C_b(\Omega)$ linear isometry with

1. $\|J^*\delta_s\| = 1 \forall s \in \Omega$,
2. span$(J^*\delta_s)$ L-summand in $X^* \forall s \in \Omega$.

Even more examples of lush spaces

- Nicely embedded Banach spaces (they fulfil (a)).
- In particular, function algebras (as $A(\mathbb{D})$ and H^∞).
Some reformulations of lushness

Proposition

X is lush,

Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.
Some reformulations of lushness

Proposition

Let X be a Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.
Proposition

\(X \) Banach space. TFAE:

- \(X \) is lush,
- Every separable \(E \subset X \) is contained in a separable lush \(Y \) with \(E \subset Y \subset X \).

Separable lush spaces

\(X \) separable. TFAE:

- \(X \) is lush.
- There is \(G \subseteq S_{X^*} \) norming such that
 \[
 B_X = \overline{aconv(S(B_X, x^*, \varepsilon))}
 \]
 for every \(\varepsilon > 0 \) and every \(x^* \in G \).
- There is \(G \subseteq \text{ext}(B_{X^*}) \) norming such that
 \[
 |x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).
 \]
Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a **separable lush** Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ **norming** such that
 \[B_X = \text{aconv} \left(\{ x \in B_X : x^*(x) = 1 \} \right) \quad (x^* \in G). \]

Therefore, $|x^{**}(x^*)| = 1 \ \forall x^{**} \in \text{ext} \left(B_{X^{**}} \right) \ \forall x^* \in G.$
Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

$$B_X = \overline{aconv} \left(\{ x \in B_X : x^*(x) = 1 \} \right) \quad (x^* \in G).$$

Therefore, $|x^{**}(x^*)| = 1 \ \forall x^{**} \in \text{ext} (B_{X^{**}}) \ \forall x^* \in G$.

We almost returned to the almost-CL-space definition !!
Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

\[
B_X = \overline{\text{aconv}} \left(\{ x \in B_X : x^*(x) = 1 \} \right) \quad (x^* \in G).
\]

Therefore, $|x^{**}(x^*)| = 1 \ \forall x^{**} \in \text{ext} (B_{X^{**}}) \ \forall x^* \in G$.

Consequence (real case)

$X \subseteq C[0,1]$ strictly convex or smooth $\implies C[0,1]/X$ contains $C[0,1]$.
An important consequence

Remark

X lush separable, \(\dim(X) = \infty \Rightarrow \) there is \(G \in S_X^* \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_X^{**}), x^* \in G). \]

Proposition (López–M.—Paya, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_X^*), a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \Rightarrow X^* \supseteq \ell_1. \)
An important consequence

Remark

If X is lush separable, $\dim(X) = \infty \implies$ there is $G \in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).$$
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).
An important consequence

Remark

\[X \text{ lush separable, } \dim(X) = \infty \implies \text{ there is } G \subset S_{X^*} \text{ infinite such that} \]
\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\[X \text{ real, } A \subset S_X \text{ infinite such that} \]
\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\[X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1. \]
An important consequence

Remark

X lush separable, $\dim(X) = \infty \implies$ there is $G \in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).$$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).$$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Proof.
An important consequence

Remark

x lush separable, $\dim(x) = \infty \implies$ there is $G \in S_{x^*}$ infinite such that

$$|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{x^{**}}), \ x^* \in G).$$

Proposition (López–M.–Payá, 1999)

x real, $A \subset S_x$ infinite such that

$$|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{x^*}), \ a \in A).$$

Then, $x \supseteq c_0$ or $x \supseteq \ell_1$.

Main consequence

x real lush, $\dim(x) = \infty \implies x^* \supseteq \ell_1$.

Proof.

- There is $E \subseteq x$ separable and lush.
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1. \)

Proof.

- There is \(E \subseteq X \) separable and lush.
- Then \(E^* \supseteq c_0 \) or \(E^* \supseteq \ell_1 \implies E^* \supseteq \ell_1. \)
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \) \(\implies \) there is \(G \in S_{X^*} \) infinite such that

\[
|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G).
\]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[
|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A).
\]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \) \(\implies \) \(X^* \supseteq \ell_1 \).

Proof.

- There is \(E \subseteq X \) separable and lush.
- Then \(E^* \supseteq c_0 \) or \(E^* \supseteq \ell_1 \) \(\implies \) \(E^* \supseteq \ell_1 \).
- By “lifting” property of \(\ell_1 \) \(\implies \) \(X^* \supseteq \ell_1 \).
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1. \)

Question

What happens if just \(n(X) = 1 \) ?
An important consequence

Remark

\(X \) lush separable, \(\dim(X) = \infty \implies \) there is \(G \in S_{X^*} \) infinite such that

\[|x^{**}(x^*)| = 1 \quad (x^{**} \in \text{ext}(B_{X^{**}}), \ x^* \in G). \]

Proposition (López–M.–Payá, 1999)

\(X \) real, \(A \subset S_X \) infinite such that

\[|x^*(a)| = 1 \quad (x^* \in \text{ext}(B_{X^*}), \ a \in A). \]

Then, \(X \supseteq c_0 \) or \(X \supseteq \ell_1 \).

Main consequence

\(X \) real lush, \(\dim(X) = \infty \implies X^* \supseteq \ell_1. \)

Question

What happens if just \(n(X) = 1 \)? The same, we will prove later.
Lush spaces

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space X such that X^* is lush but X is not lush. Since $n(X^*) = 1$, also $n(X) = 1$.

The set $\{x^* \in S_{X^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{X^{**}})\}$ is empty.

Consequence

X lush $\neq X^*$ lush

Proposition

X^{**} lush $\neq X$ lush

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 80 / 136
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that
- \mathcal{X}^* is lush but \mathcal{X} is not lush.
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

$$\{x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}})\}$$

is empty.
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

$$\{ x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}}) \}$$

is empty.

Consequence

$\text{X lush} \iff \text{X}^* \text{ lush}$
Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.
- The set

$$\{x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}})\}$$

is empty.

Consequence

$$X \text{ lush} \iff X^* \text{ lush}$$

Proposition

$$X^{**} \text{ lush} \iff X \text{ lush}$$
Slicely countably determined spaces

Slicely countably determined spaces
- Slicely Countably Determined sets and spaces
- Applications to numerical index 1 spaces
- SCD operators
- Open questions

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska
Slicely Countably Determined Banach spaces
SCD sets: Definitions and preliminary remarks

SCD sets
A subset A of a Banach space X is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A such that:

1. Every slice of A contains one of the S_n's.
2. $A \subseteq \text{conv}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset$ for all n.
3. Given a sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in S_n$ for all n, $A \subseteq \text{conv}\{x_n : n \in \mathbb{N}\}$.

Remarks
- A set A is SCD if and only if A is SCD.
- If A is SCD, then A is separable.
X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:
X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subseteq X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
- $A \subseteq \overline{\text{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,

Remarks

A is SCD iff A is SCD. If A is SCD, then it is separable.
SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n’s,
- $A \subseteq \overline{\text{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in S_n \ \forall n \in \mathbb{N}$, $A \subseteq \overline{\text{conv}}(\{x_n : n \in \mathbb{N}\})$.

Remarks

A is SCD iff A is SCD.

If A is SCD, then it is separable.
X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is **Slicely Countably Determined (SCD)** if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n's,
- $A \subseteq \overline{\text{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \in S_n \ \forall n \in \mathbb{N}$, $A \subseteq \overline{\text{conv}}(\{x_n : n \in \mathbb{N}\})$.

Remarks

- A is SCD iff \overline{A} is SCD.
- If A is SCD, then it is separable.
SCD sets: Elementary examples I

Example
A separable and \(A = \text{conv}(\text{dent}(A)) \Rightarrow A \) is SCD.

Proof.
Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \text{conv}(\{a_n : n \in \mathbb{N}\}) \).

For every \(n, m \in \mathbb{N} \), take a slice \(S_{n,m} \) containing \(a_n \) and of diameter \(1/m \).

If \(B \cap S_{n,m} \neq \emptyset \) for all \(n, m \in \mathbb{N} \), \(a_n \in B \) for all \(n \in \mathbb{N} \).

Therefore, \(A = \text{conv}(\{a_n : n \in \mathbb{N}\}) \subseteq \text{conv}(B) = \text{conv}(B) \).

✓

Example
In particular, \(A_{RNP} \) separable \(\Rightarrow A \) SCD.

Corollary
If \(X \) is separable LUR \(\Rightarrow B_X \) is SCD.

So, every separable space can be renormed such that \(B(X, |·|) \) is SCD.
Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.
Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \) \(\implies \) A is SCD.

Proof.

- Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \).
Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 83 / 136
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.

Therefore, $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}}(B) = \overline{\text{conv}}(B) \implies A$ is SCD.

Example

In particular, A_{RNP} separable $\Rightarrow A$ SCD.

Corollary

If X is separable LUR $\Rightarrow B_X$ is SCD.

So, every separable space can be renormed such that B_X is SCD.
Example

A separable and \(A = \overline{\text{conv}}(\text{dent}(A)) \implies A \) is SCD.

Proof.

- Take \(\{a_n : n \in \mathbb{N}\} \) denting points with \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \).
- For every \(n, m \in \mathbb{N} \), take a slice \(S_{n,m} \) containing \(a_n \) and of diameter \(1/m \).
- If \(B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N} \).
- Therefore, \(A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}(B)} = \overline{\text{conv}(B)}. \checkmark \)
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.
- Therefore, $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}(B)} = \overline{\text{conv}(B)}$. ✓

Example

In particular, A RNP separable $\implies A$ SCD.
SCD sets: Elementary examples I

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \implies A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter $1/m$.
- If $B \cap S_{n,m} \neq \emptyset \quad \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \quad \forall n \in \mathbb{N}$.
- Therefore, $A = \overline{\text{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\text{conv}}(\overline{B}) = \text{conv}(B)$. ✓

Example

In particular, A RNP separable $\implies A$ SCD.

Corollary

- If X is separable LUR $\implies B_X$ is SCD.
- So, every separable space can be renormed such that $B_{(X,||\cdot||)}$ is SCD.
Example

If X^* is separable, then A is SCD.

Proof.

Take \(\{x^*_n : n \in \mathbb{N} \} \) dense in S_{X^*}. For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x^*_n, 1/m)$. It is easy to show that any slice of A contains one of the $S_{n,m}$.

Negative example

If X has the Daugavet property, then B_X is not SCD. Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.

Fix $x_0 \in B_X$ and a sequence of slices $\{S_n\}$ of B_X. By [KSSW] there is a sequence $(x_n) \subset B_X$ such that $x_n \in S_n$ for every $n \in \mathbb{N}$, $(x_n)_n \geq 0$ is equivalent to the basis of ℓ_1, so $x_0 \not\in \text{lin} \{x_n : n \in \mathbb{N} \}$.

\(\Box \)
Example

If X^* is separable $\implies A$ is SCD.
Example

If X^* is separable $\implies A$ is SCD.

Proof.
Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
SCD sets: Elementary examples II

Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x^*_n : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x^*_n, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓
Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x^*_n : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x^*_n, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD.

Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.
Example

If X^* is separable $\Rightarrow A$ is SCD.

Proof.

- Take $\{x^*_n : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x^*_n, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\Rightarrow B_X$ is not SCD.
Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.
SCD sets: Elementary examples II

Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD.

Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.

- Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X.
Example

If X^* is separable $\implies A$ is SCD.

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*}.
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$. ✓

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD.

Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.

- Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X.
- By [KSSW] there is a sequence $(x_n) \subset B_X$ such that
 - $x_n \in S_n$ for every $n \in \mathbb{N}$,
 - $(x_n)_{n \geq 0}$ is equivalent to the basis of ℓ_1,
 - so $x_0 \not\in \text{lin}\{x_n : n \in \mathbb{N}\}$. ✓
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \]

\[\lambda_k \geq 0, \quad \sum \lambda_k = 1, \quad S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

\(A \) has small combinations of slices iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.

Example

If \(A \) has small combinations of slices + separable \(\Rightarrow A \) is SCD.

