The Daugavet property of C^*-algebras and von Neumann preduals.
Geometric characterizations

Miguel Martín

Departamento de Análisis Matemático
Universidad de Granada

February 2005 / Kent State University
The talk is based on these papers

- M. Martín, The alternative Daugavet property of C^*-algebras and JB^*-triples. *Preprint*
Outline

1. **Introduction**
 - Definitions and examples
 - Propaganda
 - Geometric characterizations

2. **A new sufficient condition**

3. **Applications**
 - von Neumann preduals
 - C^*-algebras

4. **The alternative Daugavet equation**
 - Definitions and basic results
 - Geometric characterizations
 - C^*-algebras and preduals

5. **Recommended readings**
The Daugavet equation

\(X \) Banach space, \(T \in L(X) \)

\[\| Id + T \| = 1 + \| T \| \quad (DE) \]

Classical examples

1. Daugavet, 1963:
 Every compact operator on \(C[0,1] \) satisfies (DE).

2. Lozanoskii, 1966:
 Every compact operator on \(L_1[0,1] \) satisfies (DE).

3. Abramovich, Holub, and more, 80’s:
 \(X = C(K) \), \(K \) perfect compact space
 or \(X = L_1(\mu) \), \(\mu \) atomless measure
 \(\implies \) every weakly compact \(T \in L(X) \) satisfies (DE).
The Daugavet property

A Banach space X is said to have the **Daugavet property** if every rank-one operator on X satisfies (DE).

- Then, all weakly compact operators also satisfy (DE).
- Obviously, if X^* has the Daugavet property, so does X.
 The converse is not true.

Prior versions of: *Chauveheid, 1982; Abramovich–Aliprantis–Burkinshaw, 1991*

Some examples...

1. K perfect, μ atomeless, X arbitrary Banach space
 $\implies C(K, X), L_1(\mu, X),$ and $L_\infty(\mu, X)$ have the Daugavet property.
 (Kadets, 1996; Nazarenko, —; Shvidkoy, 2001)

2. K arbitrary. If X has the Daugavet property, then so does $C(K, X)$.
 (M.–Payá, 2000)
More examples...

3. The c_0, ℓ_1, and ℓ_∞ sums of Banach spaces with the Daugavet property have the Daugavet property.

4. $A(\mathbb{D})$ and H^∞ have the Daugavet property.

 \[(\text{Wojtaszczyk, 1992})\]

5. $R \subset L_1[0, 1] =: L_1$ reflexive, then L_1/R has the Daugavet property.

 \[(\text{Kadets–Shvidkoy–Sirotkin–Werner, 2000})\]

6. A C^*-algebra has the Daugavet property if and only if it is non-atomic.

7. The predual of a von Neumann algebra has the Daugavet property if and only if the algebra is non-atomic.

 \[(\text{Oikhberg, 2002})\]
Introduction

A new sufficient condition

Applications

The alternative Daugavet equation

Recommended readings

Definitions and examples

Propaganda

Geometric characterizations

Some propaganda…

Let X be a Banach space with the Daugavet property. Then

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every slice of B_X and every w^*-slice of B_{X^*} have diameter 2.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- Actually, every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)

- X contains a copy of ℓ_1. X^* contains a copy or $L_1[0,1]$.

- X has no unconditional basis.

 (Kadets, 1996)

- Actually, X does not embed into a space with unconditional basis.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)
Geometric characterizations

Theorem [KSSW]

- **X** has the Daugavet property.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[\text{Re } x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[\text{Re } y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 \[B_X = \overline{co}(\{y \in B_X : \|x - y\| \geq 2 - \varepsilon\}). \]
A new sufficient condition
A new sufficient condition

Theorem

Let X be a Banach space such that

$$X^* = Y \oplus_1 Z$$

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace $W \subseteq X^*$ is **norming** if

$$\|x\| = \sup \{|w^*(x)| : w^* \in W, \|w^*\| = 1\}$$

or, equivalently, if B_W is w^*-dense in B_{X^*}.

