The Daugavet property
of C*-algebras and von Neumann preduals

Julio Becerra Miguel Martín
The Daugavet equation

X Banach space, $T \in L(X)$

\[\|Id + T\| = 1 + \|T\| \quad \text{(DE)} \]

- **Daugavet, 1963:**
 Every compact operator on $C[0,1]$ satisfies (DE).

- **Lozanskii, 1966:**
 Every compact operator on $L_1[0,1]$ satisfies (DE).

- **Abramovich, Holub and more, 80’s:**
 $X = C(K)$, K perfect compact space
 or $X = L_1(\mu)$, μ atomless measure,
 \implies every weakly compact $T \in L(X)$ satisfies (DE).
The Daugavet property

A Banach space X is said to have the Daugavet property if every rank-one operator $T \in L(X)$ satisfies (DE).

* Then, all weakly compact operators also satisfy (DE).

* X^* Daugavet property $\implies X$ Daugavet property

Examples

- K perfect, μ atomeless, X arbitrary Banach space $\implies C(K,X)$, $L_1(\mu,X)$, and $L_\infty(\mu,X)$ have the Daugavet property.

(Kadets, 1996; Nazarenko, –; M.–Villena, 2003)
The Daugavet property

- K arbitrary compact space. If X has the Daugavet property, then so does $C(K, X)$.

 (M.–Payá, 2000)

- $A(1)$ and H^∞ have the Daugavet property.

 (Wojtaszczyk, 1992)

- A C^*-algebra has the Daugavet property if and only if it is non-atomic.

- The predual of a von Neumann algebra has the Daugavet property if and only if the algebra is non-atomic.

 (Oikhberg, 2002)
The Daugavet property

Some known properties

Let X be a Banach space with the Daugavet property. Then

- X contains a copy of ℓ_1.
- X does not embed into a space with unconditional basis.

 (Kadets–Shvidkoy–Sirotkin–Werner, 2000)

- X does not have the Radon-Nikodým property.

 (Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2.

 (Shvidkoy, 2000)
Proposition (KSSW, 2000)

X Banach space. TFAE:

(i) X has the Daugavet property.

(ii) For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

\[
\Re x^*(y) > 1 - \varepsilon \quad \text{and} \quad \|x + y\| \geq 2 - \varepsilon.
\]

(iii) For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

\[
\Re y^*(x) > 1 - \varepsilon \quad \text{and} \quad \|x^* + y^*\| \geq 2 - \varepsilon.
\]

(iv) For every $x \in S_X$ and every $\varepsilon > 0$, we have

\[
B_X = \overline{\co}(\{y \in B_X : \|x - y\| \geq 2 - \varepsilon\}).
\]
New sufficient conditions

Theorem
Let X be a Banach space such that

$$X^* = Y \oplus_1 Z$$

with Y and Z 1-norming subspaces. Then, X has the Daugavet property.

Corollary

- X L-embedded without extreme points. Then, X^* (and hence X) has the Daugavet property.

- $Y \subseteq L_1[0,1]$, Y L-embedded. Then $(L_1[0,1]/Y)^*$ has the Daugavet property.
Von Neumann preduals

Let \(X_\ast \) be the predual of the von Neumann algebra \(X \).

- \(X_\ast \) is \(L \)-embedded.

- Therefore, if \(\text{ex}(B_{X_\ast}) \) is empty, then \(X \) and \(X_\ast \) have the Daugavet property.

Actually, more can be proved:
THEOREM

X_* the predual of the von Neumann algebra X. TFAE:

(i) X has the Daugavet property.
(ii) X_* has the Daugavet property.
(iii) Every relative weak open subset of B_{X_*} has diameter 2.
(iv) B_{X_*} has no strongly exposed points.
(v) B_{X_*} has no extreme points.
(vi) X is non-atomic, i.e., there is no $p \in X$ such that

\[p^2 = p^* = p \quad \text{and} \quad p \, X \, p = \mathbb{C} \, p. \]
Let X be a von Neumann algebra.

- X decomposes as $A \oplus_{\infty} N$, where A is purely atomic and N has no atoms.

- Then, X^* decomposes as $A \oplus_1 N$, where A is generated by its extreme points and N has no extreme points.

Corollary

In the natural decomposition $X^* = A \oplus_1 N$, we have

- N has the Daugavet property and

- A has the RNP.
Let X be a C^*-algebra. Then, X^{**} is a von Neumann algebra and, as before,

$$X^* = (X^{**})_* = A \oplus_1 N$$

- A is generated by the extreme points of X^*
- B_N has no extreme points

Corollary

- The dual of a C^*-algebra does not have the Daugavet property.
- A C^*-algebra $X = Z^{**}$ does not have the Daugavet property.
Let X be a C^*-algebra. Write $X^* = A \oplus_1 N$.

- A is 1-norming for X (Krein-Milman Theorem)
- What’s about N?

