The talk is based on these papers

J. Becerra Guerrero and M. Martín,
The Daugavet Property of C^*-algebras, JB^*-triples, and of their isometric preduals.

M. Martín,
The alternative Daugavet property of C^*-algebras and JB^*-triples.
Mathematische Nachrichten (to appear)

M. Martín and T. Oikhberg,
An alternative Daugavet property.
Introduction and motivation
- Definitions and examples
- Propaganda
- Geometric characterizations
- From rank-one to other class of operators

A new sufficient condition

Application: C^*-algebras and von Neumann preduals
- von Neumann preduals
- C^*-algebras

The alternative Daugavet equation
- Definitions and basic results
- Geometric characterizations
- C^*-algebras and preduals

Recommended readings
In a Banach space X with the **Radon-Nikodým property** the unit ball has many denting points.

- $x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has
 \[x \notin \overline{co}\left(B_X \setminus (x + \varepsilon B_X) \right). \]

- $C[0, 1]$ and $L_1[0, 1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$
 \[\overline{co}\left(B_X \setminus (x + (2 - \varepsilon) B_X) \right) = B_X. \]

- This geometric property is equivalent to a property of operators on the space.
The Daugavet equation

X Banach space, $T \in L(X)$

$$\|\text{Id} + T\| = 1 + \|T\| \quad \text{(DE)}$$

Classical examples

1. **Daugavet, 1963:**
 Every compact operator on $C[0, 1]$ satisfies (DE).

2. **Lozanoskii, 1966:**
 Every compact operator on $L_1[0, 1]$ satisfies (DE).

3. **Abramovich, Holub, and more, 80’s:**
 $X = C(K)$, K perfect compact space
 or $X = L_1(\mu)$, μ atomless measure
 \implies every weakly compact $T \in L(X)$ satisfies (DE).
The Daugavet property

- A Banach space X is said to have the **Daugavet property** if every rank-one operator on X satisfies (DE).
- If X^* has the Daugavet property, so does X. The converse is not true: $C[0, 1]$ has it but $C[0, 1]^*$ not.

Prior versions of: Chauveheid, 1982; Abramovich–Aliprantis–Burkinshaw, 1991

Some examples...

1. K perfect, μ atomeless, E arbitrary Banach space
 $\implies C(K, E), L_1(\mu, E),$ and $L_\infty(\mu, E)$ have the Daugavet property.
 (Kadets, 1996; Nazarenko, −; Shvidkoy, 2001)

2. $A(\mathbb{D})$ and H^∞ have the Daugavet property.
 (Wojtaszczyk, 1992)
3 A function algebra whose Choquet boundary is perfect has the Daugavet property.

\cite{Werner, 1997}

4 “Large” subspaces of \(C[0, 1] \) and \(L_1[0, 1] \) have the Daugavet property (in particular, this happens for finite-codimensional subspaces).

\cite{Kadets–Popov, 1997}

5 A \(C^* \)-algebra has the Daugavet property if and only if it is non-atomic.

6 The predual of a von Neumann algebra has the Daugavet property if and only if the algebra is non-atomic.

\cite{Oikhberg, 2002}
Some propaganda...

Let X be a Banach space with the Daugavet property. Then

- X does not have the Radon-Nikodým property.

 \[(\text{Wojtaszczyk, 1992})\]

- Every slice of B_X and every w^*-slice of B_{X^*} have diameter 2.

 \[(\text{Kadets–Shvidkoy–Sirotkin–Werner, 2000})\]

- Actually, every weakly-open subset of B_X has diameter 2.

 \[(\text{Shvidkoy, 2000})\]

- X contains a copy of ℓ_1. X^* contains a copy or $L_1[0, 1]$.

 \[(\text{Kadets–Shvidkoy–Sirotkin–Werner, 2000})\]
Theorem [KSSW]

- **X** has the Daugavet property.

- For every \(x \in S_X \), \(x^* \in S_{X^*} \), and \(\varepsilon > 0 \), there exists \(y \in S_X \) such that
 \[
 \text{Re} \, x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| > 2 - \varepsilon.
 \]

- For every \(x \in S_X \), \(x^* \in S_{X^*} \), and \(\varepsilon > 0 \), there exists \(y^* \in S_{X^*} \) such that
 \[
 \text{Re} \, y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| > 2 - \varepsilon.
 \]

- For every \(x \in S_X \) and every \(\varepsilon > 0 \), we have
 \[
 B_X = \operatorname{co} \left(\{ y \in B_X : \|x - y\| > 2 - \varepsilon \} \right).
 \]
Theorem

Let X be a Banach space with the Daugavet property.