Particular case

\(A \) strongly regular + separable \(\Rightarrow A \) is SCD.
Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]
Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable \(\implies \) A is SCD.
SCD sets: Further examples I

Convex combination of slices

\[W = \sum_{k=1}^{m} \lambda_k S_k \subset A \text{ where } \lambda_k \geq 0, \sum \lambda_k = 1, S_k \text{ slices.} \]

Proposition

In the definition of SCD we can use a sequence \(\{S_n : n \in \mathbb{N}\} \) of convex combinations of slices.

Small combinations of slices

\(A \) has **small combinations of slices** iff every slice of \(A \) contains convex combinations of slices of \(A \) with arbitrary small diameter.

Example

If \(A \) has small combinations of slices + separable \(\implies \) \(A \) is SCD.

Particular case

\(A \) strongly regular + separable \(\implies \) \(A \) is SCD.
SCD sets: Further examples II

Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π-bases

A_{π}-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i's.

Proposition

If $(A, \sigma(X, X^*))$ has a countable π-base $\Rightarrow A$ is SCD.
Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.
Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.
Bourgain’s lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π-bases

A π-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i's.
Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π-bases
A π-base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i’s.

Proposition
If $(A, \sigma(X, X^*))$ has a countable π-base $\implies A$ is SCD.
Theorem A separable without ℓ_1-sequences $\Rightarrow (A, \sigma(X,X^*))$ has a countable π-base.

Proof. We see $(A, \sigma(X,X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*,X))$. By Rosenthal ℓ_1 theorem, $(A, \sigma(X,X^*))$ is a relatively compact subset of the space of first Baire class functions on T. By a result of Todor ˇcevi´c, $(A, \sigma(X,X^*))$ has a σ-disjoint π-base.

$\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.

A σ-disjoint family of open subsets in a separable space is countable. ✓

Example A separable without ℓ_1-sequences $\Rightarrow A$ is SCD.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

We see $(A, \sigma(X, X^*)) \subseteq C(T)$ where $T = (B_{X^*}, \sigma(X, X^*))$. By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T. By a result of Todor ˇcevi´c, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.

A σ-disjoint family of open subsets in a separable space is countable.

✓

Example

A separable without ℓ_1-sequences $\implies A$ is SCD.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
- $\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
SCD sets: Further examples III

Theorem

A separable without ℓ_1-sequences $\implies (A, \sigma(X, X^*))$ has a countable π-base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ-disjoint π-base.
- $\{V_i : i \in I\}$ is σ-disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
- A σ-disjoint family of open subsets in a separable space is countable. ✓
Theorem

A separable without \(\ell_1 \)-sequences \(\implies \) \((A, \sigma(X, X^*))\) has a countable \(\pi \)-base.

Proof.

- We see \((A, \sigma(X, X^*)) \subset C(T)\) where \(T = (B_{X^*}, \sigma(X^*, X))\).
- By Rosenthal \(\ell_1 \) theorem, \((A, \sigma(X, X^*))\) is a relatively compact subset of the space of first Baire class functions on \(T\).
- By a result of Todorčević, \((A, \sigma(X, X^*))\) has a \(\sigma\)-disjoint \(\pi\)-base.
- \(\{V_i : i \in I\}\) is \(\sigma\)-disjoint if \(I = \bigcup_{n \in \mathbb{N}} I_n\) and each \(\{V_i : i \in I_n\}\) is pairwise disjoint.
- A \(\sigma\)-disjoint family of open subsets in a separable space is countable. ✓

Example

A separable without \(\ell_1 \)-sequences \(\implies \) \(A\) is SCD.
SCD spaces: definition and examples

SCD space X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces
1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X^* ⊉ \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces
1. X having the Daugavet property.
2. In particular, $C[0, 1]$, $L_1[0, 1]$.
3. There is X with the Schur property which is not SCD.

Remark
Every subspace of a SCD space is SCD. This is false for quotients.
SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \not\subseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L_1[0,1]$.
3. There is X with the Schur property which is not SCD.

Remark

Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.

Remark

Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \not\subseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1], L_1[0,1]$.
3. There is X with the Schur property which is not SCD.

Remark: Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable $X \nsubseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L^1[0,1]$.
3. There is X with the Schur property which is not SCD.

Remark

Every subspace of a SCD space is SCD. This is false for quotients.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable X \(\not\subseteq \ell_1 \). In particular, if X* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, \(C[0,1] \), \(L_1[0,1] \)
SCD spaces: definition and examples

SCD space

A **SCD** (Slicely Countably Determined) space is one where all its convex bounded subsets are SCD. Mathematically:

\[X \text{ is Slicely Countably Determined (SCD) if so are its convex bounded subsets.} \]

Examples of SCD spaces

1. **X** separable strongly regular. In particular, RNP, CPCP spaces.
2. **X** separable \(X \not\subseteq \ell_1 \). In particular, if \(X^* \) is separable.

Examples of NOT SCD spaces

1. **X** having the Daugavet property.
2. In particular, \(C[0,1], \ L_1[0,1] \)
3. There is \(X \) with the Schur property which is not SCD.
SCD spaces: definition and examples

SCD space

X is **Slicely Countably Determined (SCD)** if so are its convex bounded subsets.

Examples of SCD spaces

1. X separable strongly regular. In particular, RNP, CPCP spaces.
2. X separable X $\not\supset \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

1. X having the Daugavet property.
2. In particular, $C[0,1]$, $L_1[0,1]$
3. There is X with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.
Theorem

\[Z \subset X \]

If \(Z \) and \(X/Z \) are SCD \(\Rightarrow X \) is SCD.

Corollary

If \(\ell_1 \cong Y \subset X \Rightarrow X/Y \) contains a copy of \(\ell_1 \).

If \(\ell_1 \cong Y_1 \subset X \Rightarrow \) there is \(\ell_1 \cong Y_2 \subset X \) with \(Y_1 \cap Y_2 = 0 \).

Corollary

If \(X_1, \ldots, X_m \) SCD \(\Rightarrow X_1 \oplus \cdots \oplus X_m \) SCD.
SCD spaces: stability properties

Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]
SCD spaces: stability properties

Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

\[X \text{ separable NOT SCD} \]
Theorem

\[Z \subset X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

\[X \text{ separable NOT SCD} \]

- If \(\ell_1 \simeq Y \subset X \implies X/Y \text{ contains a copy of } \ell_1. \]
SCD spaces: stability properties

Theorem

\[Z \subseteq X. \text{ If } Z \text{ and } X/Z \text{ are SCD } \implies X \text{ is SCD.} \]

Corollary

\(X \) separable NOT SCD

- If \(\ell_1 \simeq Y \subseteq X \implies X/Y \text{ contains a copy of } \ell_1. \)
- If \(\ell_1 \simeq Y_1 \subseteq X \implies \text{ there is } \ell_1 \simeq Y_2 \subseteq X \text{ with } Y_1 \cap Y_2 = 0. \)
SCD spaces: stability properties

Theorem

$Z \subset X$. If Z and X/Z are SCD $\implies X$ is SCD.

Corollary

X separable NOT SCD

- If $\ell_1 \cong Y \subset X$ $\implies X/Y$ contains a copy of ℓ_1.
- If $\ell_1 \cong Y_1 \subset X$ \implies there is $\ell_1 \cong Y_2 \subset X$ with $Y_1 \cap Y_2 = 0$.

Corollary

X_1, \ldots, X_m SCD $\implies X_1 \oplus \cdots \oplus X_m$ SCD.
Theorem

\[X_1, X_2, \ldots \text{SCD, } E \text{ with unconditional basis.} \]

\[E \not\subseteq c_0 \Rightarrow \bigoplus_{n \in \mathbb{N}} X_n \in SCD. \]

\[E \not\subseteq \ell_1 \Rightarrow \bigoplus_{n \in \mathbb{N}} X_n \in SCD. \]

Examples

1. \(c_0 \) (\(\ell_1 \)) and \(\ell_1 \) (\(c_0 \)) are SCD.

2. \(c_0 \otimes \epsilon c_0, c_0 \otimes \pi c_0, c_0 \otimes \epsilon \ell_1, c_0 \otimes \pi \ell_1, \ell_1 \otimes \epsilon \ell_1, \) and \(\ell_1 \otimes \pi \ell_1 \) are SCD.

3. \(K(c_0) \) and \(K(c_0, \ell_1) \) are SCD.

4. \(\ell_2 \otimes \epsilon \ell_2 \equiv K(\ell_2) \) and \(\ell_2 \oplus \pi \ell_2 \equiv L_1(\ell_2) \) are SCD.
Theorem

\[X_1, X_2, \ldots \text{ SCD, } E \text{ with unconditional basis.} \]

- \(E \not\subseteq c_0 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E \text{ SCD.} \)
- \(E \not\subseteq \ell_1 \implies [\bigoplus_{n \in \mathbb{N}} X_n]_E \text{ SCD.} \)
Theorem

X₁, X₂, … SCD, E with unconditional basis.

- E ⊈ c₀ ⇒ [⊔ₙ∈ℕ Xₙ]ₓ E SCD.
- E ⊈ ℓ₁ ⇒ [⊔ₙ∈ℕ Xₙ]ₓ E SCD.

Examples

1. c₀(ℓ₁) and ℓ₁(c₀) are SCD.
2. c₀ ⊗⁻ c₀, c₀ ⊗⁻ ℓ₁, and ℓ₁ ⊗⁻ ℓ₁ are SCD.
3. K(c₀) and K(c₀, ℓ₁) are SCD.
4. ℓ₂ ⊗⁻ ℓ₂ ≡ K(ℓ₂) and ℓ₂ ⊕⁻ ℓ₂ ≡ L₁(ℓ₂) are SCD.
Recalling the properties

Kadets-Shvidkoy-Sirotkin-Werner, 1997:

\[\| \text{Id} + T \| = 1 + \| T \| \] (DE)

for every rank-one \(T \in L(X) \).

⋆ Then every weakly compact \(T \) also satisfies (DE).

Lumer, 1968:

\[\max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \] (aDE)

Equivalently, \(v(T) = \| T \| \) for every \(T \in L(X) \).

M.-Oikhberg, 2004:

\[\text{X has the alternative Daugavet property (ADP) if} \]

\[\text{every rank-one} \ T \in L(X) \text{ satisfies (aDE).} \]

⋆ Then every weakly compact \(T \) also satisfies (aDE).
Recalling the properties

Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

$$\|\text{Id} + T\| = 1 + \|T\|$$ \hspace{1cm} (DE)

for every rank-one $T \in L(X)$.
★ Then every weakly compact T also satisfies (DE).
Recalling the properties

1. **Kadets-Shvidkoy-Sirotkin-Werner, 1997:**
 \(X \) has the **Daugavet property (DPr)** if
 \[
 \| \text{Id} + T \| = 1 + \| T \| \tag{DE}
 \]
 for every rank-one \(T \in L(X) \).
 ★ Then every weakly compact \(T \) also satisfies (DE).

2. **Lumer, 1968:** \(X \) has **numerical index 1** if \texttt{EVERY} operator on \(X \) satisfies
 \[
 \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \tag{aDE}
 \]
 ★ Equivalently, \(v(T) = \| T \| \) for \texttt{EVERY} \(T \in L(X) \).
The DPr, the ADP and numerical index 1

Recalling the properties

1. **Kadets-Shvidkoy-Sirotkin-Werner, 1997:**
 \(X \) has the **Daugavet property (DPr)** if
 \[
 \|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}
 \]
 for every rank-one \(T \in L(X) \).
 ★ Then every weakly compact \(T \) also satisfies (DE).

2. **Lumer, 1968:** \(X \) has **numerical index 1** if \textit{every} operator on \(X \) satisfies
 \[
 \max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\| \quad \text{(aDE)}
 \]
 ★ Equivalently, \(v(T) = \|T\| \) for \textit{every} \(T \in L(X) \).

