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Abstract

In this study, we deal with non-degenerate translators of the mean curvature
flow in the well-known hyperbolic Einstein’s static universe. We classify translators
foliated by horospheres and rotationally invariant ones, both space-like and time-
like. For space-like translators, we show a uniqueness theorem as well as a result to
extend an isometry of the boundary of the domain to the whole translator, under
simple conditions. As an application, we obtain a characterization of the the bowl
when the boundary is a ball, and of certain translators foliated by horospheres whose
boundary is a rectangle.
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1 Introduction

The dynamic interplay between mean curvature flow (MCF) and the background of the hy-
perbolic Einstein’s static universe (HESU) forms the core of our exploration in this study.
The MCF, as a geometric evolution process, has been a pivotal subject of study with ap-
plications ranging from physics to mathematics. The study of the MCF traditionally focus
on hypersurfaces within Euclidean space Rn. One approach involves examining specific
solutions know as translating solutions or translators, which remain invariant under a sub-
group of translations in the ambient space. The fundamental tool is to simplify the MCF
to the equation

H = v⊥, (1)

where n ≥ 2, H represents the mean curvature vector of the immersion, v is a constant
(unit) vector, and v⊥ denotes the orthogonal projection of v into the normal bundle of the
hypersurface. Some authors have simplified the equation (1) by examining rotationally
invariant hypersurfaces, see [6]. Moreover, in [10] they have adopted a broader approach,
incorporating a cohomogeneity one action on M . This action involves the isometries of a
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Lie group, and it is structured such that the resulting hypersurfaces have constant mean
curvature, with at most two exceptions (refer to [1] for further information). For example,
in [4] and [5], Bueno considered rotationally invariant translators in the product of the real
hyperbolic plane and a real line, denoted as H2 × R. In [11], Lira and Mart́ın generalized
the study by Bueno to Riemannian products M ×R. Also, Pipoli considered translators in
the solvable group Sol3 in [14] and the Heisenberg group in [15]. On the other hand, Kim
in [9] moved to the Minkowski space, again using some groups of isometries on space-like
translators. This Lorentzian setting was studied in much more general Lorentzian spaces in
[10]. Some other similar problems have been extensively examined in the existing literature
([2],[6],[8],[12],..., and references therein).

Our approach involves translators of the MCF in HESU. This study takes into account
both the hyperbolic nature and static structure of the HESU. The involved techniques in
our study are basically three, namely, the action of Lie groups of isometries to simplify
some PDE into an ODE, the use of dynamical systems to solve a boundary problem, and
general theory of elliptic quasilinear PDE. That is to say, this provides a framework for
understanding translations of MCF in the context of the HESU, aiming to classify specific
instances that emerge in this universe.

The structure of this paper is the following: In Section 2, we review basic tools, high-
lighting that a graphical translator is characterized by a function satisfying the PDE (3).
We also exhibit a big family of time-like translators in HESU which can be constructed
from minimal or totally geodesic hypersurfaces in the hyperbolic space.

In Section 3, we present the classification and properties of space-like and time-like
translators foliated by horospheres, in Theorems 3.1 and 3.2.

Section 4 is devoted to exploring rotationally invariant translators, which are those
invariant by SO(n). To facilitate it, we first recall the Lorentz space Ln+1 as an essential
mathematical background. We obtain a full classification of these translators, both space-
like and time-like, obtaining 5 types in total, in Theorems 4.1 and 4.2. An important
space-like example is known as the bowl. Except the bowl, all of them exhibit one conic
singularity. The only time-like example is a bigraph, known as the spindle, and defined
through the construction outlined in Lemma 4.7.

Finally, in Section 5, as an application of our findings, we show a uniqueness result
for space-like translators based on the boundary, in Theorem 5.2. The methods employed
throughout involves tools from quasilinear elliptic partial differential equations and isome-
tries. As an consequence, we prove that an isometry of the sphere can be extended to the
translator under simple conditions. With this tool, we prove that a space-like translator
whose boundary is a round ball has to be a compact piece of a bowl. In our last result, we
characterize certain translators foliated by horospheres whose boundary is a rectangle in
Corollary 5.4.
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2 Preliminaries

Let M = Hn, n ≥ 2, be the hyperbolic space with its usual hyperbolic metric gHn . We
define the metric ⟨, ⟩ as the usual metric in Euclidean space. We consider the Hyperbolic
Einstein Static Universe (HESU), namely, the product M̄ = Hn×R with Lorentzian metric
g = gHn −dt2. Take (p, t) ∈ Hn×R. Given an open subset Ω of Hn, we consider a function
u ∈ C∞ (Ω,R) and construct its graph map Γ : Ω → M̄ , where Γ(p) = (p, u(p)). Given
the metric γ = Γ∗⟨, ⟩ on Ω, we assume that F : (Ω, γ) →

(
M̄, g

)
is a non-degenerate

hypersurface. Under the usual identifications, for each X ∈ TM , we have

dF (X) = (X, du(X)) = (X, ⟨∇u,X⟩) ,

where ∇u is the ⟨, ⟩-gradient of u. The upward vector field is

ν =
1

W
(∇u, 1) , W = +

√
ε (|∇u|2 − 1), (2)

where ε := sign (|∇u|2 − 1) = ±1 is a constant function on the whole Ω. Note that
g (ν, ν) = ε. The following proposition is known (see for example [10]).

