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Summary

Breeding for improved productivity has been tremendously successful in the last half-century, but
needs to be even more efficient in the future. Hope based on contributions from molecular biology for
improved yield potential seems to depend upon an improved knowledge of yield physiology. This
knowledge may assist breeding either directly, recommending selection criteria, or indirectly identifying
simpler traits that could be reliably mapped and selected for through marker-assisted selection.
Physiological traits associated with improved performance under water-limited conditions, include
phenology (that allows the crop to escape stresses) and those associated with improved water use,
water use efficiency and partitioning. Undoubtedly, earliness has been the predominant trait improved
for under Mediterranean conditions, and may not be a prospective trait for future breeding. Different
traits that may confer the ability to the crop for capturing more water, such as deeper root systems or
osmotic adjustment, may be unworkable in terms of their direct use in selection and surrogates would
be needed. For instance, canopy temperature depression and discrimination against 13C may be used to
assess improved ability to capture water (in these cases yield is positively related to discrimination
against 13C in grains). Early vigour, which allows faster ground coverage, also increases the amount of
water actually transpired by the canopy by reducing direct evaporation and presents substantial intra-
specific variation, and selection for this trait may be successfully carried out either directly or through
the use of vegetation indexes. Improved water use efficiency based on transpiration efficiency is largely
restricted to conditions where additional water is not available. A constitutively low stomatal conductance
or a high stomatal sensitivity may optimise the transpiration efficiency. In this context, discrimination
against 13C is also a simple and reliable measure of water use efficiency, and in cases in which no
major differences in capturing water is possible discrimination against 13C correlates negatively with
yield. Substantial further improvements in partitioning may be limited in most cereals.
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Introduction

Cereal breeding has been extremely successful in
the second half of the 20th century, releasing cultivars
with a genetic gain in yield of approximately 0.5%
year–1 (see reviews by Calderini et al., 1999 for wheat
and Abeledo et al., 2002 for barley). Although
estimations of breeding contributions to total yield
gains (actually observed on-farm) are mostly due to
breeding × management interaction (e.g. Evans &
Fischer, 1999), in general terms breeding was
considered to have been responsible for half of the
total gains in yield, as discussed before by Slafer &
Andrade (1991) and other sources quoted therein.
The other half of the yield gains observed during
the last 50 years or so was brought about by
management improvements, particularly by

increases in N fertilisation (Bell et al., 1995; Austin,
1999).

Future breeding needs to be ever more efficient to
meet the continuously growing demands of a
burgeoning population in a context where, unless
we are prepared to pay an enormous cost in terms of
environmental degradation, more cropping area
seems unlikely to be available. Moreover, the use of
agronomic inputs (including water) seems likely to
increase at a much slower pace than in the past (and
in many areas not at all), while few, if any,
opportunities exist for expanding irrigated areas
(Cassman, 1999). In addition, and despite the past
successes, the rate of increase of food crop
production has been noticeably decreasing in recent
years (Conway & Toennissen 1999; Slafer &
Peltonen-Sainio, 2001).
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This general statement is even reinforced with
regard to breeding small grain cereals to improve
their productivity in Mediterranean conditions. The
expected rate of breeding success is directly related
to the environmental background due to the higher
heritability of traits in non-limiting environments:
that is, the better the environmental conditions where
the released cultivars are to be grown the easier it
has been to achieve genetic gains in yield (Richards,
1996; Araus et al., 2002b).

To improve its efficiency, future cereal breeding
may exploit physiology and molecular biology to
facilitate the identification, characterisation and
manipulation of genetic variation to complement the
more traditional approaches based on selection for
yield per se (Sorrells & Wilson, 1997; Slafer et al.,
1999; Araus et al., 2002b). In this context, it is
relevant to note that in general (with exceptions
recognised for targeted environments extremely poor
in yield; Ceccarelli & Grando, 1996; Araus et al.,
2002b) improvements in actual yields in
Mediterranean conditions (as well as in other,
stressful environments) may well depend upon
further increases in yield potential, despite the fact
that there is a large gap between them. Two facts
support this statement: there has been no increase in
actual yields obtained by farmers until there was a
consistent increase in potential yield of cultivars
released by breeders (c. by mid-20th century) and
trends in actual and potential yields tend to be parallel
(see Abeledo et al. (2003) for an example in barley;
Evans (1993) for examples on soybean and maize
and Slafer & Calderini (2005) for examples in wheat,
and also see Cassman (1999) for a more general view
on the issue). It therefore seems that the contention
that selection under favourable conditions usually
leads to higher yields in less favourable
environments (Richards, 2000; Araus et al., 2002b)
is supported by the empirical evidence. Calderini &
Slafer (1999) illustrated this issue showing that
modern cultivars have consistently outyielded their
older counterparts even in the lowest-yielding
conditions in each of the countries analysed, and as
pointed out by Richards et al. (2001) it may be
expected that future genetic progress in favourable
environments should continue contributing to yield
in less favourable environments.