Miguel Martín The Daugavet property
Proof of the theorem

We have...

\[X^* = Y \oplus_1 Z, \]
\[B_Y, B_Z \text{ w}^*\text{-dense in } B_{X^*}. \]

We need...

fixed \(x_0 \in S_X, x_0^* \in S_{X^*}, \varepsilon > 0 \), find \(y^* \in S_{X^*} \) such that
\[\|x_0^* + y^*\| > 2 - \varepsilon \quad \text{and} \quad \text{Re } y^*(x_0) > 1 - \varepsilon. \]

- Write \(x_0^* = y_0^* + z_0^* \) with \(y_0^* \in Y, z_0^* \in Z, \|x_0^*\| = \|y_0^*\| + \|z_0^*\| \), and write
 \[U = \{ x^* \in B_{X^*} : \text{Re } x^*(x_0) > 1 - \varepsilon \}. \]

- Take \(z^* \in B_Z \cap U \) and a net \((y^*_\lambda)\) in \(B_Y \cap U \), such that \((y^*_\lambda) \stackrel{w^*}{\longrightarrow} z^* \).

- \((y^*_\lambda + y_0^*) \longrightarrow z^* + y_0^* \) and the norm is \(w^*\) -lower semi-continuous, therefore
 \[\lim \inf \|y^*_\lambda + y_0^*\| \geq \|z^* + y_0^*\| = \|z^*\| + \|y_0^*\| > 1 + \|y_0^*\| - \varepsilon. \]

- Then, we may find \(\mu \) such that \(\|y^*_\mu + y_0^*\| \geq 1 + \|y_0^*\| - \varepsilon/2. \)

- Finally, observe that
 \[\|x_0^* + y^*_\mu\| = \|(y_0^* + y^*_\mu) + z_0^*\| = \|y_0^* + y^*_\mu\| + \|z_0^*\| > 1 + \|y_0^*\| - \varepsilon + \|z_0^*\| = 2 - \varepsilon, \]
 and that \(\text{Re } y^*_\mu(x_0) > 1 - \varepsilon \) (since \(y^*_\mu \in U \)).
Some immediate consequences

Corollary

Let X be an L-embedded space with $\text{ext} (B_X) = \emptyset$. Then, X^* (and hence X) has the Daugavet property.

Corollary

If Y is an L-embedded space which is a subspace of $L_1 \equiv L_1[0,1]$, then $(L_1/Y)^*$ has the Daugavet property.

It was already known that...

- If $Y \subset L_1$ is reflexive, then L_1/Y has the Daugavet property.
 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- If $Y \subset L_1$ is L-embedded, then L_1/Y does not have the RNP.
 (Godefroy–Li, 1990)
Applications:
The Daugavet property of C^*-algebras and von Neumann preduals
A C^*-algebra X is a von Neumann algebra if it is a dual space. In such a case, X has a unique predual X_\ast. X_\ast is always L-embedded. Therefore, if $\text{ext} (B_{X_\ast})$ is empty, then X and X_\ast have the Daugavet property.

Actually, much more can be proved:
Theorem

Let X_* be the predual of the von Neumann algebra X. Then, TFAE:

- X has the Daugavet property.
- X_* has the Daugavet property.
- Every weakly open subset of B_{X_*} has diameter 2.
- B_{X_*} has no strongly exposed points.
- B_{X_*} has no extreme points.
- X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element $p \in X$ such that

$$p^2 = p^* = p \quad \text{and} \quad pXp = \mathbb{C}p.$$
Let X be a C^*-algebra. Then, X^{**} is a von Neumann algebra. Write $X^* = (X^{**})_* = A \oplus_1 N$, where

- A is the atomic part,
- N is the non-atomic part.

Every extreme point of B_{X^*} is in B_A.

Therefore, A is norming.

What’s about N?

Theorem

If X is non-atomic, then N is norming. Therefore, X has the Daugavet property.