Proposition 2.1. Under the previous setting, Γ is a graphical translator if, and only if,
function u satisfies the quasilinear PDE

div

(
∇u√

ε (|∇u|2 − 1)

)
=

1√
ε (|∇u|2 − 1)

. (3)

Example 2.1. Take M a minimal or a totally geodesic hypersurface in Hn. Then, the
product M ×R is also a time-like translator in Hn ×−1 R, and it is not graphical. Indeed,
since it is minimal or a totally geodesic in Hn, then M × R is also minimal or a totally
geodesic, so its mean curvature vector H = 0. But now, ∂t ∈ T (M × R). Then, H = 0 =
(∂t)⊥, the projection of ∂t onto T (M × R). □

3 Translators foliated by Horospheres

Before going any further, let us introduce the following space
(
Rk, ⟨, ⟩

)
= Flat Euclidean

Space. We use the following model of the hyperbolic space

Hn = {(x1, . . . , xn) ∈ Rn|x1 > 0} , n ≥ 2,

equipped with the hyperbolic metric gHn = gp =
1

x1
2 ⟨, ⟩p, p ∈ Hn. The (n− 1)-dimensional

Horosphere in Hn is given by

Hn−1 = {p = (x1, . . . , xn) ∈ Hn|x1 = x̂1} , x̂1 > 0.
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We give a normal vector N : Hn−1 −→ THn, p ∈ Hn−1 7→ x1∂1|p. The tangent space
TpH

n−1 of Hn−1 can be written as

p ∈ Hn−1, TpH
n−1 = {X ∈ Rn|X1 = 0} ,

where for all X ∈ TpH
n−1, one has g (X,N) = 0. Let ∇ be the Levi-Civita connection

on Hn and A is the Shape operator of N (Weingarten’s operator). Given X =
∑n

i=2 Xi∂i
(becauseX1 = 0, X ∈ THn−1), a simple computation gives

AX = X.

We get p ∈ Hn−1, h(p) = traceg(A) = (n− 1).

Take Ω ⊂ Hn open and connected, u ∈ C∞ (Ω,R). Let Γ : Ω = Ω̊ ⊂ Hn −→ M, p 7→
(p, u(p)) be a translator, as in Section 2. We wish the graph of Γ to be foliated by
horospheres. Therefore, Ω has to be also foliated by horospheres, that is to say Ω =
I × Rn−1, I ⊂ R an interval. We wish u to be invariant by horospheres, so that u only
depends on one variable, namely,

u : Ω → R, u : I × Rn−1 → R, (x1, . . . , xn) 7→ u(x1).

Let Σ be the Lie group such that the orbits of Σ in Hn are just the horospheres, that is to
say Σ = (Rn−1,+). The map

Φ : Rn−1 ×Hn → Hn,

((v1, . . . , xn−1) , (x1, . . . , vn)) 7→ (x1, x2 + v1, . . . , xn + vn−1) ,

is an smooth action of Σ on H by isometries. The projection map is

ρ : Hn → R, ρ (x1, . . . , xn) = ln (x1) .

We put ρ (Ω) = I. In particular, f : I ⊂ R → R, u = f ◦ ρ such that F (p) = (p, f(ρ(p))),
and then graph (f ◦ ρ) is foliated by horospheres. Take s ∈ R, Hs = ρ−1(s) one horosphere.
We compute the mean curvature of Hs with respect to −∇ρ.

h = div (∇ρ) =
n−1∑
i=1

g (∇ei∇ρ, ei) = n− 1,

where (e1, . . . , en−1, en = ∇ρ) is a local orthonormal frame on THn on each level set. Ac-
cording to Theorem 3.5 of paper [10], Γu is a translator if, and only if,

f ′′ (s) =
(
1− f ′(s)2

)
(1− f ′(s)(n− 1)) , n ≥ 2. (4)

Case I. If ε = −1 then, 0 < (−1) (−1 + f ′(s)2) therefore, |f ′(s)| < 1, Γ is space-like.
Case II. If ε = +1 then, 0 < (+1) (−1 + f ′(s)2) therefore, |f ′(s)| > 1, Γ is time-like.

Now, let us take z, we get

w′(s) = (1− w(s)2)(1−mw(s)) where m ∈ R, m ≥ 1, (5)

From now, we will discuss all possible solutions to this ODE.
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3.1 Case w(s) = ±1

Function f becomes f(s) = ±s + f0. We discard this case, because the associated hyper-
surfaces Γ are degenerate.

3.2 Case w(s) = 1
m

We obtain the function f1(s) =
s
m
+ f0.

3.3 Case w(s) ̸= ±1 and w(s) ̸= 1
m

We make some computations:

w′(s)

(1− w(s)2)(1−mw(s))
= 1 ⇒

∫
w′(s)

(1− w(s)2)(1−mw(s))
ds = s− s0

for some s0 ∈ R. Take the change of variable x = w(s),∫
dx

(1− x2)(1−mx)
= s− s0. (6)

3.3.1 Assume that m=1

We have from (6)

P(x) :=

∫
dx

(1− x2)(1− x)
= −1

4
ln|1− x|+1

2
· 1

1− x
+

1

4
ln|1 + x|. (7)

Clearly, we need the following intervals R−{−1,+1} = (−∞,−1)∪ (−1,+1)∪ (+1,+∞).
and we obtain different functions, by restricting function P to the different intervals,
namely, P1 = P|(−∞,−1), P2 = P|(−1,+1), P3 = P|(+1,+∞). We show some properties of
them:

1. limx→−∞ P1(x) = 0, limx→−1
x<−1

P1(x) = −∞; P1 strictly decreasing, Im(P1) = (−∞, 0).