3. **M.-Oikhberg, 2004:** \(X \) has the **alternative Daugavet property (ADP)** if
 every rank-one \(T \in L(X) \) satisfies (aDE).
 ★ Then every weakly compact \(T \) also satisfies (aDE).
Relations between these properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus \infty C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Remarks

- For RNP or Asplund spaces, ADP implies numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Relations between these properties

Daugavet property \rightarrow Numerical index 1 \leftarrow ADP

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus \infty C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1
Relations between these properties

Daugavet property \iff Numerical index 1

\[\text{ADP} \]

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_\infty C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Remarks

- For RNP or Asplund spaces, $\text{ADP} \implies \text{numerical index 1}$.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
ADP + SCD \iff numerical index 1
Characterizations of the ADP

Let X be a Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T rank-one).

This implies lushness and so, numerical index 1.
ADP + SCD \implies numerical index 1

Characterizations of the ADP

Let X be a Banach space. TFAE:

1. X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\|$ for all T rank-one).
2. Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with
 \[\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.\]
Characterizations of the ADP

X Banach space. TFAE:

- **X** has ADP (i.e. \(\max_{\theta \in \mathbb{T}} \|\text{Id} + \theta T\| = 1 + \|T\| \) for all \(T \) rank-one).
- Given \(x \in S_X \), a slice \(S \) of \(B_X \) and \(\varepsilon > 0 \), there is \(y \in S \) with
 \[
 \max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.
 \]
- Given \(x \in S_X \), a sequence \(\{S_n\} \) of slices of \(B_X \), and \(\varepsilon > 0 \), there is \(y^* \in S_{X^*} \) such that \(x \in S(B_X, y^*, \varepsilon) \) and
 \[\text{conv}(T S(B_X, y^*, \varepsilon)) \cap S_n \neq \emptyset \quad (n \in \mathbb{N}).\]
Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. \(\max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \| \) for all \(T \) rank-one).
- Given \(x \in S_X \), a slice \(S \) of \(B_X \) and \(\varepsilon > 0 \), there is \(y \in S \) with
 \[
 \max_{\theta \in \mathbb{T}} \| x + \theta y \| > 2 - \varepsilon.
 \]
- Given \(x \in S_X \), a sequence \(\{ S_n \} \) of slices of \(B_X \), and \(\varepsilon > 0 \), there is \(y^* \in S_{X^*} \) such that \(x \in S(B_X, y^*, \varepsilon) \) and
 \[
 \overline{\text{conv}}(T S(B_X, y^*, \varepsilon)) \cap S_n \neq \emptyset \quad (n \in \mathbb{N}).
 \]

Theorem

\(X \) ADP + \(B_X \) SCD \(\implies \) given \(x \in S_X \) and \(\varepsilon > 0 \), there is \(y^* \in S_{X^*} \) such that

\[
 x \in S(B_X, y^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\text{conv}}(T S(B_X, y^*, \varepsilon)).
\]

⋆ This implies lushness and so, numerical index 1.
Some consequences
Some consequences

Corollary

1. $\text{ADP} + \text{strongly regular} \implies \text{numerical index } 1$ (actually, lushness).
2. $\text{ADP} + X \not\subseteq \ell_1 \implies \text{numerical index } 1$ (actually, lushness).
Some consequences

Corollary

- $\text{ADP} + \text{strongly regular} \implies \text{numerical index 1 (actually, lushness)}$.
- $\text{ADP} + X \not\subseteq \ell_1 \implies \text{numerical index 1 (actually, lushness)}$.

Corollary

$X \text{ real} + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1$.
Some consequences

Corollary

- $\text{ADP} + \text{strongly regular} \implies \text{numerical index 1 (actually, lushness)}.$
- $\text{ADP} + X \not\supset \ell_1 \implies \text{numerical index 1 (actually, lushness)}.$

Corollary

$X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.$

Proof.
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

X real + dim$(X) = \infty$ + ADP \implies $X^* \supseteq \ell_1$.

Proof.

- If $X \supseteq \ell_1$ \implies X^* contains ℓ_∞ as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1$. ✓
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

X real + $\dim(X) = \infty +$ ADP $\implies X^* \supseteq \ell_1$.

Proof.

- If $X \supseteq \ell_1$ $\implies X^*$ contains ℓ_∞ as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1$ \checkmark
- If $X \not\supseteq \ell_1$ $\implies X$ is SCD + ADP, so X is lush.
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \nsubseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

\[
X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.
\]

Proof.

- If $X \supseteq \ell_1$ \implies X^* contains ℓ_∞ as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1$ \checkmark
- If $X \nsubseteq \ell_1$ \implies X is SCD + ADP, so X is lush.
- Lush + $\dim(X) = \infty$ \implies $X^* \supseteq \ell_1$ \checkmark
Some consequences

Corollary

- $\text{ADP} + \text{strongly regular} \implies \text{numerical index} 1$ (actually, lushness).
- $\text{ADP} + X \not\ni \ell_1 \implies \text{numerical index} 1$ (actually, lushness).

Corollary

\[X \text{ real} + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1. \]

In particular,
Some consequences

Corollary
- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

\[
X \text{ real } + \dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1.
\]

In particular,

Corollary

\[
X \text{ real } + \dim(X) = \infty \text{ and numerical index } 1 \implies X^* \supseteq \ell_1.
\]
Some consequences

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\subseteq \ell_1$ \implies numerical index 1 (actually, lushness).

Corollary

X real + $\dim(X) = \infty + \text{ADP} \implies X^* \supseteq \ell_1$.

In particular,

Corollary

X real + $\dim(X) = \infty + \text{numerical index 1} \implies X^* \supseteq \ell_1$.

Open question

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?
Slicely countably determined spaces SCD operators

SCD operators

$T \in \mathcal{L}(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

1. $T(B_X)$ is separable and $\|T(B_X)\|$ is RPN,
2. $T(B_X)$ has no ℓ_1 sequences,
3. T does not fix copies of ℓ_1.

Theorem

$X \text{ADP} + T \text{SCD-operator} \implies \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|.$

$X \text{DPr} + T \text{SCD-operator} \implies \|\text{Id} + T\| = 1 + \|T\|.$

Main corollary

$X \text{ADP} + T \text{does not fix copies of} \ell_1 \implies \max_{\theta \in T} \|\text{Id} + \theta T\| = 1 + \|T\|.$
SCD operators

SCD operator

$T \in L(X)$ is an **SCD-operator** if $T(B_X)$ is an SCD-set.
SCD operators

SCD operator

\[T \in L(X) \] is an **SCD-operator** if \(T(B_X) \) is an SCD-set.

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)
SCD operators

SCD operator

$T \in L(X)$ is an **SCD-operator** if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and
1. $T(B_X)$ is RPN,
2. $T(B_X)$ has no ℓ_1 sequences,
3. T does not fix copies of ℓ_1

Theorem

- X ADP + T SCD-operator $\implies \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \|.$
- X DPr + T SCD-operator $\implies \| \text{Id} + T \| = 1 + \| T \|.$
SCD operators

SCD operator

\[T \in L(X) \text{ is an SCD-operator if } T(B_X) \text{ is an SCD-set.} \]

Examples

\[T \text{ is an SCD-operator when } T(B_X) \text{ is separable and } \]

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

\[X \text{ ADP } + T \text{ SCD-operator } \implies \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \|. \]

\[X \text{ DPr } + T \text{ SCD-operator } \implies \| \text{Id} + T \| = 1 + \| T \|. \]

Main corollary

\[X \text{ ADP } + T \text{ does not fix copies of } \ell_1 \implies \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \|. \]
SCD operators

SCD operator

\(T \in L(X) \) is an **SCD-operator** if \(T(B_X) \) is an SCD-set.

Examples

\(T \) is an SCD-operator when \(T(B_X) \) is separable and

1. \(T(B_X) \) is RPN,
2. \(T(B_X) \) has no \(\ell_1 \) sequences,
3. \(T \) does not fix copies of \(\ell_1 \)

Theorem

- \(X \text{ ADP} + T \text{ SCD-operator} \iff \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
- \(X \text{ DPr} + T \text{ SCD-operator} \iff \| \text{Id} + T \| = 1 + \| T \| \).

Remark

Separability is not needed!

Main corollary

\(X \text{ ADP} + T \) does not fix copies of \(\ell_1 \) \(\iff \max_{\theta \in T} \| \text{Id} + \theta T \| = 1 + \| T \| \).
Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set?
- Is SCD equivalent to the existence of a countable π-base for the weak topology?
Open questions

On SCD-sets
- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set?
- Is SCD equivalent to the existence of a countable π-base for the weak topology?

On SCD-spaces
- E with unconditional basis. Is E SCD?
- X, Y SCD. Are $X \otimes_\varepsilon Y$ and $X \otimes_\pi Y$ SCD?
Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set?
- Is SCD equivalent to the existence of a countable π-base for the weak topology?

On SCD-spaces

- E with unconditional basis. Is E SCD?
- X, Y SCD. Are $X \otimes_\epsilon Y$ and $X \otimes_\pi Y$ SCD?

On SCD-operators

- T_1, T_2 SCD-operators, is $T_1 + T_2$ an SCD-operator?
- $T : X \rightarrow Y$ hereditary SCD, is there Z SCD-space such that T factor through Z?
Remarks on two recent results

- Containment of c_0 or ℓ_1
- On the numerical index of $L_p(\mu)$

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska.
Slicely countably determined Banach spaces.

V. Kadets, M. Martín, J. Merí, and R. Payá.
Smoothness and convexity for Banach spaces with numerical index 1.

M. Martín, J. Merí, and M. Popov.
On the numerical index of real $L_p(\mu)$-spaces.
Preprint.
Open question (Godefroy, private communication)

\[X \text{ real}, \ dim(X) = \infty, \ n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1 ? \]
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:
Remarks on two recent results Containment of c_0 or ℓ_1

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

$$X \text{ real, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1?$$

-lii

★ Old approaches to this problem:

- **López–M.–Payá, 1999:**

 X real, **RNP**, $\dim(X) = \infty, \ n(X) = 1 \implies X \supset \ell_1.$

- **Kadets–M.–Merí–Payá, 2009:**

 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1.$

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**

 X real, $\dim(X) = \infty \implies X^* \supset \ell_1.$
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- **López–M.–Payá, 1999:**

 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**

 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

Old approaches to this problem:

- Lópezm–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supseteq c_0$ or $X \supseteq \ell_1$?

★★ Old approaches to this problem:

- **López–M.–Payá, 1999:**
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supseteq \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**
 X real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 X real, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Proof of the last statement:
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- Lόpez–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the "lifting" property of ℓ_1 ✓

- (AKMMS 2010): If $X \not\supset \ell_1 \implies X$ is lush.
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

\[X \text{ real, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1? \]

Old approaches to this problem:

- **López–M.–Payá, 1999:**
 \[X \text{ real, } \text{RNP, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset \ell_1. \]

- **Kadets–M.–Merí–Payá, 2009:**
 \[X \text{ real lush, } \dim(X) = \infty \implies X^* \supset \ell_1. \]

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 \[X \text{ real, } \dim(X) = \infty \implies X^* \supset \ell_1. \]

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1
- \((\text{AKMMS 2010}) \): If $X \not\supset \ell_1 \implies X \text{ is lush.} \)
- \((\text{BKMM 2009}) \): Lushness reduces to the separable case.
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓

- (AKMMS 2010): If $X \not\supset \ell_1 \implies X$ is lush.

- (BKMM 2009): Lushness reduces to the separable case.

- (KMMP 2009): In the separable case, lushness implies $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$, G norming for X.
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- **López–M.–Payá, 1999:**

 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- **Kadets–M.–Merí–Payá, 2009:**

 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**

 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

- If $X \supset \ell_1$ we use the “lifting” property of ℓ_1 ✓

- **(AKMMS 2010):** If $X \not\supset \ell_1 \implies X$ is lush.

- **(BKMM 2009):** Lushness reduces to the separable case.

- **(KMMP 2009):** In the separable case, lushness implies $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$, G norming for X.