- Every weakly compact operator on X satisfies (DE).

 \[(\text{Kadets–Shvidkoy–Sirotkin–Werner, 2000})\]

- Actually, every operator on X which does not fix a copy of ℓ_1 satisfies (DE).

 \[(\text{Sirotkin, 2000})\]

Consequences

1. X does not have unconditional basis.

 \[(\text{Kadets, 1996})\]

2. Moreover, X does not embed into any space with unconditional basis.

 \[(\text{Kadets–Shvidkoy–Sirotkin–Werner, 2000})\]

3. Actually, X does not embed into an unconditional sum of Banach spaces without a copy of ℓ_1.

 \[(\text{Shvidkoy, 2000})\]
A new sufficient condition
Theorem

Let X be a Banach space such that

$$X^* = Y \oplus_1 Z$$

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace $W \subseteq X^*$ is norming if

$$\|x\| = \sup \{ |w^*(x)| : w^* \in W, \|w^*\| = 1 \}$$

or, equivalently, if B_W is w^*-dense in B_{X^*}.
Proof of the theorem

We have...

- \(X^* = Y \oplus_1 Z \),
- \(B_Y, B_Z \) \(w^* \)-dense in \(B_{X^*} \).

We need...

- fixed \(x_0 \in S_X \), \(x_0^* \in S_{X^*} \), \(\varepsilon > 0 \), find \(y^* \in S_{X^*} \) such that
 \[
 \|x_0^* + y^*\| > 2 - \varepsilon \quad \text{and} \quad \Re y^*(x_0) > 1 - \varepsilon.
 \]

Write \(x_0^* = y_0^* + z_0^* \) with \(y_0^* \in Y \), \(z_0^* \in Z \), \(\|x_0^*\| = \|y_0^*\| + \|z_0^*\| \), and write

\[
U = \{x^* \in B_{X^*} : \Re x^*(x_0) > 1 - \varepsilon/2\}.
\]

Take \(z^* \in B_Z \cap U \) and a net \((y_\lambda^*)\) in \(B_Y \cap U \), such that \((y_\lambda^*) \overset{w^*}\longrightarrow z^*\).

\((y_\lambda^* + y_0^*) \longrightarrow z^* + y_0^* \) and the norm is \(w^* \)-lower semi-continuous, therefore

\[
\liminf \|y_\lambda^* + y_0^*\| \geq \|z^* + y_0^*\| = \|z^*\| + \|y_0^*\| > 1 + \|y_0^*\| - \varepsilon/2.
\]

Then, we may find \(\mu \) such that \(\|y_\mu^* + y_0^*\| \geq 1 + \|y_0^*\| - \varepsilon/2. \)

Finally, observe that

\[
\|x_0^* + y_\mu^*\| = \|(y_0^* + y_\mu^*) + z_0^*\| = \|y_0^* + y_\mu^*\| + \|z_0^*\| > 1 + \|y_0^*\| - \varepsilon + \|z_0^*\| = 2 - \varepsilon,
\]

and that \(\Re y_\mu^*(x_0) > 1 - \varepsilon \) \(\) (since \(y_\mu^* \in U \)).
Some immediate consequences

Corollary

Let X be an L-embedded space with $\text{ext} (B_X) = \emptyset$. Then, X^* (and hence X) has the Daugavet property.

Corollary

If Y is an L-embedded space which is a subspace of $L_1 \equiv L_1[0,1]$, then $(L_1/Y)^*$ has the Daugavet property.

It was already known that...

- If $Y \subset L_1$ is reflexive, then L_1/Y has the Daugavet property.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- If $Y \subset L_1$ is L-embedded, then L_1/Y does not have the RNP.

 (Harmand–Werner–Werner, 1993)
Application:

The Daugavet property of

C^*-algebras and von Neumann preduals
A C^*-algebra X is a **von Neumann algebra** if it is a dual space.
In such a case, X has a unique predual X_*.
X_* is always L-embedded.
Therefore, if $\text{ext} \left(B_{X_*} \right)$ is empty, then X and X_* have the Daugavet property.
Example: $L_\infty[0, 1]$ and $L_1[0, 1]$.

Actually, much more can be proved:
Theorem

Let X_* be the predual of the von Neumann algebra X. Then, TFAE:

- X has the Daugavet property.
- X_* has the Daugavet property.
- Every weakly open subset of B_{X_*} has diameter 2.
- B_{X_*} has no strongly exposed points.
- B_{X_*} has no extreme points.
- X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element $p \in X$ such that

\[p^2 = p^* = p \quad \text{and} \quad p X p = \mathbb{C} p. \]
Let X be a C^*-algebra. Then, X^{**} is a von Neumann algebra.
Write $X^* = (X^{**})_* = A \oplus_1 N$, where
- A is the atomic part,
- N is the non-atomic part.

- Every extreme point of B_{X^*} is in B_A.
- Therefore, A is norming.
- What’s about N?