2. limx→−1
x>−1

P2(x) = −∞, limx→1
x<1

P2(x) = +∞; P2 strictly increasing, Im(P2) = R.

3. limx→1
x>1

P3(x) = −∞, lim+∞ P3(x) = 0; P3 strictly increasing, Im(P3) = (−∞, 0).
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Figure 1: Function P1

−1 1

Figure 2: Function P2

+∞
1

Figure 3: Function P3

Now, we are going to construct the inverse function of P1 : (−∞,−1) → R. Recall
P1 (w(s)) = s− s0 ∈ (−∞, 0) so that s < s0. Therefore, given s0 ∈ R, we define

t1 : (−∞, s0) → (−∞,−1), s 7→ t1(s) = P−1
1 (s− s0).

We can now define f2,

f2 : (−∞, s0) → R, s 7→ f2(s) =

∫ s

s0

t1(v)dv + f̂2, f̂2 ∈ R.

We construct the inverse function of P2 : (−1,+1) → R. Recall P2 (w(s)) = s − s0 ∈
(−∞,+∞). Therefore, given s0 ∈ R, we define

t2 : R → (−1, 1), s 7→ t2(s) = P−1
2 (s− s0).

We can define f3,

f3 : R → R, s 7→ f3(s) =

∫ s

s0

t2(r)dr + f̂3, f̂3 ∈ R.

Similarly, given s0 ∈ R, we define

t3 : (−∞, s0) → (1,+∞), s 7→ t3(s) = P−1
3 (s− s0).

We can define f4,

f4 : (−∞, s0) → R, s 7→ f4(s) =

∫ s

s0

t3(k)dk + f̂4, f̂4 ∈ R.
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3.3.2 Assume that m > 1

We have from (6)

Q(x) :=

∫
dx

(1− x2)(1−mx)
=

1

2m− 2
ln|1− x|+ 1

2m+ 2
ln|1 + x|− m

m2 − 1
ln|1−mx|.

(8)
For m > 1, it is clear that we need the following intervals

R− {−1,+1, 1/m} = (−∞,−1) ∪ (−1, 1/m) ∪ (1/m,+1) ∪ (+1,+∞),

and we obtain different functions, by restricting function Q to the different intervals,
namely, Q1 = Q|(−∞,−1), Q2 = Q|(−1,1/m), Q3 = Q|(1/m,+1), Q4 = Q|(+1,+∞). We show
some properties of them:

1. limx→−1
x<−1

Q1(x) = −∞, limx→−∞ Q1(x) = − m
m2−1

ln(m) < 0; decreasing, Im(Q1) =(
−∞, m

1−m2 ln(m)
)
.

2. limx→−1
x>−1

Q2(x) = −∞, limx→ 1
m

x< 1
m

Q2(x) = +∞; Q2(x) increasing, Im(Q2) = R.

3. limx→ 1
m

x> 1
m
,
Q3(x) = +∞, limx→+1

x<1
Q3(x) = −∞; Q3(x) decreasing, Im(Q3) = R.

4. limx→+1
x>1

Q4(x) = −∞, limx→+∞ Q4(x) =
m

1−m2 ln(m) < 0; Q4(x) increasing, Im(Q4)=(
−∞, m

1−m2 ln(m)
)
.

−∞ −1

m
1−m2 ln(m)

Figure 4: Function Q1

−1 1/m

Figure 5: Function Q2
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Figure 6: Function Q3

+∞
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m
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Figure 7: Function Q4

Theorem 3.1. Consider a space-like translator Γ : Ω → Hn ×−1 R, Γ(p) = (p, u(p)) for
all p ∈ Ω, where u ∈ C2 (Ω). Then, Γ is foliated by horospheres if, and only if, there exists
f ∈ C2 (I), I ⊆ R such that u = f ◦ ρ and f is one of the following:

1. f1 : R → R, f1(s) = s
n−1

+ f0, f0 ∈ R.

2. n = 2, f3 : R → R, f3(s) =
∫
P2

−1(s)ds+ f0, f0 ∈ R.

3. n > 2, f6 : R → R, f6(s) =
∫
Q2

−1(s)ds+ f0, f0 ∈ R.

4. n > 2, f7 : R → R, f7(s) =
∫
Q3

−1(s)ds+ f0, f0 ∈ R.

Theorem 3.2. Consider a graphical time-like translator Γ : Ω → Hn ×−1 R, Γ(p) =
(p, u(p)) for all p ∈ Ω, where u ∈ C2 (Ω). Then, Γ is foliated by horospheres if, and only
if, there exists f ∈ C2 (I), I ⊆ R such that u = f ◦ ρ and f is one of the following:

1. n = 2, f2 : (−∞, s0) → R, f2(s) =
∫
P1

−1(s)ds+ f0, f0 ∈ R.

2. n = 2, f4 : (−∞, s0) → R, f4(s) =
∫
P3

−1(s)ds+ f0, f0 ∈ R.