- **(LMP 1999):** This gives $X^* \supset c_0$ or $X^* \supset \ell_1 \implies X^* \supset \ell_1$ ✓
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

\[X \text{ real, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1? \]

 فإذا مشكلة

Stars Old approaches to this problem:

- López–M.–Payá, 1999:
 \[X \text{ real, RNP, } \dim(X) = \infty, \ n(X) = 1 \implies X \supset \ell_1. \]

- Kadets–M.–Merí–Payá, 2009:
 \[X \text{ real lush, } \dim(X) = \infty \implies X^* \supset \ell_1. \]

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 \[X \text{ real, } \dim(X) = \infty \implies X^* \supset \ell_1. \]
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López–M.–Payá, 1999:
 X real, RNP, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

- Kadets–M.–Merí–Payá, 2009:
 X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- Avilés–Kadets–M.–Merí–Shepelska, 2010:
 X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

★ Equivalent reformulation of the problem:
Remarks on two recent results

Containment of c_0 or ℓ_1

Open question (Godefroy, private communication)

\[
X \text{ real, } \dim(X) = \infty, n(X) = 1 \implies X \supset c_0 \text{ or } X \supset \ell_1?
\]

★ Old approaches to this problem:

- **López–M.–Payá, 1999:**
 \[
 X \text{ real, RNP, } \dim(X) = \infty, n(X) = 1 \implies X \supset \ell_1.
 \]

- **Kadets–M.–Merí–Payá, 2009:**
 \[
 X \text{ real lush, } \dim(X) = \infty \implies X^* \supset \ell_1.
 \]

- **Avilés–Kadets–M.–Merí–Shepelska, 2010:**
 \[
 X \text{ real, } \dim(X) = \infty \implies X^* \supset \ell_1.
 \]

★ Equivalent reformulation of the problem:

Equivalent open problem

\[
X \text{ real separable, } X \not\supset \ell_1, \text{ exists } G \subseteq S_{X^*} \text{ norming with }
\]

\[
B_X = \overline{\text{aconv}} \left(\{ x \in B_X : x^*(x) = 1 \} \right) \quad (x^* \in G).
\]

Does $X \supset c_0$?
On the numerical index of $L_p(\mu)$. 1
On the numerical index of $L_p(\mu)$. I

The numerical radius for $L_p(\mu)$

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$v(T) = \sup \left\{ \left| \int_{\Omega} x^#Tx \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\}.$$

where for $x \in L_p(\mu)$, $x^# = |x|^{p-1} \text{sign}(x) \in L_q(\mu)$ satisfies (unique)

$$\|x\|_p^p = \|x^#\|_q^q \quad \text{and} \quad \int_{\Omega} x x^# \, d\mu = \|x\|_p \|x^#\|_q = \|x\|_p^p.$$
Remarks on two recent results

On the numerical index of $L_p(\mu)$

The numerical radius for $L_p(\mu)$

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$v(T) = \sup \left\{ \left| \int_{\Omega} x^#Tx \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\}.$$

where for $x \in L_p(\mu)$, $x^# = |x|^{p-1} \text{sign}(x) \in L_q(\mu)$ satisfies (unique)

$$\|x\|_p^p = \|x^#\|_q^q \quad \text{and} \quad \int_{\Omega} xx^# \, d\mu = \|x\|_p \|x^#\|_q = \|x\|_p^p.$$

The absolute numerical radius

For $T \in L(L_p(\mu))$ we write

$$|v|(T) := \sup \left\{ \int_{\Omega} |x^#Tx| \, d\mu : x \in L_p(\mu), \|x\|_p = 1 \right\}$$

$$= \sup \left\{ \int_{\Omega} |x|^{p-1} |Tx| \, d\mu : x \in L_p(\mu), \|x\|_p = 1 \right\}.$$
On the numerical index of $L_p(\mu)$ (II)

Theorem
For $T \in L_p(\mu)$, $1 < p < \infty$, one has $v(T) \geq M_p^{4/|v|}(T)$, where $M_p = \max_{t \in [0,1]} |t^p - 1 - t|^{1/2} + t^p$.

Theorem
For $T \in L_p(\mu)$, $1 < p < \infty$, one has $2|v| \geq v(T) \geq n(L_{\mathcal{C}p}(\mu)) \|T\|$, where $T_{\mathcal{C}}$ complexification of T, $n(L_{\mathcal{C}p}(\mu))$ numerical index complex case.

Consequence
For $1 < p < \infty$, $n(L_p(\mu)) \geq M_p^{8e}$. If $p \neq 2$, then $n(L_p(\mu)) > 0$, so v and $\|\cdot\|$ are equivalent in $L_p(\mu)$.
Remarks on two recent results

On the numerical index of $L_p(\mu)$ (II)

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has</td>
</tr>
</tbody>
</table>

\[v(T) \geq \frac{M_p}{4} |v|(T), \quad \text{where} \quad M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}. \]
On the numerical index of $L_p(\mu)$ (II)

Theorem

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$v(T) \geq \frac{M_p}{4} |v|(T),$$

where

$$M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}.$$

Theorem

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$2 |v|(T) \geq v(T_C) \geq n(L_p^C(\mu)) \|T\|,$$

- T_C complexification of T, $n(L_p^C(\mu))$ numerical index complex case.
Remarks on two recent results

On the numerical index of $L_p(\mu)$ (II)

Theorem

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$v(T) \geq \frac{M_p}{4} |v|(T),$$

where $M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + tp}$.

Theorem

For $T \in L(L_p(\mu))$, $1 < p < \infty$, one has

$$2 |v|(T) \geq v(T_C) \geq n(L_p^C(\mu)) \|T\|,$$

- T_C complexification of T, $n(L_p^C(\mu))$ numerical index complex case.

Consequence

For $1 < p < \infty$, $n(L_p(\mu)) \geq \frac{M_p}{8e}$.

- If $p \neq 2$, then $n(L_p(\mu)) > 0$, so v and $\|\cdot\|$ are equivalent in $L(L_p(\mu))$.
Extremely non-complex Banach spaces

- Motivation
- Extremely non-complex Banach spaces
- Surjective isometries

V. Kadets, M. Martín, and J. Merí.
Norm equalities for operators on Banach spaces.

P. Koszmider, M. Martín, and J. Merí.
Extremely non-complex \(C(K) \) spaces.

P. Koszmider, M. Martín, and J. Merí.
Isometries on extremely non-complex Banach spaces.
Isometries and duality. Reminder
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

★ In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that

 $$x' = Ax \quad (x : \mathbb{R}_0^+ \longrightarrow X)$$

 is given by a semigroup of isometries.
- There are infinitely many such A's on X^*
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

★ In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that
 \[
 x' = A x \quad (x : \mathbb{R}_0^+ \longrightarrow X)
 \]
 is given by a semigroup of isometries.
- There are infinitely many such A's on X^*
- But there are **unbounded** A's on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.
Example (produced with numerical ranges)

There is a Banach space X such that

- $\text{Iso}(X)$ has no exponential one-parameter semigroups.
- $\text{Iso}(X^*)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that

$$x' = Ax \quad (x : \mathbb{R}^+_0 \longrightarrow X)$$

is given by a semigroup of isometries.

- There are infinitely many such A's on X^*

- But there are \textbf{unbounded} A's on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.

We would like to find \mathcal{X} such that

- $\text{Iso}(\mathcal{X})$ has no C_0 semigroup of isometries.
- $\text{Iso}(\mathcal{X}^*)$ has exponential semigroup of isometries
Numerical range of unbounded operators (1960’s)

Let X be a Banach space, $T : D(T) \to X$ a linear operator, and define

$$V(T) = \{ x^*(Tx) : x^* \in X^*, x \in D(T), x^*(x) = \|x^*\| = \|x\| = 1 \}.$$
Numerical range of unbounded operators (1960’s)

X Banach space, $T : D(T) \rightarrow X$ linear,

$$V(T) = \{ x^*(Tx) : x^* \in X^*, x \in D(T), x^*(x) = \|x^*\| = \|x\| = 1 \}.$$

Teorema (Stone, 1932)

H Hilbert space, A densely defined operator. TFAE:

- A generates an strongly continuous one-parameter semigroup of unitary operators (onto isometries).
- $A^* = -A$.
- $\text{Re}(Ax \mid x) = 0$ for every $x \in D(A)$.

Numerical range of unbounded operators. II

Which Banach spaces have unbounded operators with numerical range zero?

Examples

In $C^0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t+s)$ is a strongly continuous one-parameter semigroup of isometries (generated by the derivative).

In $C^0([0, 1]_{\|\Delta\|})$ there are also strongly continuous one-parameter semigroups of isometries.

Consequence

We have to completely change our approach to the problem.
Numerical range of unbounded operators. II

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?
Numerical range of unbounded operators. II

Difficulty
Which Banach spaces have unbounded operators with numerical range zero?

Examples
- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t + s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0,1]\|\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.
Which Banach spaces have unbounded operators with numerical range zero?

- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t + s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0, 1]|\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

We have to completely change our approach to the problem.
Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -\text{Id}$.
Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -\text{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C}:

$$ (\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X) $$
Complex structures

Definition

*\(X \) has **complex structure** if there is *\(T \in L(X) \) such that *\(T^2 = -\text{Id} \).*

Some remarks

- This gives a structure of vector space over *\(\mathbb{C} \):*

\[
(\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)
\]

- Defining

\[
\|x\| = \max\{ \|e^{i\theta}x\| : \theta \in [0, 2\pi] \} \quad (x \in X)
\]

one gets that \((X, \| \cdot \|)\) is a complex Banach space.
Complex structures

Definition

X has **complex structure** if there is *T* ∈ *L*(X) such that *T*² = −Id.

Some remarks

- This gives a structure of vector space over *C*:

 \[(\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)\]

- Defining

 \[\|x\| = \max\{\|e^{i\theta} x\| : \theta \in [0, 2\pi]\} \quad (x \in X)\]

 one gets that \((X, \| \cdot \|)\) is a complex Banach space.

- If *T* is an isometry, then actually the given norm of *X* is complex.
Complex structures

Definition

X has **complex structure** if there is \(T \in L(X) \) such that \(T^2 = -\text{Id} \).

Some remarks

- This gives a structure of vector space over \(\mathbb{C} \):
 \[
 (\alpha + i \beta) x = \alpha x + \beta T(x) \quad (\alpha + i \beta \in \mathbb{C}, \ x \in X)
 \]

- Defining
 \[
 \| x \| = \max \{ \| e^{i \theta} x \| : \theta \in [0, 2\pi] \} \quad (x \in X)
 \]
 one gets that \((X, \| \cdot \|)\) is a complex Banach space.

- If \(T \) is an isometry, then actually the given norm of \(X \) is complex.

- Conversely, if \(X \) is a complex Banach space, then
 \[
 T(x) = i x \quad (x \in X)
 \]
 satisfies \(T^2 = -\text{Id} \) and \(T \) is an isometry.
Some examples

1. If $\dim(X) < \infty$, X has a complex structure iff $\dim(X)$ is even.

2. If $X \cong \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \cong X^2$), then X has a complex structure.

3. There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space J (since $J^{\ast\ast} \equiv J \oplus \mathbb{R}$).
 - Szarek, 1986: uniformly convex examples.
 - Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.
 - X is even if it admits a complex structure but its hyperplanes do not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is extremely non-complex if $\operatorname{dist}(T^2, -\operatorname{Id})$ is the maximum possible, i.e.

$$
\|\operatorname{Id} + T^2\| = 1 + \|T^2\|,
$$

for $T \in L(X)$.