Theorem
If X is non-atomic, then N is norming. Therefore, X has the Daugavet property.
Example: $C[0, 1]$
We have...

- X non-atomic C^*-algebra, $X^* = A \oplus_1 N$.

We need...

- N to be norming for X, i.e. $\|x\| = \sup\{|f(x)| : f \in B_N\} \quad (x \in X)$.

- Write $X^{**} = A \oplus_\infty N$ and $Y = A \cap X$.
- Y is an ideal of X, so Y has no atomic projections.
- Therefore, the norm of Y has no point of Fréchet-smoothness.
- But Y is an Asplund space, so $Y = 0$.
- Now, the mapping
 $$X \hookrightarrow X^{**} = A \oplus_\infty N \twoheadrightarrow N$$
 in injective. Since it is an homomorphism, it is an isometry.
- But $N^* \equiv N$, so N is norming for N and now, also for X.
Theorem

Let X be a C^*-algebra. Then, TFAE:

- X has the Daugavet property.
- The norm of X is extremely rough, i.e.
 \[
 \limsup_{\|h\| \to 0} \frac{\|x + h\| + \|x - h\| - 2}{\|h\|} = 2
 \]
 for every $x \in S_X$ (equivalently, every w^*-slice of B_{X^*} has diameter 2).
- The norm of X is not Fréchet-smooth at any point.
- X is non-atomic.
The alternative Daugavet equation
The alternative Daugavet equation

Let X be a Banach space, $T \in L(X)$.

\[
\max_{|\omega|=1} \|Id + \omega T\| = 1 + \|T\| \quad \text{(aDE)}
\]

(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich..., 80's)

Two equivalent formulations

- There exists $\omega \in \mathbb{T}$ such that ωT satisfies (DE).
- The numerical radius of T, $\nu(T)$, coincides with $\|T\|$, where

\[
\nu(T) := \sup\{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}.
\]
Two possible properties

Let X be a Banach space.

- X is said to have the **alternative Daugavet property (ADP)** iff every rank-one operator on X satisfies (aDE).
 - Then, every weakly compact operator also satisfies (aDE).
 - If X^* has the ADP, so does X. The converse is not true: $C([0,1],\ell_2)$.

 (M.–Oikhberg, 2004; briefly appearance: Abramovich, 1991)

- X is said to have **numerical index 1** iff $v(T) = \|T\|$ for every operator on X. Equivalently, if every operator on X satisfies (aDE).

Observation

No analogous property is possible for the Daugavet equation:

$$\|ld + (-ld)\| = 0 \neq 1 + \| -ld\|.$$
Numerical index 1

- $C(K)$ and $L_1(\mu)$ have numerical index 1.
 \[(Duncan–McGregor–Pryce–White, 1970)\]

- All function algebras have numerical index 1.
 \[(Werner, 1997)\]

- A C^*-algebra has numerical index 1 iff it is commutative.
 \[(Huruya, 1977; Kaidi–Morales–Rodríguez-Palacios, 2000)\]

- In case $\dim(X) < \infty$, X has numerical index 1 iff
 \[|x^*(x)| = 1 \quad x^* \in \text{ext} (B_{X^*}), \; x \in \text{ext} (B_X).\]
 \[(McGregor, 1971)\]

- In case $\dim(X) = \infty$, if X has numerical index 1 and the RNP, then $X \supseteq \ell_1$.
 \[(López–M.–Payá, 1999)\]
The alternative Daugavet property

- $c_0 \oplus_\infty C([0, 1], \ell_2)$ has the ADP, but neither the Daugavet property, nor numerical index 1.
- For RNP or Asplund spaces, the ADP implies numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.
Geometric characterizations

Theorem

- X has the ADP.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad ||x - y|| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad ||x^* - y^*|| \geq 2 - \varepsilon. \]
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 \[B_X = \overline{co}(T \{ y \in B_X : ||x - y|| \geq 2 - \varepsilon \}). \]
Let V^* be the predual of the von Neumann algebra V.

The Daugavet property of V^* is equivalent to:

- V has no atomic projections, or
- the unit ball of V^* has no extreme points.

V^* has numerical index 1 iff:

- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

The alternative Daugavet property of V^* is equivalent to:

- the atomic projections of V are central, or
- $|v(v^*)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$, or
- $V = C \oplus_{\infty} N$, where C is commutative and N has no atomic projections.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:
- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:
- X is commutative, or
- $|x^*(x^*)| = 1$ for $x^* \in \text{ext}(B_{X^*})$ and $x^* \in \text{ext}(B_{X^*}).$

The alternative Daugavet property of X is equivalent to:
- the atomic projections of X are central, or
- $|x^*(x^*)| = 1$, for $x^* \in \text{ext}(B_{X^*})$, and $x^* \in B_{X^*}$ w^*-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
Recommended readings...