3. n > 2, f5 :
(
−∞, 1−n

n2−2n
ln(n− 1)

)
→ R, f5(s) =

∫
Q1

−1(s)ds+ f0, f0 ∈ R.

4. n > 2, f8 :
(
−∞, n−1

2n−n2 ln(n− 1)
)
→ R, f8(s) =

∫
Q4

−1(s)ds+ f0, f0 ∈ R.

4 Rotationally Invariant Translators

We introduce the Lorentzian Space

Ln+1 = Rn+1, ⟨(x1, . . . , xn+1) , (y1, . . . , yn+1)⟩L = x1y1 + . . .+ xnyn − xn+1yn+1, n ≥ 2,

We consider the model of the hyperbolic space

Hn =
{
p ∈ Ln+1/ ⟨p, p⟩L = −1, pn+1 > 0

}
.
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Simple computations provide TpHn = {V ∈ Rn+1/⟨V, p⟩L = 0}. Now, let us define χ :
Hn → Rn+1, χ(p) = p the position vector, which is a unit normal time-like vector field to
Hn on Ln+1. Since AχV = +V, equivalently Aχ = +idTpHn , it is clear that Hn → Ln+1 is
totally umbilical. We define

ρ : Hn+1 → [1,+∞), (p1, . . . , pn) 7→ pn+1.

We have ρ−1 {s} = {p ∈ Hn|pn+1 = s, s ≥ 1} , so that this set is a (n− 1) sphere of radius√
s2 − 1. Simple computations show

∇ρ = −∂n+1 − ⟨∂n+1, χ⟩
L
χ,

⟨∇ρ,∇ρ⟩L = ⟨−∂n+1 − ⟨∂n+1, χ⟩χ,−∂n+1 − ⟨∂n+1, χ⟩χ⟩ = ⟨∂n+1, χ⟩2 − 1 ̸= +1.

We reparametrize the projection, obtaining

τ : Hn → (0,+∞), τ = ln
(√

ρ2 − 1 + ρ
)
.

Clearly, ρ = cosh(τ), and now ∇τ = 1√
ρ2−1

∇ρ, is a unit normal to each level set. We

compute the mean curvature of each level set, namely,

h = div(∇τ) = div

(
∇ρ√
ρ2 − 1

)
= (n− 1) coth(τ).

Assume that u = f ◦ ρ for some f : I → R. This means that Γu is foliated by spheres.
According to Theorem 3.5 of paper [10], we have:

Proposition 4.1. A function u = f ◦ τ provides a graphical, rotationally invariant, trans-
lator Γu if, and only if, the function f : I ⊂ (0,+∞) → R is a solution to the following
ODE:

f ′′(s) =
(
1− (f ′(s))2

)
(1− (n− 1) coth(s)f ′(s)) . (9)

Our next target is to study the solutions to (9). For this aim, we take w = f ′ in (9)
and deal with the following ODE

w′(s) =
(
1− w2(s)

)
(1− (n− 1) coth(s)w(s)) . (10)

Remark 4.1. Given a solution w to this ODE, each primitive f =
∫
w will provide a

graphical rotationally invariant translator in the following way. Define u := f ◦ τ , being
Γu its graph.

Firstly, we have the trivial solutions

w+1, w−1 : (0,+∞) → R, w+1(s) = +1, w−1(s) = −1.

The primitives f±1 =
∫
w±1 will provide degenerate hypersurfaces, but we will need them

in the computations of rest of this section.
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From now, we will use the book [17]. Indeed, we define the following dynamical system:

X : R2 → R2, X(s, z) =
(
sinh(s),

(
1− z2

)
(sinh(s)− (n− 1) cosh(s)z)

)
. (11)

The zeros of X are
p0 = (0, 0), p1 = (0, 1), p−1 = (0,−1).

We need to compute

∂X

∂s
=
(
cosh(s), (1− z2) (cosh(s)− (n− 1) sinh(s)z)

)
,

∂X

∂z
=
(
0,−2z (sinh(s)− (n− 1) cosh(s)z) +

(
1− z2

)
((1− n) coth(s))

)
.

We denote the differential of X at p by DX(p). We classify the points p0, p1 and p−1

according to the eigenvalues of DX(p):

DX(p0) =

(
1 0
1 1− n

)
, DX(p1) =

(
1 0
0 2(n− 1)

)
, DX(p−1) =

(
1 0
0 2(n− 1)

)
, n ≥ 2.

Clearly, p1 and p−1 are sources because both eigenvalues are positive. But p0 is a saddle
point. We introduce ξ = {(s, z) ∈ R2|s ≥ 0}, ξ+ = {(s, z) ∈ R2|z > 1}, ξ− = {(s, z) ∈ R2|
z < −1}, and ξ0 = {(s, z) ∈ R2| −1 < z < 1}.

Lemma 4.1. For each solution w to (10), there exist an integral curve of X.

Proof. We take w : I → R a solution to (10). We consider a solution to s′(r) = sinh (s(r)),
say s(r). Take z(r) = w (s(r)) so that γ(r) = (s(r), z(r)) = (s(r), w (s(r))) is an integral
curve of X.

Lemma 4.2. For each integral curve γ : Ko → R2 such that, γ(r) = (s(r), z(r)) with s an
bijective map, then w := z ◦ s−1 is a solution to (10).