Proposition

If X is non-atomic, then N is 1-norming for X. Therefore, X has the Daugavet property.

Actually, more can be proved:
The Daugavet property \(C^*-\)algebras

Theorem

Let \(X \) be a \(C^*-\)algebra. TFAE:

(i) \(X \) has the Daugavet property.

(ii) \(X \) is non-atomic.

(iii) The norm of \(X \) is extremely rough, i.e.,

\[
\limsup_{\|h\| \to 0} \frac{\|x + h\| + \|x - h\| - 2}{\|h\|} = 2
\]

for every \(x \in S_X \).

(iv) The norm of \(X \) is not Fréchet-smooth at any point.
The Daugavet property

Remark

• If X is an arbitrary infinite-dimensional C^*-algebra, then every relative weak-open subset of B_X has diameter 2.

• If X is an arbitrary infinite-dimensional von Neumann algebra, then the norm of X_* is extremely rough.

(Becerra–López–Rodríguez-Palacios, 2003)
The uniform Daugavet property

A Banach space X is said to have the **Uniform Daugavet property (UDP)** if, for every $\varepsilon > 0$,

$$ \inf\{n \in \mathbb{N} : \text{conv}_n(l^+(x, \varepsilon)) \supset S_X \quad \forall x \in S_X\} < \infty $$

where conv_n denotes the set of convex combinations of n-point collections and

$$ l^+(x, \varepsilon) = \{y \in (1 + \varepsilon)B_X : \|x + y\| > 2 - \varepsilon\}.$$

- X has the UDP iff X_U has the Daugavet property for every free ultrafilter U of \mathbb{N}.

• X has the UDP iff X_U has the Daugavet property for every free ultrafilter U of \mathbb{N}.

15
The uniform Daugavet property

Examples

- If K is perfect, $C(K)$ has the UDP.

- $L_1[0,1]$ has the UDP.

- There exists X having the Daugavet property but not the UDP.

 (Kadets–Werner, 2004)

Theorem

The UDP and the Daugavet property are equivalent for C^*-algebras and for von Neumann preduals.
The uniform Daugavet property

Sketch of the proof

- For C^*-algebras:
 - The ultrapower of a C^*-algebra is a C^*-algebra.
 - The roughness of the norm passes to ultrapower.

- For von Neumann preduals:
 - We do not know if the ultrapower of a von Neumann predual is again a von Neumann predual.
 - But, it is the predual of a JBW^*-triple.
 - The geometrical characterization is valid for preduals of JBW^*-triples.
 - If all the slices of B_X have diameter 2, then the unit ball of X_U has no strongly exposed points.
The alternative Daugavet property

X Banach space, $T \in L(X)$

$$\max_{\omega \in T} \|Id + \omega T\| = 1 + \|T\| \quad \text{(aDE)}$$

- X is said to have the alternative Daugavet property if every rank-one operator $T \in L(X)$ satisfies (aDE).
 - Then, all weakly compact operators also satisfy (aDE).

 (M.–Oikhberg, 2004)

- If all the operators $T \in L(X)$ satisfy (aDE), X is said to have numerical index 1.

 (Lumer, 1968)
The alternative Daugavet property

\[\star \text{For a } C^*\text{-algebra } X:\]

- The Daugavet property is equivalent to:
 - \(X \) does not have any atomic projection, or
 - \(\mathcal{B}_{X^*} \) has no \(w^*\)-strongly exposed points.

- The numerical index 1 is equivalent to:
 - \(X \) is commutative, or
 - \(|x^{**}(x^*)| = 1\) for \(x^{**} \in \text{ex} (\mathcal{B}_{X^{**}}) \) and \(x^* \in \text{ex} (\mathcal{B}_{X^*}) \).

(Huruya, 1977)
The alternative Daugavet property is equivalent to:

- the atomic projections of X are central, or
- \[|x^{**}(x^*)| = 1 \] for every $x^{**} \in \text{ex}(B_{X^{**}})$ and every w^*-strongly exposed point x^* of B_{X^*}, or
- There is a commutative ideal Y of X such that X/Y has the Daugavet property.

(M.–Oikhberg, 2004)
For the predual V_* of a von Neumann algebra V:

- The Daugavet property of V_* is equivalent to:
 - V has the Daugavet property, or
 - V_* has no extreme points.

- The numerical index 1 of V_* is equivalent to:
 - V has numerical index 1, or
 - $\|v^*(v)\| = 1$ for $v^* \in \text{ex}(B_{V^*})$ and $v \in \text{ex}(B_V)$.

- The alternative Daugavet property of V_* is equivalent to:
 - V has the alternative Daugavet property, or
 - $\|v(v_*)\| = 1$ for $v \in \text{ex}(B_V)$ and $v_* \in \text{ex}(B_{V_*})$, or
 - $V = C \oplus_\infty N$, where C has numerical index 1 and N has the Daugavet property.