Actually, much more can be proved:
Theorem

Let X be a C^*-algebra. Then, TFAE:

- X has the Daugavet property.
- X is non-atomic.
- The norm of X is extremely rough, i.e.,
 \[
 \limsup_{\|h\| \to 0} \frac{\|x + h\| + \|x - h\| - 2}{\|h\|} = 2
 \]
 for every $x \in S_X$ (equivalently, every w^*-slice of B_{X^*} has diameter 2).
- The norm of X is not Fréchet-smooth at any point.
The alternative Daugavet equation
The alternative Daugavet equation

- **X** Banach space, **T** ∈ L(\(X\))

\[
\max_{|\omega|=1} \|Id + \omega T\| = 1 + \|T\| \quad (aDE)
\]

\[(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich... , 80's)\]

- Two possible properties
 - **X** is said to have the **alternative Daugavet property (ADP)** iff every rank-one (equivalently every compact) operator on **X** satisfies \((aDE)\).

 \[(Abramovich, 1991; M.–Oikhberg, 2004)\]
 - **X** is said to have **numerical index 1** iff EVERY operator on **X** satisfies \((aDE)\).

 \[(Lumer, 1968; Duncan–McGregor–Pryce–White, 1970)\]
Numerical index 1

- $C(K)$ and $L_1(\mu)$ have numerical index 1.

 (Duncan–McGregor–Pryce–White, 1970)

- $A(\mathbb{D})$ also has numerical index 1.

 (Crabb–Duncan–McGregor, 1972)

- In case $\dim(X) < \infty$, X has numerical index 1 iff

 \[|x^*(x)| = 1 \quad x^* \in \text{ext}(B_{X^*}), \ x \in \text{ext}(B_X). \]

 (McGregor, 1971)

- In case $\dim(X) = \infty$, if X has numerical index 1 and it has the RNP, then $X \supseteq \ell_1$.

 (López–M.–Payá, 1999)

- A C^*-algebra has numerical index 1 iff it is commutative.

 (Huruya, 1977)
The alternative Daugavet property

- The ADP is weaker than the Daugavet property and the numerical index 1.
- $c_0 \oplus_{\infty} C([0,1],\ell_2)$ has the ADP, but neither the Daugavet property, nor numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but lacking the Daugavet property.
Geometric characterizations

Theorem

- X has the ADP.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that
 \[|x^*(y)| > 1 - \varepsilon \quad \text{and} \quad \|x - y\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that
 \[|y^*(x)| > 1 - \varepsilon \quad \text{and} \quad \|x^* - y^*\| \geq 2 - \varepsilon. \]
- For every $x \in S_X$ and every $\varepsilon > 0$, we have
 \[B_X = \overline{\text{co}}(\bigcap \{ y \in B_X : \|x - y\| \geq 2 - \varepsilon \}). \]
Let V_\ast be the predual of the von Neumann algebra V.

The Daugavet property of V_\ast is equivalent to:

- V has no atomic projections, or
- the unit ball of V_\ast has no extreme points.

V_\ast has numerical index 1 iff:

- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V_\ast})$.

The alternative Daugavet property of V_\ast is equivalent to:

- the atomic projections of V are central, or
- $|v(v_\ast)| = 1$ for $v \in \text{ext}(B_V)$ and $v_\ast \in \text{ext}(B_{V_\ast})$, or
- $V = C \oplus \infty N$, where C is commutative and N has no atomic projections.
Let X be a C^*-algebra.

The Daugavet property of X is equivalent to:
- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^*-strongly exposed point.

X has numerical index 1 iff:
- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*}).$

The alternative Daugavet property of X is equivalent to:
- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1,$ for $x^{**} \in \text{ext}(B_{X^{**}}),$ and $x^* \in B_{X^*} \ w^*$-strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.
Recommended readings...

Y. Abramovich, and C. Aliprantis,
An invitation to operator theory.

Y. Abramovich, and C. Aliprantis,
Problems in operator theory.

V. Kadets, R. Shvidkoy, G. Sirotkin, and D. Werner,
Banach spaces with the Daugavet property.

R. Shvidkoy,
Geometric aspects of the Daugavet property.

D. Werner,
Recent progress on the Daugavet property.