Proof. Since γ is an integral curve of X (that is,X (γ(r)) = γ′(r)), then

s′(r) = sinh (s(r)) , z′(r) =
(
1− z(r)2

)
(sinh(s(r))− (n− 1) cosh(s(r))z(r)) .

As s is bijective, then s′ (s−1(y)) = sinh(y) for any y ∈ Ko. Therefore,

w′(y) =
z′ (s−1(y))

s′ (s−1(y))
=
(
1− w(y)2

)
(1− (n− 1) coth(y)w(y)) .

This completes the proof.

Lemma 4.3. For each solution to the ODE z′(r) = (1− n) (1− z(r)2) z(r), the curve
β(r) = (0, z(r)) is an integral curve of X.

Proof. We take the curve β(r) = (0, z(r)). Then, we show that β is an integral curve of X.
Indeed, β′(r) = (0, z′(r)) = X (0, z(r)) = (sinh(0), (1− z(r)2)(sinh(0)− (n− 1) cosh(0)
z(r))) = (0, (1− z(r)2)(1− n)z(r)), that is, z′(r) = (1− n)(1− z(r)2)z(r).
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4.1 The Space-like Case

The space-like translators appear when |f ′| < 1, that is, when |w| < 1.

Lemma 4.4. Each solution w to (10) with initial condition (s0, z0) ∈ ξ0, namely, w(s0) =
z0, can be extended (as solution) to w : (0,+∞) → R. Also, lims→0w(s) ∈ {−1, 0,+1}.

Proof. We take a local solution w to (10) such that −1 < w(s) < +1, which is bounded
by the constant solutions w±(s) = ±1. Therefore, w can be extended to w : (0,+∞) → R.
By Lemma 4.1, we construct an integral curve γw : (0,+∞) → R of X from w. By Lemma
4.3, γw and β can only coincide at some point p such that X(p) = 0. But this only holds
when p ∈ {p0, p+1, p−1}, namely, when lims→0w(s) ∈ {−1, 0,+1}.

We define of function ϑ : ξ → R given by

ϑ(s, z) =
(
1− z2

)
(sinh(s)− (n− 1) cosh(s)z) . (12)

We need the set α = {(s, z) ∈ ξ | ϑ(s, z) = 0} = {(s, z) ∈ ξ | z = tanh(s)/(m− 1)}.

Proposition 4.2. Let w : (0,+∞) → (−1, 1) be a solution to (10) such that |w(s0)| < 1
for some s0 ∈ (0,+∞). Then, it is one of the following:

1. There exists a unique ŵ : [0,+∞) → (−1,+1) solution to (10) such that ŵ(0) = 0.

For all s ∈ (0,+∞), it holds ŵ(s) < tanh(s)
n−1

.

2. If w(s0) < tanh(s0)/(n−1), then w(s) < tanh(s)/(n−1) for any s ≥ s0. In addition,
if w(s0) < ŵ(s0), then lims→0w(s) = −1.

3. If w(s0) > ŵ(s0), then lims→0w(s) = +1.

In all cases, it holds lims→+∞ w(s) = 1
n−1

.

Proof. 1. We want to solve the boundary problem:

w′(s0) =
(
1− w(s)2

)
(1− (n− 1) cosh(s)w(s)) , w(0) = 0.

If there is a solution, the associated integral curve of X will start at (0, 0). The eigenvalues
of DX(0, 0) are λ1 = 1, λ2 = 1 − n and then their eigenvectors are V1 = (n, 1) and
V2 = (0, 1) respectively. By Theorem 3.2.1. of the book [17], there exists an integral curve
γ of X such that γ(0) = (0, 0) and γ′(0) = V1 (Integral submanifolds). Then, by Lemma
4.2, we obtain the needed solution to the boundary problem.

In addition, assume by contradiction that there exist s0 ∈ (0,+∞) such that ŵ(s0) >
tanh(s)
n−1

> 0. We have ŵ′(s0) < 0 and ŵ(0) = 0. By continuity, there exist s1 ∈ (0, s0) such

that ŵ(s1) =
tanh(s1)
n−1

. There exist s2 ∈ (s1, s0) such that ŵ′(s1) > 0 and ŵ′(s2) >
tanh(s2)
n−1

.
But then,

0 < ŵ′(s2) =
(
1− ŵ′(s2)

2
)
(1− (n− 1) coth(s0)ŵ(s2)) < 0,

11



which is a contradiction.
2. We recall function ϑ, (12). Assume that (s0, w(s0)) satisfies ϑ(s0, w(s0)) = 0. Then,

w′(s0) = (1−w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) = 0. Moreover, there exists δ > 0 small enough

such that if s ∈ (s0 − δ, s0), then w′(s) = (1 − w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) < 0; and if

s ∈ (s0, s0 + δ), then w′(s) > 0. That is to say, if the graph of w touches the set α, then
w has a local minimum. Therefore, if the graph of w is below α at some point, then it
remains below α for any other further point.

In addition, if w(s0) < ŵ(s0), by Lemma 4.4, lims→0w(s) ∈ {−1, 0,+1}. Since z0 <
ŵ(s0), by uniqueness of solutions to ODE, we have w(s) < ŵ(s) for all s ∈ (0,+∞). Also,
ŵ(0) = 0 > lims→0w(s) and therefore, lims→0w(s) = −1.