Miguel Martín (University of Granada (Spain))

Numerical index theory

Bangalore, June 2009

106 / 136
Some examples

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. If $X \simeq \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \simeq X^2$), then X has complex structure.
Some examples

1. If \(\dim(X) < \infty \), \(X \) has complex structure iff \(\dim(X) \) is even.

2. If \(X \cong \mathbb{Z} \oplus \mathbb{Z} \) (in particular, \(X \cong X^2 \)), then \(X \) has complex structure.

3. There are infinite-dimensional Banach spaces without complex structure:
 - **Dieudonné, 1952**: the James’ space \(J \) (since \(J^{**} \equiv J \oplus \mathbb{R} \)).
 - **Szarek, 1986**: uniformly convex examples.
 - **Gowers-Maurey, 1993**: their H.I. space.
 - **Ferenczi-Medina Galego, 2007**: there are odd and even infinite-dimensional spaces \(X \).
 - \(X \) is even if admits a complex structure but its hyperplanes does not.
 - \(X \) is odd if its hyperplanes are even (and so \(X \) does not admit a complex structure).
Complex structures II

Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. If $X \simeq \mathbb{Z} \oplus \mathbb{Z}$ (in particular, $X \simeq X^2$), then X has complex structure.
3. There are infinite-dimensional Banach spaces without complex structure:
 - **Dieudonné, 1952**: the James’ space J (since $J^{**} \equiv J \oplus \mathbb{R}$).
 - **Szarek, 1986**: uniformly convex examples.
 - **Gowers-Maurey, 1993**: their H.I. space.
 - **Ferenczi-Medina Galego, 2007**: there are **odd** and **even** infinite-dimensional spaces X.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is **extremely non-complex** if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$
The Daugavet equation

What Daugavet did in 1963

The norm equality

\[\| \text{Id} + T \| = 1 + \| T \| \]

holds for every *compact* \(T \in L(C[0,1]) \).
What Daugavet did in 1963

The norm equality

\[\| \text{Id} + T \| = 1 + \| T \| \]

holds for every compact \(T \in L(C[0,1]) \).

The Daugavet equation

\(X \) Banach space, \(T \in L(X) \), \(\| \text{Id} + T \| = 1 + \| T \| \) (DE).
The Daugavet equation

What Daugavet did in 1963

The norm equality

\[\| \text{Id} + T \| = 1 + \| T \| \]

holds for every compact \(T \in L(C[0,1]) \).

The Daugavet equation

\(X \) Banach space, \(T \in L(X) \), \(\| \text{Id} + T \| = 1 + \| T \| \) \hspace{1cm} (DE).

Classical examples

1. **Daugavet, 1963:**
 Every compact operator on \(C[0,1] \) satisfies (DE).

2. **Lozanovskyi, 1966:**
 Every compact operator on \(L_1[0,1] \) satisfies (DE).

3. **Abramovich, Holub, and more, 80's:**
 \(X = C(K) \), \(K \) perfect compact space
 or \(X = L_1(\mu) \), \(\mu \) atomless measure
 \(\implies \) every weakly compact \(T \in L(X) \) satisfies (DE).
The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).
The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the **Daugavet property** iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the **Daugavet property** iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).

The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.

The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.
- X does not embed into a Banach space with unconditional basis.

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1.
- X does not embed into a Banach space with unconditional basis.

Geometric characterization: X has the Daugavet property iff for each $x \in S_X$

$$\overline{co} \left(B_X \setminus (x + (2 - \varepsilon)B_X) \right) = B_X.$$

The Daugavet property II

The following spaces have the Daugavet property:

Wojtaszczyk, 1992: The disk algebra and \mathcal{H}_∞.

Werner, 1997: "Nonatomic" function algebras.

Oikhberg, 2005: Non-atomic C^*-algebras and preduals of non-atomic von Neumann algebras.

Ivankhno, Kadets, Werner, 2007: $\text{Lip}(K)$ when $K \subseteq \mathbb{R}^n$ is compact and convex.
More examples

The following spaces have the Daugavet property.

- **Wojtaszczyk, 1992:**
 The disk algebra and H^∞.

- **Werner, 1997:**
 “Nonatomic” function algebras.

- **Oikhberg, 2005:**
 Non-atomic C^*-algebras and preduals of non-atomic von Neumann algebras.

- **Becerra–M., 2005:**
 Non-atomic JB^*-triples and their preduals.

- **Becerra–M., 2006:**
 Preduals of $L_1(\mu)$ without Fréchet-smooth points.

- **Ivankhno, Kadets, Werner, 2007:**
 $\text{Lip}(K)$ when $K \subseteq \mathbb{R}^n$ is compact and convex.
Daugavet–type inequalities

For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that

$$\|\text{Id} + T\| \geq 1 + \psi_p(\|T\|)$$

for every compact operator T on $L^p[0, 1]$.

If $p = 2$, then there is a non-null compact T on $L^2[0, 1]$ such that

$$\|\text{Id} + T\| = 1.$$
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that
 \[
 \|\text{Id} + T\| \geq 1 + \psi_p(\|T\|)
 \]
 for every compact operator T on $L_p[0,1]$.
Some examples

- **Benyamini–Lin, 1985:**

 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \rightarrow (0, \infty)$ such that

 \[\| \text{Id} + T \| \geq 1 + \psi_p(\|T\|) \]

 for every compact operator T on $L_p[0,1]$.

 - If $p = 2$, then there is a non-null compact T on $L_2[0,1]$ such that
 \[\| \text{Id} + T \| = 1. \]
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that
 \[
 \|\text{Id} + T\| \geq 1 + \psi_p(\|T\|)
 \]
 for every compact operator T on $L_p[0, 1]$.
 - If $p = 2$, then there is a non-null compact T on $L_2[0, 1]$ such that
 \[\|\text{Id} + T\| = 1.\]

- **Boyko–Kadets, 2004:**
 If ψ_p is the best possible function above, then
 \[
 \lim_{p \to 1^+} \psi_p(t) = t \quad (t > 0).
 \]
Daugavet–type inequalities

Some examples

- **Benyamini–Lin, 1985:**
 For every $1 < p < \infty$, $p \neq 2$, there exists $\psi_p : (0, \infty) \to (0, \infty)$ such that
 \[\| \text{Id} + T \| \geq 1 + \psi_p(\|T\|) \]
 for every compact operator T on $L_p[0,1]$.
 - If $p = 2$, then there is a non-null compact T on $L_2[0,1]$ such that
 \[\| \text{Id} + T \| = 1. \]

- **Boyko–Kadets, 2004:**
 If ψ_p is the best possible function above, then
 \[\lim_{p \to 1^+} \psi_p(t) = t \quad (t > 0). \]

- **Oikhberg, 2005:**
 If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then
 \[\| \text{Id} + T \| \geq 1 + \frac{1}{8\sqrt{2}} \|T\| \]
 for every compact T on X.

Miguel Martín (University of Granada (Spain))
Numerical index theory
Bangalore, June 2009
Motivation

Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely

We looked for non-trivial norm equalities of the forms

\[\|Id + T\| = f(\|T\|) \]

or

\[\|g(T)\| = f(\|T\|) \]

or

\[\|Id + g(T)\| = f(g(T)) \]

\((g\text{ analytic, } f\text{ arbitrary})\) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities.
Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?
Motivating question
Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely
We looked for non-trivial norm equalities of the forms
\[\|\text{Id} + T\| = f(\|T\|) \quad \text{or} \quad \|g(T)\| = f(\|T\|) \quad \text{or} \quad \|\text{Id} + g(T)\| = f(\|g(T)\|) \]
(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.
Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces?

Concretely

We looked for non-trivial norm equalities of the forms

\[\| \text{Id} + T \| = f(\| T \|) \] or \[\| g(T) \| = f(\| T \|) \] or \[\| \text{Id} + g(T) \| = f(\| g(T) \|) \]

\((g\ \text{analytic}, \ f\ \text{arbitrary})\) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities...
Equalities of the form $\|\text{Id} + T\| = f(\|T\|)$
Equalities of the form $\|\text{Id} + T\| = f(\|T\|)$

Proposition

X real or complex, $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$\|a \text{Id} + b T\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, then

$$f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+) .$$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.
Proposition

\[X \text{ real or complex, } f : \mathbb{R}_0^+ \longrightarrow \mathbb{R} \text{ arbitrary, } a, b \in K. \text{ If the norm equality} \]
\[\| a \text{Id} + b T \| = f(\| T \|) \]

holds for every rank-one operator \(T \in L(X) \), then

\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+). \]

If \(a \neq 0, b \neq 0 \), then \(X \) has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which \(\text{Id} + T \) is replaced by something different.
Proof

We have...

\[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]
Proof

We have... \[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

\[\Rightarrow \]

We want... \[f(t) = |a| + |b| t \quad (t \in \mathbb{R}^+_0). \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
Proof

We have... \[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

\[\Rightarrow \]

We want... \[f(t) = |a| + |b| t \quad (t \in \mathbb{R}_0^+) \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, \ x_0^* \in S_{X^*} \) with \(x_0^*(x_0) = \omega_0 \) and consider
 \[T_t = t \ x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}_0^+) \].
Proof

We have...
\[\| a \text{Id} + b T \| = f(\| T \|) \quad \forall T \in L(X) \text{ rank-one} \]

?

We want...
\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}^+_0). \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, x_0^* \in S_{X^*} \) with \(x_0^*(x_0) = \omega_0 \) and consider
 \[T_t = t x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}^+_0). \]
- Since \(\| T_t \| = t \), we have
 \[f(t) = \| a \text{Id} + b T_t \| \quad (t \in \mathbb{R}^+_0). \]
Proof

We have...

\[\|a \text{Id} + b T\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

\[\Rightarrow \]

We want...

\[f(t) = |a| + |b| t \quad (t \in \mathbb{R}^+_0). \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T} \).
- Fix \(x_0 \in S_X, \; x_0^* \in S_{X^*} \) with \(x_0^*(x_0) = \omega_0 \) and consider

\[T_t = t x_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}^+_0). \]

- Since \(\|T_t\| = t \), we have

\[f(t) = \|a \text{Id} + b T_t\| \quad (t \in \mathbb{R}^+_0). \]

- It follows that

\[|a| + |b| t \geq f(t) = \|a \text{Id} + b T_t\| \geq \|[a \text{Id} + b T_t](x_0)\| \]

\[= \|a x_0 + b \omega_0 t x_0\| = |a + b \omega_0 t| \|x_0\| = |a + b \bar{b} \frac{a}{|b|} \frac{t}{|a|}| = |a| + |b| t. \]
Proof

We have...

\[\|a \text{Id} + b \, T\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

We want...

\[f(t) = |a| + |b| \, t \quad (t \in \mathbb{R}_0^+) \]

- Trivial if \(a \cdot b = 0 \). Suppose \(a \neq 0 \) and \(b \neq 0 \) and write \(\omega_0 = \frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T} \).

- Fix \(x_0 \in S_X, \ x_0^* \in S_X^* \) with \(x_0^*(x_0) = \omega_0 \) and consider

\[T_t = tx_0^* \otimes x_0 \in L(X) \quad (t \in \mathbb{R}_0^+) \]

- Since \(\|T_t\| = t \), we have

\[f(t) = \|a \text{Id} + b \, T_t\| \quad (t \in \mathbb{R}_0^+) \]

- It follows that

\[|a| + |b| \, t \geq f(t) = \|a \text{Id} + b \, T_t\| \geq \|[a \text{Id} + b \, T_t](x_0)\| \]

\[= \|a \, x_0 + b \, \omega_0 \, t \, x_0\| = |a + b \, \omega_0 \, t| \, \|x_0\| = \left| a + \frac{\bar{b}}{|b|} \frac{a}{|a|} \, t \right| = |a| + \frac{\bar{b}}{|b|} \frac{a}{|a|} \, t \]

- Finally, for rank-one \(T \in L(X) \), write \(S = \frac{a}{b} \, T \) and observe

\[|a| (1 + \|T\|) = |a| + |b| \, \|S\| = \|a \text{Id} + b \, S\| = |a| \, \|\text{Id} + T\| \]. \(\checkmark \)
Equalities of the form \(\|g(T)\| = f(\|T\|) \)
Equalities of the form \(\|g(T)\| = f(\|T\|) \)

Theorem

Let \(X \) be real or complex with \(\dim(X) \geq 2 \). Suppose that the norm equality

\[
\|g(T)\| = f(\|T\|)
\]

holds for every rank-one operator \(T \in L(X) \), where

- \(g : \mathbb{K} \to \mathbb{K} \) is analytic,
- \(f : \mathbb{R}_0^+ \to \mathbb{R} \) is arbitrary.