3. If w(s0) > ŵ(s0), then w′(s0) = (1 − w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) < 0. Therefore,

the graph of w remains above the graph of ŵ in (0, s0). By Lemma 4.2, the only possible
limit is lims→0w(s) = +1.

Finally, when s becomes big, if the graph of w is above α, then w is strictly decreasing.
However, if the graph of w is below α, w is strictly increasing. Then, lims→+∞ w(s) =
lims→+∞ tanh(s)/(n− 1) = 1/(n− 1).

Definition 4.1. We define the function f̂(s) =
∫
ŵ(s)ds+ f0. The associated rotationally

invariant translator is called the bowl.

By Proposition 4.2, we immediately have the following result.

Theorem 4.1. Given a rotationally symmetric space-like translator Γ in Hn ×−1 R, there
exist f : (0,+∞) → R such that f is a solution to the ODE (10), and Γ(p) = (p, f(ρ(p))),
for all p ∈ Hn. There are 3 types of functions f =

∫
w, namely the bowl, those with

lims→0w(s) = 1 and those with lims→0w(s) = −1.

Remark 4.2. In items 2 and 3 Proposition 4.2, lims→0w(s) = ±1. This means that when
approaching to the axis of rotation, the translator will hit the axis with an angle of π/4.
Therefore, there is a conic singularity.

4.2 The Time-like Case

Lemma 4.5. Given (s0, z0) ∈ R2 such that s0 > 0, z0 > 1, the associated solution can be
extenden to w : [0, s0 + ε) → [1,+∞) with lims→0w(s) = +1.

Proof. The constant solution w+(s) = +1 is a bound from below. Since, ϑ(s, z) > 0, for
all (s, z) ∈ ξ+. We know w is increasing. Then, we can extend to [0, s0 + ε) similarly to
item 2 of Proposition 4.2, lims→0w(s) = +1.

Lemma 4.6. Given (s0, z0) ∈ R2 such that s0 < 0, z0 < 1, the associated solution can be
extended to w : [0, s0 + ε) → (−∞,−1] with lims→0w(s) = −1. Since, ϑ(s, z) < 0, forall
(s, z) ∈ ξ−.

Proof. The proof is very similar to Lemma 4.5.

12



Take g a function which is the inverse of f . We compute 1 = g′ (f(s)) f ′(s) and therefore
0 = g′′ (f(s)) f ′(s)2 + g′ (f(s)) f ′′(s). Then,

g′′ (f(s)) = −(1− f ′(s)2) (1− coth(s)f ′(s))

f ′(s)3
.

We take f ◦ g(t) = t, which implies 0 = f ′′ (g(t)) g′(t)2 + f ′ (g(t)) g′′(t). We obtain the
following ODE

g′′(t) = (g′(t)− 1) (coth (g(t))− g′(t)) . (13)

Lemma 4.7. Given a solution g : (t0 − ε, t0 + ε) → R to ODE (13). Then, g′′(t0) =
− coth(g0) < 0, there are two functions f± : (g0 − δ, go] → R solutions to the (9), which
are inverse functions of g with lims→g0 f

′
±(s) = lims→g0

1
g′(f±(s))

= ±∞. We construct
two graphical translator from f± rotationally invariant and together they make a smooth
hypersurface.

Proof. Choose t0 ∈ R. We consider the following IVP:

g′′(t) =
(
ε′ + ε̃g′(t)2

)
(coth (g(t)− g′(t))) , g′(t0) = 0, g(t0) = s0 ∈ I.

As usual, there exists a smooth solution α : (t0 − ε, t0 + ε) → R. Note that t0 is a critical
point of α and α′′(t0) = ε′ coth(s0). Case coth(s0) ̸= 0 : Then, t0 is an extremum of α.
The restrictions g+ = g| (t0, t0 + ε) and g− = g| (t0 − ε, t0) will be injective, by reducing
ε if necessary. Construct their inverse functions f+ and f− satisfy (9). To do so, we put
f+ (g(t)) = t, and therefore

1 = f ′
+ (g(t)) g′(t), 0 = f ′′

+ (g(t)) g′(t)2 + f ′
+ (g(t)) g′′(t),

f ′′
+ (g(t)) g′(t)2 = −f ′

+ (g(t))
(
ε′ + ε̃α′(t)2

)
(coth (g(t)− g′(t))) .

Next, we change s = g(t), and then g′(t) = 1/f ′
+(s), so that

f ′′
+(s)

f ′
+(s)

2
=

1

f ′
+(s)

2

(
ε̃+ ε′f ′

+(s)
2
)
(1− coth(s)f+(s)) .

A similar computation holds for f−. The union of the corresponding graphical translators
and their common boundary provide a smooth translator, because g is a smooth map and
f+, f− are tools to reparametrize its graph.

Definition 4.2. The spindle is the rotationally invariant hypersurface obtained in Lemma
4.7.

Remark 4.3. According to Lemmas 4.5 and 4.6, lims→0w(s) = ±1. Again, we have a
conic singularity of angle π/4.

Theorem 4.2. Any rotationally invariant, time-like translator in Hn ×−1 R is an open
subset of a spindle.
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Proof. Take w : (s0 − ε, s0 + ε) → (1,+∞) a solution to (10). By Lemma 4.5, we can
extend w : [0, s0 + ε) → (1,+∞), and lims→0w(s) = 1. We will show that there exist
s1 > s0 + ε such that lims→s1 w(s) = +∞ (finite-time blow-up). We have

w′(s) = (1− w(s)2)(1− (n− 1) coth(s)w(s)) = sinh(s)ϑ(s, w(s)).

We can get F (s, z) = (1− z2) (1− (n− 1) coth(s)z). With this, we have w′(s) = F (s,
w(s)). We define Υ = (0,+∞) × [1,+∞), and F,G : Υ → R, we consider G(s, z) =
(z2 − 1) z. Clearly, F (s, z) ≥ G(s, z), for any (s, z) ∈ Υ. Next, the solution to z′(s) =
G (s, z(s)) with z (s0) = z0 is z : (0, s0 + A) → R,

z(s) =
1√

1− e2s−2(s0+A)
, A = −1

2
ln

(
1− 1

z02

)
, A ∈ R.

Note that lims→s0+A z(s) = +∞. These previous computations imply that there exist
s1 ∈ (s0, s0 + A) such that lims→s1 w(s) = +∞. We start with f , and then we take
w = f ′ > 1. Every w has a finite-time blow-up, so we use Lemma 4.7. Therefore every f
is strictly increasing and g = f ′ so at some point, limz→z0 g

′(z) = 0. The same reasoning
works when w = f ′ < −1.

5 Isometries and a Quasilinear Elliptic PDE

Lemma 5.1. When ε = −1, PDE (3) behaves as a quasilinear elliptic operator. Moreover,
it is locally uniformly elliptic.

Proof. We use the model of half-plane :

Hn = {(x1, . . . , xn) ∈ Rn|x1 > 0} , n ≥ 2.

B1 = (∂1, . . . , ∂n) , B2 = (ei = x1∂i : i = 1, . . . , n) .

We know the hyperbolic metric is g = gHn = 1
x1

2 ⟨, ⟩ ; g (ei, ej) = x1
2 g (∂i, ∂j) = ⟨∂i, ∂j⟩ =

δij, where as usual, δij denotes the Kronecker’s delta. We take ui = ∂iu, and then

∇u = x2
1

n∑
i=1

ui∂i.

Take |∇u|2 =
∑n

i=1 x1
2ui

2; ∇∂i∂j =
∑n

k=1 Γ
k
ij∂k. We assume |∇u|2 < 1, then 1 > x1

2
∑n

i=1

ui
2 . We make some computations :

1

W
= div

(
∇u

W

)
=

−(∇u)(W )

W 2
+

1

W
div(∇u),

1 = div(∇u)− (∇u)(W )

W
. (14)
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div(∇u) =
n∑

i=1

g (∇ei∇u, ei) = x1
2

n∑
i=1

uii + 2u1x1 +
n∑

i,j=1

x1
2Γi

ijuj.

W =
(
1− |∇u|2

)1/2
=

(
1−

n∑
i=1

x1
2ui

2

)1/2

,

(∇u)(W ) =

(
x1

2

n∑
i=1

ui∂i

)(
1−

n∑
j=1

x1
2uj

2

)1/2

= −x1
3

W
u1

n∑
j=1

uj
2 − x1

4

W

n∑
i,j=1

uiujuij.

We insert all these computations in (14).

0 =
n∑

i,j=1

(
δij +

x1
2uiuj

W 2

)
uij +

2u1

x1

+
x1u1

W 2

n∑
i=1

ui
2 +

n∑
i,j=1

uiΓ
j
ji −

1

x1
2
.

We multiply by W 2x2
1. Later, we will that this is not a problem.

0 =
n∑

i,j=1

(
x1

2

(
1−

n∑
k=1

x1
2uk

2

)
δij + x1

4uiuj

)
uij + 2u1x1

(
1−

n∑
k=1

x1
2uk

2

)

+ x1
3u1

n∑
i=1

ui
2 +

n∑
i,j=1

x1
2

(
1−

n∑
k=1

x1
2uk

2

)
uiΓ

i
ji(x)− 1 +

n∑
k=1

x1
2uk

2.

We define

aij, b : Hn × Rn → R, aij(x, p) = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
δij + x1

4pipj, and

b(x, p) = 2u1x1

(
1−

n∑
k=1

x1
2uk

2

)
+ x1

3u1

n∑
i=1

ui
2 +

n∑
i,j=1

x1
2

(
1−

n∑
k=1

x1
2uk

2

)
uiΓ

i
ji(x)− 1

+
n∑

k=1

x1
2uk

2.

Let us check that the matrix A = (aij) is positive-define.We rewrite it as

A = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
In + x1

4B, B = ptp.

By taking p, q ∈ Rn, we see B = ptp, ⟨p, q⟩ = pqt, Bpt = ptppt = |p|2pt, and therefore

Apt =

(
x1

2

(
1−

n∑
k=1

x1
2pk

2

)
+ x1

4|p|2
)
pt,
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where In is the identity matrix. Clearly, Bpt = |p|2pt, and given q ⊥ p such that pqt = 0,
then, Aqt = x1

2 (1−
∑n

k=1 x1
2pk

2) qt. Therefore, the eigenvalues of A are:

λ1 = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
x1

4|p|2, λ2(p) = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
.