Then, there are \(a, b \in \mathbb{K} \) such that

\[
g(\zeta) = a + b \zeta \quad (\zeta \in \mathbb{K}).
\]
Equalities of the form $\|g(T)\| = f(\|T\|)$

Theorem

X real or complex with $\dim(X) \geq 2$. Suppose that the norm equality

$$\|g(T)\| = f(\|T\|)$$

holds for every rank-one operator $T \in L(X)$, where

- $g : \mathbb{K} \rightarrow \mathbb{K}$ is analytic,
- $f : \mathbb{R}_0^+ \rightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$g(\zeta) = a + b \zeta \quad (\zeta \in \mathbb{K}).$$

Corollary

Only three norm equalities of the form

$$\|g(T)\| = f(\|T\|)$$

are possible:

- $b = 0$: $\|a \text{Id}\| = |a|$, (trivial cases)
- $a = 0$: $\|b T\| = |b| \|T\|$, (trivial cases)
- $a \neq 0, b \neq 0$: $\|a \text{Id} + b T\| = |a| + |b| \|T\|$, (Daugavet property)
Proof (complex case)

We have...

\[\| g(T) \| = f(\| T \|) \quad \forall T \in L(X) \text{ rank-one} \]

We want...

\[g \text{ is affine} \]

\[\Rightarrow \]

\[\| a_0 \text{Id} + \tilde{g}(\lambda) T_1 \| = \| g(\lambda T_1) \| = f(|\lambda|) = \| a_0 \text{Id} + a_1 \lambda T_0 \|. \]
Proof (complex case)

We have...
\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).

We want...
\(g \) is affine
Proof (complex case)

We have... \[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

\[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(\|\lambda\|) = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]

We want... \(g \) is affine

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that \(x_0^*(x_0) = 0 \) and \(x_1^*(x_1) = 1 \),
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
We have. . .
\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one}\]

We want. . .
g is affine

\[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|a_0 \text{Id} + a_1 \lambda T_0\| = f(\|T_0\|) = \|g(T_0)\|\]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k\) and \(\tilde{g} = g - a_0\).
- Take \(x_0, x_1 \in S_X\) and \(x_0^*, x_1^* \in S_{X^*}\) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1,\]
 and define the operators \(T_0 = x_0^* \otimes x_0\) and \(T_1 = x_1^* \otimes x_1\).
- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0\) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1\) \((\lambda \in \mathbb{C})\).
Proof (complex case)

We have...

\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \text{ rank-one} \]

\[? \]

We want...

\[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1, \]
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0 \) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1 \) \((\lambda \in \mathbb{C}) \).
- Therefore, for \(\lambda \in \mathbb{C} \) we have
 \[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]
Proof (complex case)

We have
\[\|g(T)\| = f(\|T\|) \text{ for all } T \in L(X) \text{ rank-one} \]

We want
\[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).
- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1, \]
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).
- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0 \) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1 \) \((\lambda \in \mathbb{C})\).
- Therefore, for \(\lambda \in \mathbb{C} \) we have
 \[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]
- We use the triangle inequality to get
 \[|\tilde{g}(\lambda)| \leq 2|a_0| + |a_1||\lambda| \quad (\lambda \in \mathbb{C}), \]
Proof (complex case)

We have...

\[\|g(T)\| = f(\|T\|) \quad \forall T \in L(X) \quad \text{rank-one} \]

We want...

\[g \text{ is affine} \]

- Write \(g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k \) and \(\tilde{g} = g - a_0 \).

- Take \(x_0, x_1 \in S_X \) and \(x_0^*, x_1^* \in S_{X^*} \) such that
 \[x_0^*(x_0) = 0 \quad \text{and} \quad x_1^*(x_1) = 1, \]
 and define the operators \(T_0 = x_0^* \otimes x_0 \) and \(T_1 = x_1^* \otimes x_1 \).

- Then \(g(\lambda T_0) = a_0 \text{Id} + a_1 \lambda T_0 \) and \(g(\lambda T_1) = a_0 \text{Id} + \tilde{g}(\lambda) T_1 \) (\(\lambda \in \mathbb{C} \)).

- Therefore, for \(\lambda \in \mathbb{C} \) we have
 \[\|a_0 \text{Id} + \tilde{g}(\lambda) T_1\| = \|g(\lambda T_1)\| = f(|\lambda|) = \|g(\lambda T_0)\| = \|a_0 \text{Id} + a_1 \lambda T_0\|. \]

- We use the triangle inequality to get
 \[|\tilde{g}(\lambda)| \leq 2|a_0| + |a_1||\lambda| \quad (\lambda \in \mathbb{C}), \]

- and so \(\tilde{g} \) is a degree-one polynomial by Cauchy inequalities. \(\checkmark \)
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$
Equalities of the form \(\|\text{Id} + g(T)\| = f(\|g(T)\|) \)

Remark

If \(X \) has the Daugavet property and \(g \) is analytic, then

\[
\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|
\]

for every rank-one \(T \in L(X) \).
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
Equalities of the form \[\|\text{Id} + g(T)\| = f(\|g(T)\|) \]

Remark

If \(X \) has the Daugavet property and \(g \) is analytic, then

\[\|\text{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\| \]

for every rank-one \(T \in L(X) \).

- Our aim here is not to show that \(g \) has a suitable form,
- but it is to see that for every \(g \) another simpler equation can be found.
- From now on, we have to separate the complex and the real case.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**

 $\|\text{Id} + g(0)\| = |1 + g(0)| - |g(0)| + \|g(0)\|\|\text{Id} + T\|$ for every rank-one $T \in L(X)$. Where $g: \mathbb{C} \to \mathbb{C}$ analytic non-constant, $f: \mathbb{R}^+ \to \mathbb{R}$ continuous.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**

Proposition

Let X be a complex Banach space with $\dim(X) \geq 2$. Suppose that

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one $T \in L(X)$, where

- $g : \mathbb{C} \to \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}^+_0 \to \mathbb{R}$ continuous.

Then

$$\|(1 + g(0))\text{Id} + T\|$$

$$= |1 + g(0)| - |g(0)| + \|g(0)\text{Id} + T\|$$

for every rank-one $T \in L(X)$.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$

- **Complex case:**

Proposition

X complex, $\dim(X) \geq 2$. Suppose that

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one $T \in L(X)$, where

- $g : \mathbb{C} \rightarrow \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}^+ \rightarrow \mathbb{R}$ continuous.

Then

$$\|(1 + g(0))\text{Id} + T\|$$

$$= |1 + g(0)| - |g(0)| + \|g(0)\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

We obtain two different cases:

- $|1 + g(0)| - |g(0)| \neq 0$ or
- $|1 + g(0)| - |g(0)| = 0$.

Equalities of the form $||\text{Id} + g(T)|| = f(||g(T)||)$. Complex case

Theorem

If $\text{Re} g(0) \neq -1/2$ and

$$||\text{Id} + g(T)|| = f(||g(T)||)$$

for every rank-one T, then X has the Daugavet property.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Complex case

Theorem

If $\text{Re} \, g(0) \neq -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then X has the Daugavet property.

Theorem

If $\text{Re} \, g(0) = -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then exists $\theta_0 \in \mathbb{R}$ s.t.

$$\|\text{Id} + e^{i\theta_0} \, T\| = \|\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

Miguel Martín (University of Granada (Spain)) Numerical index theory Bangalore, June 2009 118 / 136
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Complex case

Theorem

If $\text{Re} g(0) \neq -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then X has the **Daugavet property**.

Theorem

If $\text{Re} g(0) = -1/2$ and

$$\|\text{Id} + g(T)\| = f(\|g(T)\|)$$

for every rank-one T, then exists $\theta_0 \in \mathbb{R}$ s.t.

$$\|\text{Id} + e^{i\theta_0} T\| = \|\text{Id} + T\|$$

for every rank-one $T \in L(X)$.

Example

If $X = C[0, 1] \oplus_2 C[0, 1]$, then

- $\|\text{Id} + e^{i\theta} T\| = \|\text{Id} + T\|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does **not** have the Daugavet property.
Equalities of the form $\|\Id + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

 Remarks
 - The proofs are not valid (we use Picard’s Theorem).
Equalities of the form $\|\operatorname{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

 Remarks
 - The proofs are not valid (we use Picard's Theorem).
 - They work when g is onto.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

Remarks

- The proofs are not valid (we use Picard’s Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\|\text{Id} + T^2\| = 1 + \|T^2\|$,
 - $\|\text{Id} - T^2\| = 1 + \|T^2\|$.
Equalities of the form $\|\text{Id} + g(T)\| = f(\|g(T)\|)$. Real case

- **Real case:**

Remarks
- The proofs are not valid (we use Picard’s Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\|\text{Id} + T^2\| = 1 + \|T^2\|$,
 - $\|\text{Id} - T^2\| = 1 + \|T^2\|$.

Example

If $X = C[0, 1] \oplus_2 C[0, 1]$, then
- $\|\text{Id} - T\| = \|\text{Id} + T\|$ for every rank-one $T \in L(X)$.
- X does not have the Daugavet property.

$g(0) = -1/2$:
Is there any real Banach space X (with $\dim(X) > 1$) such that

$$\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$$

for every operator $T \in L(X)$?

In other words, are there extremely non-complex spaces other than \mathbb{R}?
The first attempts

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

2. Dieudonné, 1952: the James' space $J(J^{**} \equiv J \oplus \mathbb{R})$.

5. Ferenczi-Medina-Galego, 2007: there are odd and even infinite-dimensional spaces X.

X is even if admits a complex structure but its hyperplanes does not. X is odd if its hyperplanes are even (and so X does not admit a complex structure).

(Un)fortunately. . .

This did not work and we moved to $C(K)$ spaces.
The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.
The first attempts

The first idea
We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples
1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. Dieudonné, 1952: the James’ space J (since $J^{**} \equiv J \oplus \mathbb{R}$).
5. Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).
The first attempts

The first idea
We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

1. If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
2. Dieudonné, 1952: the James’ space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
5. Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

(Un)fortunately...

This did not work and we moved to $C(K)$ spaces.
The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.
The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$
Proof of the theorem
Proof of the theorem

We have \(X = C(K) \), \(K \) perfect, \(T = g\text{Id} + S \)

- \(\max \|\text{Id} \pm T\| = 1 + \|T\| \) (true for every \(K \) and every \(T \))
- \(\|\text{Id} + S\| = 1 + \|S\| \) (if \(S \in W(X) \), \(K \) perfect)

We need

\[
\|\text{Id} + T^2\| = 1 + \|T^2\|
\]
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

We need

$\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

We need $\|\text{Id} + T^2\| = 1 + \|T^2\|$

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$
 for $g \in C(K)$ and S weakly compact.
- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

We need $\|\text{Id} + T^2\| = 1 + \|T^2\|

- If $T = g\text{Id} + S$, then $T^2 = g^2\text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\|
 $\text{for } g \in C(K) \text{ and } S \text{ weakly compact}$.
- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Proof

- It is enough to show that
 $$\|\text{Id} - (g^2\text{Id} + S)\| < 1 + \|g^2\text{Id} + S\|.$$
Proof of the theorem

We have \(X = C(K), \ K \) perfect, \(T = g \text{Id} + S \)

- \(\max \| \text{Id} \pm T \| = 1 + \| T \| \) (true for every \(K \) and every \(T \))
- \(\| \text{Id} + S \| = 1 + \| S \| \) (if \(S \in W(X), \ K \) perfect)

We need \(\| \text{Id} + T^2 \| = 1 + \| T^2 \| \)

- If \(T = g \text{Id} + S \), then \(T^2 = g^2 \text{Id} + S' \) with \(S' \) weakly compact.
- We will prove that \(\| \text{Id} + g^2 \text{Id} + S \| = 1 + \| g^2 \text{Id} + S \| \) for \(g \in C(K) \) and \(S \) weakly compact.

Step 1: We assume \(\| g^2 \| \leq 1 \) and \(\min g^2(K) > 0 \).