We define
Λ =

{
(x, p) ∈ Ω× Rn|x1

2|p|2 < 1, x1 > 0
}
, λ1, λ2 : Λ → R.

In Λ, λ2 > 0 and λ1 > 0, so that the operator Q is elliptic. Also, given U ⊂ Λ such that U
is open and Ū compact, then in U

λ1

λ2

= 1 +
x1

2|p|2

1−
∑n

k=1 x1
2pk2

≥ 1,

is bounded from above and from below. That is to say, Q is locally uniformly bounded.

We recover Theorem 10.2 of paper [7];

Theorem 5.1. Let Ω be a bounded open domain in Rn. Let u, v ∈ C0
(
Ω̄
)
∩ C2 (Ω). Let

Q be a quasilinear operator such that :

1. Q is locally uniformly elliptic with respect to either u or v;

2. aij do not depend on z;

3. b is non-increasing in z for each (x, p) ∈ Ω× Rn;

4. aij, b are continuously differentiable with respect to the p-variables in Ω× R× Rn.

Assume that Qu = Qv in Ω and u = v on ∂Ω. Then u ≡ v in Ω.

From Lemma 5.1 and Theorem 5.1, we immediately obtain the following uniqueness
result.

Theorem 5.2. Let Ω be a bounded open domain in Hn. Let u, v ∈ C0
(
Ω̄
)
∩ C2 (Ω) such

that Γu, Γv are space-like translators, and u = v on ∂Ω. Then u ≡ v in Ω.

Proof. By Lemma 5.1, Our operatorQ is quasilinear elliptic and locally uniformly bounded.
In addition, Q does not depend on z. We know aij, b ∈ C∞(Ω×Rn). Clearly, Q is on the
conditions of Theorem 5.1.

Lemma 5.2. Let Ω be a suitable subset of Hn. Take u : Ω → R such that Γu be a graphical
translator in Hn ×−1 R. Take σ an isometry of Hn. Given û := u ◦ σ, then Γû is also a
graphical translator in Hn ×−1 R.

Proof. We take W =
√

1− |∇u|2 such that div
(∇u

W

)
= 1

W
. We denote Ŵ =

√
1− |∇û|2,

and then a long but straightforward computation shows div
(

∇û

Ŵ

)
= 1

Ŵ
.
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Corollary 5.1. Take Ω a bounded open domain in Hn. Assume that there exists an isom-
etry σ : Hn → Hn such that σ(Ω̄) = Ω̄. Let u ∈ C0

(
Ω̄
)
∩C2 (Ω) such that Γ(p) = (p, u(p))

is a space-like translator, and u ◦ σ = u on ∂Ω. Then, u is also invariant with respect to
σ, that is to say, Γ is also invariant by σ × id.

Proof. We define û := u ◦ σ ∈ C0
(
Ω̄
)
∩ C2 (Ω). Clearly, û is also a space-like translator,

that is, Qû = 0. Therefore, Qu = Qû. Given x ∈ ∂Ω, û(x) = u (σ(x)) = c = u(x) By
Theorem 5.1, u = û.

Remark 5.1. There are no assumptions on the topology of ∂Ω.

Figure 8: An example of Ω̄ which is symmetric with respect to a hyperplane.

Corollary 5.2. Let Ω be a bounded open domain in Hn which is invariant by a subgroup G
of Iso (Hn). Take u : Ω̄ → R such that Γu is a space-like translator, and u◦σ = u on ∂Ω, for
all σ ∈ G. Then, Γu is also invariant by Ĝ := {σ × id : Hn ×−1 R → Hn ×−1 R |σ ∈ G}.

We write B (c, r) the ball of center c and radius r > 0, and B∗ (c, r) = B (c, r) \ {c}.
Corollary 5.3. Let Ω = B∗ (c, r) \ (c) ⊂ Hn, r > 0, u : Ω̄ → R satisfying Γu is a space-like
translator with a possible singularity at c, and u is constant on ∂B (c, r). Then Γu is a
rotationally invariant. In addition, if u ∈ C2 (B (c, r)) then, Γu is a compact piece of the
bowl.

Proof. The punctured ball Ω is symmetric with respect to all totally geodesic Hn−1 passing
through the center. By Theorem 5.1, u is symmetric with respect to all totally geodesic
Hn−1 passing through the center of Ω. This means that Γu is rotationally symmetric. So
we recall Theorem 4.2. In addition, if u is smooth at c, then Γu has to be a piece of a bowl,
bearing in mind that this is the only smooth example in the whole Ω.

Corollary 5.4. Take f : [a1, b1] → R, 0 < a1 < b1, one of the solutions in Theorem 3.1.
Define c = f (a1), d = f (b1) and a2, b2 ∈ R, a2 < b2. Then, there exists one and only one
function u : Ω = [a1, b1]× [a2, b2] → R such that:

1) Γu is a space-like translator.
2) For all t ∈ [a1, b1], u (t, a2) = u (t, b2) = f(t); for all s ∈ [a2, b2], u (a1, s) = c,

u (b1, s) = d.
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Note that Γu is foliated by horocycles as in Theorem 3.1.

Proof. Existence is just one of the examples in Theorem 3.1. Uniqueness: Take u, v ∈
C0 (Ω) ∩ C2(Ω̊) in conditions 1 and 2. We use Theorem 5.1, so u = v.
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