Proof

- It is enough to show that
 \[
 \| \text{Id} - (g^2 \text{Id} + S) \| < 1 + \| g^2 \text{Id} + S \|.
 \]
- \(\| \text{Id} - (g^2 \text{Id} + S) \| \leq \| (1 - g^2) \text{Id} \| + \| S \| = 1 - \min g^2(K) + \| S \|. \)
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\mathrm{Id} + S$

- $\max \|\mathrm{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\mathrm{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\mathrm{Id} + S$, then $T^2 = g^2 \mathrm{Id} + S'$ with S' weakly compact.
- We will prove that $\|\mathrm{Id} + g^2 \mathrm{Id} + S\| = 1 + \|g^2 \mathrm{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

Step 1: We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

We need

$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|

Proof

- It is enough to show that
 \[
 \|\mathrm{Id} - (g^2 \mathrm{Id} + S)\| < 1 + \|g^2 \mathrm{Id} + S\|.
 \]

- $\|\mathrm{Id} - (g^2 \mathrm{Id} + S)\| \leq \|(1 - g^2)\mathrm{Id}\| + \|S\| = 1 - \min g^2(K) + \|S\|.$

- $\|g^2 \mathrm{Id} + S\| = \|\mathrm{Id} + S + (g^2 \mathrm{Id} - \mathrm{Id})\| \geq \|\mathrm{Id} + S\| - \|g^2 \mathrm{Id} - \mathrm{Id}\|
 = 1 + \|S\| - (1 - \min g^2(K)) = \|S\| + \min g^2(K).$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2\text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2\text{Id} + S\| = 1 + \|g^2\text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

- **Step 2:** We can avoid the assumption that $\min g^2(K) > 0$.

We need $\|\text{Id} + T^2\| = 1 + \|T^2\|$
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.
- **Step 2:** We can avoid the assumption that $\min g^2(K) > 0$.

Proof

Just think that the set of operators satisfying (DE) is closed.
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g\text{Id} + S$

- $\max \|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g\text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.

- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

- **Step 1:** We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

- **Step 2:** We can avoid the assumption that $\min g^2(K) > 0$.

- **Step 3:** Finally, for every g the above gives

$$\left\| \text{Id} + \frac{1}{\|g^2\|} \left(g^2 \text{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \text{Id} + S\|$$

which gives us the result. ✓
Proof of the theorem

We have $X = C(K)$, K perfect, $T = g \text{Id} + S$

- max $\|\text{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|\text{Id} + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If $T = g \text{Id} + S$, then $T^2 = g^2 \text{Id} + S'$ with S' weakly compact.
- We will prove that $\|\text{Id} + g^2 \text{Id} + S\| = 1 + \|g^2 \text{Id} + S\|$ for $g \in C(K)$ and S weakly compact.

Step 1: We assume $\|g^2\| \leq 1$ and $\min g^2(K) > 0$.

Step 2: We can avoid the assumption that $\min g^2(K) > 0$.

Step 3: Finally, for every g the above gives

$$\left\| \text{Id} + \frac{1}{\|g^2\|} \left(g^2 \text{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \text{Id} + S\|$$

which gives us the result. ✓

Proof

If $\|u + v\| = \|u\| + \|v\| \implies \|\alpha u + \beta v\| = \alpha \|u\| + \beta \|v\|$ for $\alpha, \beta \in \mathbb{R}_0^+$.
Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a **weak multiplication** if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \| \text{Id} + T^2 \| = 1 + \| T^2 \|$$
The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \|\text{Id} + T^2\| = 1 + \|T^2\|$$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.
Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$T = g \text{Id} + S$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \text{Id} + S \in L(C(K))$ weak multiplication

$$\implies \| \text{Id} + T^2 \| = 1 + \| T^2 \|$$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.

Consequence

Therefore, there are extremely non-complex $C(K)$ spaces.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.
More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \text{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.

Corollary

There are infinitely many non-isomorphic extremely non-complex Banach spaces.
Further examples

Proposition
There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence
There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that every operator on $C(K_i)$ is a weak multiplier, for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Theorem
There are some compactifications \tilde{K} of the above family $(K_i)_{i \in I}$ such that the corresponding $C(\tilde{K})$'s are extremely non-complex.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.
Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $(K_i)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Theorem

There are some compactifications \tilde{K} of the above family $(K_i)_{i \in I}$ such that the corresponding $C(\tilde{K})$'s are extremely non-complex.
Further examples II

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex.
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.

Observation: $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers. They are not indecomposable spaces.
Further examples II

Main consequence

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.

Observation

$C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.

They are not indecomposable spaces.
Main consequence

There are perfect compact spaces K_1, K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$,
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_∞.

Observation

- $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.
Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2
Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi: K \to K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?

We will show later that $\phi: K \to K$ homeomorphism $\Rightarrow \phi = \text{id}$.
Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.
Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2
Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi : K \to K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?
Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2
Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi : K \to K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite?

- We will show latter than $\phi : K \to K$ homeomorphism $\implies \phi = \text{id}$.
Extremely non-complex Banach spaces

Definition

X is **extremely non-complex** if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$
Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $\text{dist}(T^2, -\text{Id})$ is the maximum possible, i.e.

$$\|\text{Id} + T^2\| = 1 + \|T^2\| \quad (T \in L(X))$$

Examples

There are several extremely non-complex $C(K)$ spaces:

- If $T = g\text{Id} + S$ for every $T \in L(C(K))$ (K Koszmider).
- If $T^* = g\text{Id} + S$ for every $T \in L(C(K))$ (K weak Koszmider).
- One $C(K)$ containing a complemented copy of $C(\Delta)$.
- One $C(K)$ containing an isometric (1-complemented) copy of ℓ_∞.
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Theorem

Let X be extremely non-complex.

- If $T \in \text{Iso}(X)$, then $T^2 = \text{Id}$.
- If $T_1, T_2 \in \text{Iso}(X)$, then $T_1 T_2 = T_2 T_1$.
- If $T_1, T_2 \in \text{Iso}(X)$, then $\|T_1 - T_2\| \in \{0, 2\}$.
- If $\Phi : \mathbb{R}^+_0 \to \text{Iso}(X)$ is a one-parameter semigroup, then $\Phi(\mathbb{R}^+_0) = \{\text{Id}\}$.

Proof.
Isometries on extremely non-complex spaces. 1

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

- Take $S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}$.
Isometries on extremely non-complex spaces. I

Theorem

Let \(X \) be extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}. \)
- \(1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0. \)
Isometries on extremely non-complex spaces. I

Theorem

- \(X \) extremely non-complex.
- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}. \)
- \(1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0. \)
- Then \(\text{Id} = \frac{1}{2} T^2 + \frac{1}{2} T^{-2}. \)
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \to \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- Take \(S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \text{Id} + \frac{1}{2} T^{-2}. \)
- \(1 + \|S^2\| = \|\text{Id} + S^2\| = \left\| \frac{1}{2} T^2 + \frac{1}{2} T^{-2} \right\| \leq 1 \implies S^2 = 0. \)
- Then \(\text{Id} = \frac{1}{2} T^2 + \frac{1}{2} T^{-2}. \)
- Since \(\text{Id} \) is an extreme point of \(B_L(X) \implies T^2 = T^{-2} = \text{Id}. \)

✓
Theorem

- X extremely non-complex.
- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \| T_1 - T_2 \| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \rightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

\[
\text{Id} = (T_1 T_2)(T_1 T_2) \\
\implies T_1 T_2 = T_1 (T_1 T_2 T_1 T_2) T_2 = (T_1 T_1) T_2 T_1 (T_2 T_2) = T_2 T_1.
\]
Isometries on extremely non-complex spaces. 1

Theorem

\(X \) extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id} \).
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1 \).
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\} \).
- \(\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\} \).

Proof.

- \((\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2 \).
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi: \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

- $(\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2$.
- So $\|\text{Id} - T\| \in \{0, 2\}$.
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Proof.

- \((\text{Id} - T)^2 = 2(\text{Id} - T) \implies 2\|\text{Id} - T\| = \|(\text{Id} - T)^2\| \leq \|\text{Id} - T\|^2. \)
- So \(\|\text{Id} - T\| \in \{0, 2\}. \)
- \(\|T_1 - T_2\| = \|T_1(\text{Id} - T_1 T_2)\| = \|\text{Id} - T_1 T_2\| \in \{0, 2\}. \) \(\checkmark \)
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Proof.

$\Phi(t) = \Phi(t/2 + t/2) = \Phi(t/2)^2 = \text{Id}$. ✓
Isometries on extremely non-complex spaces. I

Theorem

- \(X \) extremely non-complex.
- \(T \in \text{Iso}(X) \implies T^2 = \text{Id}. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1. \)
- \(T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}. \)
- \(\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X) \) one-parameter semigroup \(\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}. \)

Consequences
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}$.
- $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}$.
- $\Phi : \mathbb{R}_0^+ \longrightarrow \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}$.

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
- $\text{Iso}(X)$ identifies with the set $\text{Unc}(X)$ of unconditional projections on X:

 $P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X)$

 $\iff P = \frac{1}{2}(\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}.$
Extremely non-complex Surjective isometries

Isometries on extremely non-complex spaces. I

Theorem

- X extremely non-complex.
 - $T \in \text{Iso}(X) \implies T^2 = \text{Id}.$
 - $T_1, T_2 \in \text{Iso}(X) \implies T_1 T_2 = T_2 T_1.$
 - $T_1, T_2 \in \text{Iso}(X) \implies \|T_1 - T_2\| \in \{0, 2\}.$
 - $\Phi : \mathbb{R}_0^+ \to \text{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\text{Id}\}.$

Consequences

- $\text{Iso}(X)$ is a Boolean group for the composition operation.
- $\text{Iso}(X)$ identifies with the set $\text{Unc}(X)$ of unconditional projections on X:

 $$P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X)$$

 $$\iff P = \frac{1}{2}(\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}.$$

- $\text{Iso}(X) \equiv \text{Unc}(X)$ is a Boolean algebra

 $$\iff P_1 P_2 \in \text{Unc}(X) \text{ when } P_1, P_2 \in \text{Unc}(X)$$

 $$\iff \left\| \frac{1}{2} \left(\text{Id} + T_1 + T_2 - T_1 T_2 \right) \right\| = 1 \text{ for every } T_1, T_2 \in \text{Iso}(X).$$
Extremely non-complex $C_E(K\|L)$ spaces.
Extremely non-complex \(C_E(K\|L) \) spaces.

Theorem

\(K \) perfect weak Koszmider, \(L \) closed nowhere dense, \(E \subset C(L) \)
\[\implies C_E(K\|L) \text{ is extremely non-complex.} \]
Extremely non-complex $C_E(K\|L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)
\implies C_E(K\|L)$ is extremely non-complex.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.
Theorem

\(K \) perfect weak Koszmider, \(L \) closed nowhere dense, \(E \subset C(L) \)

\[\implies C_E(K\|L) \text{ is extremely non-complex.} \]

Proposition

\(K \) perfect \(\implies \exists L \subset K \) closed nowhere dense with \(C[0,1] \subset C(L) \).

Observation: exists a non \(C(K) \) extremely non-complex space

\(C_{\ell_2}(K\|L) \) is not isomorphic to a \(C(K') \) space since \(\ell_2 \xrightarrow{\text{comp}} C_{\ell_2}(K\|L)^* \).
Extremely non-complex $C_E(K\|L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$

$\implies C_E(K\|L)$ is extremely non-complex.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Observation: exists a non $C(K)$ extremely non-complex space

$C_{\ell^2}(K\|L)$ is not isomorphic to a $C(K')$ space since $\ell^2 \overset{\text{comp}}{\rightarrow} C_{\ell^2}(K\|L)^*$.

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell^2 \subset C[0,1] \subset C(L)$:

- $C_{\ell^2}(K\|L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell^2}(K\|L)^* = \ell^2 \oplus C_0(K\|L)^*$, so $\text{Iso}(C_{\ell^2}(K\|L)^*) \supset \text{Iso}(\ell^2)$.

But we are able to give a better result...
Theorem

\(K \) perfect weak Koszmider, \(L \) closed nowhere dense, \(E \subset C(L) \)
\[\implies C_E(K\|L) \text{ is extremely non-complex.} \]

Proposition

\(K \) perfect \[\implies \exists \ L \subset K \text{ closed nowhere dense with } C[0,1] \subset C(L). \]

Observation: exists a non \(C(K) \) extremely non-complex space

\(C_{\ell_2}(K\|L) \) is not isomorphic to a \(C(K') \) space since \(\ell_2 \xrightarrow{\text{comp}} C_{\ell_2}(K\|L)^* \).

Important consequence: Example

Take \(K \) perfect weak Koszmider, \(L \subset K \text{ closed nowhere dense with} \)
\[E = \ell_2 \subset C[0,1] \subset C(L): \]
- \(C_{\ell_2}(K\|L) \) has no non-trivial one-parameter semigroup of isometries.
- \(C_{\ell_2}(K\|L)^* = \ell_2 \bigoplus_1 C_0(K\|L)^*, \) so \(\text{Iso}(C_{\ell_2}(K\|L)^*) \supset \text{Iso}(\ell_2). \)

But we are able to give a better result...
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

Let $T \in \text{Iso}(C_E(K\|L)) = \exists \theta : K \setminus L \rightarrow \{-1, 1\}$ continuous such that $T(f)(x) = \theta(x)f(x)$ for $x \in K \setminus L$, $f \in C_E(K\|L)$.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y\}$ dense in K.

- $\phi(x) = x$ for all $x \in D_0$.

- θ is continuous.

✓
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \ \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y\}$ dense in K.

- Consider $\phi : D_0 \longrightarrow D_0$ and $\theta : D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \ \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y \}$ dense in K.
- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with

 $$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

- $\phi^2 = \text{id}, \ \theta(x)\theta(\phi(x)) = 1$, ϕ homeomorphism.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y \}$ dense in K.

- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with

 $$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

- $\phi^2 = \text{id}$, $\theta(x)\theta(\phi(x)) = 1$, ϕ homeomorphism.

- $\phi(x) = x$ for all $x \in D_0$.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\[\implies \text{exists } \theta : K \setminus L \to \{-1, 1\} \text{ continuous such that} \]

\[[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L)) \]

Sketch of the proof.

- $D_0 = \{ x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y \}$ dense in K.
- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with

 \[T^*(\delta_x) = \theta(x) \delta_{\phi(x)} \]

- $\phi^2 = \text{id}$, $\theta(x) \theta(\phi(x)) = 1$, ϕ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
- $D_0 = K \setminus L$.
Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0\delta_y\}$ dense in K.
- Consider $\phi : D_0 \to D_0$ and $\theta : D_0 \to \{-1, 1\}$ with

 $$T^*(\delta_x) = \theta(x)\delta_{\phi(x)}$$

- $\phi^2 = \text{id}$, $\theta(x)\theta(\phi(x)) = 1$, ϕ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
- $D_0 = K \setminus L$.
- θ is continuous. \(\surd\)
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta: K \setminus L \to \{-1, 1\}$ continuous such that

$[T(f)](x) = \theta(x)f(x)$ \quad ($x \in K \setminus L, f \in C_E(K\|L)$)

Consequences: cases $E = C(L)$ and $E = 0$

- $C(K)$ extremely non-complex, $\varphi: K \to K$ homeomorphism $\implies \varphi = \text{id}$
- $C_0(K \setminus L) \equiv C_0(K\|L)$ extremely non-complex, $\varphi: K \setminus L \to K \setminus L$ homeomorphism $\implies \varphi = \text{id}$
- In both cases, the group of surjective isometries identifies with a Boolean algebra of clopen sets.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$

 \implies θ extends to the whole K and

 $$[T(f)](x) = \theta(x)f(x) \quad (x \in K, f \in C_E(K\|L))$$

 for every surjective isometry T.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$
 \implies θ extends to the whole K and

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K, \ f \in C_E(K\|L))$$

 for every surjective isometry T.

- If this happens, then $0 \notin \text{ext} \left(B_E^*\right)^{w^*}$ (V. Kadets).
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\implies exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \quad (x \in K \setminus L, \ f \in C_E(K\|L))$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$

 \implies θ extends to the whole K and

 $$[T(f)](x) = \theta(x)f(x) \quad (x \in K, \ f \in C_E(K\|L))$$

 for every surjective isometry T.

- If this happens, then $0 \notin \text{ext} \left(B_{E^*} \right)^{w^*}$ (V. Kadets).

- But for $E = \ell_2$, $0 \in \overline{\text{ext} \left(B_{E^*} \right)^{w^*}}$.
Isometries on extremely non-complex $C_E(K\|L)$ spaces

Theorem

$C_E(K\|L)$ extremely non-complex, $T \in \text{Iso}(C_E(K\|L))$

\iff exists $\theta : K \setminus L \to \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x)$$

$(x \in K \setminus L, f \in C_E(K\|L))$

Consequence: connected case

If K and $K \setminus L$ are connected, then

$$\text{Iso}(C_E(K\|L)) = \{-\text{Id}, +\text{Id}\}$$
The main example
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if |F| < \infty.
The main example

Koszmider, 2004

\[\exists \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty. \]

Observation on the above construction

There is \(\mathcal{L} \subset \mathcal{K} \) closed nowhere dense with

- \(\mathcal{K} \setminus \mathcal{L} \) connected
- \(C[0,1] \subseteq C(\mathcal{L}) \)
The main example

Koszmider, 2004

∃ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} \text{ closed nowhere dense with }

- \mathcal{K} \setminus \mathcal{L} \text{ connected }
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = \text{C}_\ell_2(\mathcal{K} \| \mathcal{L}) \). Then:

\[
\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)
\]
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if |F| < \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with

- \mathcal{K} \setminus \mathcal{L} connected
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = C_{\ell_2}(\mathcal{K}\|\mathcal{L}) \). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2) \]

Proof.
The main example

Koszmider, 2004

∃ \mathcal{K} weak Koszmider space such that \mathcal{K} \setminus F is connected if \text{\mid} F \text{\mid < } \infty.

Observation on the above construction

There is \mathcal{L} \subset \mathcal{K} closed nowhere dense with

- \mathcal{K} \setminus \mathcal{L} connected
- C[0,1] \subseteq C(\mathcal{L})

The best example

Consider \(X = C_{\ell_2}(\mathcal{K}\|\mathcal{L}) \). Then:

\[
\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell_2)
\]

Proof.

- \(\mathcal{K} \) weak Koszmider, \(\mathcal{L} \) nowhere dense, \(\ell_2 \subset C(\mathcal{L}) \)
 \(\implies \) \(X \) well-defined and extremely non-complex.
The main example

Koszmider, 2004

\[\exists \, \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty. \]

Observation on the above construction

There is \(\mathcal{L} \subset \mathcal{K} \) closed nowhere dense with
- \(\mathcal{K} \setminus \mathcal{L} \) connected
- \(C[0,1] \subseteq C(\mathcal{L}) \)

The best example

Consider \(X = C_{\ell^2}(\mathcal{K} \| \mathcal{L}) \). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell^2). \]

Proof.

- \(\mathcal{K} \) weak Koszmider, \(\mathcal{L} \) nowhere dense, \(\ell^2 \subset C(\mathcal{L}) \)
 \[\implies X \text{ well-defined and extremely non-complex.} \]
- \(\mathcal{K} \setminus \mathcal{L} \) connected \[\implies \text{Iso}(X) = \{-\text{Id}, +\text{Id}\}. \]
The main example

Koszmider, 2004

\[\exists K \text{ weak Koszmider space such that } K \setminus F \text{ is connected if } |F| < \infty. \]

Observation on the above construction

There is \(L \subset K \) closed nowhere dense with
- \(K \setminus L \) connected
- \(C[0,1] \subseteq C(L) \)

The best example

Consider \(X = C_{\ell^2}(K\|L) \). Then:

\[\text{Iso}(X) = \{-\text{Id}, +\text{Id}\} \quad \text{and} \quad \text{Iso}(X^*) \supset \text{Iso}(\ell^2) \]

Proof.

- \(K \) weak Koszmider, \(L \) nowhere dense, \(\ell^2 \subset C(L) \)
 \[\implies X \text{ well-defined and extremely non-complex.} \]
- \(K \setminus L \) connected \(\implies \text{Iso}(X) = \{-\text{Id}, +\text{Id}\}. \)
- \(X^* = \ell^2 \oplus C_0(K\|L)^* \), so \(\text{Iso}(\ell^2) \subset \text{Iso}(X^*) \). \(\checkmark \)
Open questions on extremely non-complex Banach spaces

1. Does X have the Daugavet property?
2. Stronger: Does Y have the Daugavet property if $\|\text{Id} + T\| = 1 + \|T\|$ for every rank-one $T \in \mathcal{L}(Y)$?
3. Is it true that $\text{n}(X) = 1$?
4. We actually know that $\text{n}(X) \geq C > 0$.
5. Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?
6. If $Y \leq X$ is 1-codimensional, is Y extremely non complex?
7. Is it possible that $X \cong Z \oplus Z \oplus Z$?
Open questions on extremely non-complex Banach spaces

Questions

- Does X have the Daugavet property?

If $Y \leq X$ is 1-codimensional, is Y extremely non complex?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if
 \[\|\text{Id} + T^2\| = 1 + \|T^2\| \quad \text{for every rank-one } T \in L(Y) \]
Open questions on extremely non-complex Banach spaces

Questions

\(X \) extremely non complex

- Does \(X \) have the Daugavet property?
- Stronger: Does \(Y \) have the Daugavet property if
 \[\| \text{Id} + T^2 \| = 1 + \| T^2 \| \quad \text{for every rank-one} \ T \in L(Y) \]?
- Is it true that \(n(X) = 1 \)?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if

 $$
 \|\text{Id} + T^2\| = 1 + \|T^2\| \quad \text{for every rank-one } T \in L(Y) \, ?
 $$

- Is it true that $n(X) = 1$?
 - We actually know that $n(X) \geq C > 0$.

Questions

\(X\) extremely non complex

- Does \(X\) have the Daugavet property?
- Stronger: Does \(Y\) have the Daugavet property if
 \[
 \| \text{Id} + T^2 \| = 1 + \| T^2 \| \quad \text{for every rank-one } T \in L(Y) \ ?
 \]
- Is it true that \(n(X) = 1\)?
 - We actually know that \(n(X) \geq C > 0\).
- Is \(\text{Iso}(X) \equiv \text{Unc}(X)\) a Boolean algebra?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property?
- Stronger: Does Y have the Daugavet property if
 $$\|\text{Id} + T^2\| = 1 + \|T^2\|$$
 for every rank-one $T \in L(Y)$?
- Is it true that $n(X) = 1$?
 - We actually know that $n(X) \geq C > 0$.
- Is $\text{Iso}(X) \equiv \text{Unc}(X)$ a Boolean algebra?
- If $Y \leq X$ is 1-codimensional, is Y extremely non complex?
Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does **X** have the Daugavet property?
- Stronger: Does **Y** have the Daugavet property if
 \[\|\text{Id} + T^2\| = 1 + \|T^2\| \text{ for every rank-one } T \in L(\mathcal{Y})? \]
- Is it true that \(n(\mathcal{X}) = 1 \)?
 - We actually know that \(n(\mathcal{X}) \geq C > 0 \).
- Is \(\text{Iso}(\mathcal{X}) \equiv \text{Unc}(\mathcal{X}) \) a Boolean algebra?
- If \(\mathcal{Y} \leq \mathcal{X} \) is 1-codimensional, is \(\mathcal{Y} \) extremely non complex?
- Is it possible that \(\mathcal{X} \cong \mathcal{Z} \oplus \mathcal{Z} \oplus \mathcal{Z} \)?
Schedule of the talk

1. Basic notation
2. Numerical range of operators
3. Two results on surjective isometries
4. Numerical index of Banach spaces
5. The alternative Daugavet property
6. Lush spaces
7. Slicely countably determined spaces
8. Remarks on two recent results
9. Extremely non-complex Banach spaces