However, further raising potential yields is not a
simple task. Despite breeding having quite
successfully achieved this objective in the second
half of the 20th century, breeders currently start with
a crop that has already undergone an intensive
process of selection for increased yields. We believe
that further improvements need the integration of
new tools/strategies to complement traditional
breeding approaches.

Do we Need Physiological Traits?

Promising advancements produced in the last
decade or so have occurred through progress in
molecular biology. There is little doubt that marker-
assisted selection (MAS, selection based on the
presence of few genes or quantitative trait loci,
QTLs) would increase efficiency in breeding
programmes aimed at introgressing particular traits
into an adapted genetic background by pyramiding
useful genes, which are difficult or expensive to
select for directly by phenotypic observation. In
addition, selection may be faster and made in early
generations. The usefulness of these advancements
for simple traits can be acknowledged (i)
academically from examples in the literature actually
introgressing alien genes, affecting phenotype as
predicted in the genome in which it was introgressed,
and (ii) empirically by the simple awareness of the
number of transgenic crop cultivars commercially
used in several agricultural regions of the globe.

As the recent literature offers a wide range of
papers reporting on QTLs for yield, we could
possibly operate in the same way as for simple traits,
with regard to introgressing yield QTLs. In other
words, if we do know the QTLs for yield and
associated markers we could directly introgress them
(for instance by backcrossing and selecting by the
presence of the marker associated to the QTL for
yield) and eliminating the cumbersome, time-
consuming and sometimes difficult phenotyping of
physiological traits.

However, application of MAS for complex
quantitative traits, such as those related to increased
productivity in a particular population of
environments, remains challenging (Slafer, 2003).
QTLs for complex traits like yield can easily be
identified in specific mapping populations, and the
identification of QTLs for yield is widespread in the
literature. However, expression may be dependent
upon the genetic background (Stuber et al., 1999);
this dependence being one of the reasons to believe
that there is an intrinsic complexity in identifying
trustworthy QTLs for yield. The approach by
Thomas (2003) comparing QTLs for yield in a
number of mapping populations serves to illustrate
the problem of the strong dependence on the specific
mapping population (and QTLs being of no use for
other populations such as that of the elite germplasm
from where new cultivars would come from). Other
major problems with QTLs for yield commonly
reported in the literature are that they commonly
possess a low resolution; frequently have a small
individual effect on yield; and are normally strongly
dependent on the G×E interaction (e.g. Kjaer &
Jensen, 1996; Romagosa et al., 1996; Yin et al.,
1999).

Consequently, the evidence of reported QTLs for
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which these QTLs are identified/quantified may be
quite distinct from the value added produced by their
introgression in different genetic backgrounds (e.g.
that of the elite germplasm of a real breeding
programme) and environmental conditions (e.g.
those in which the eventually released cultivar has
to be grown).

In this context, it seems that the usefulness of the
powerful tools provided by the advances in
molecular biology to improve complex traits would
depend upon prior knowledge about their
physiological determinants (see also Araus et al.,
2003a), and that this improved knowledge may be
critical for transforming the idea that biotechnology
may be essential to raise yield ceilings (Conway &
Toennissen, 1999) from a speculation into a reality
(for more details on this issue, see the illustrative
review of Sinclair et al., 2004). Then we could either
(i) identify such simple traits putatively related to
yield, which can be further mapped and transferred
from one population to another, or (ii) when a QTL
for yield is identified, understand its physiological
determinants and the way in which those traits
interact with the targeted environments before
selecting with MAS for that QTL. In other words,
with regard to yield (and other complex traits)
molecular biology progress has increased, rather than
eliminated, the need to understand better the
physiology of yield determination. In addition, this
better understanding may help traditional breeding
programmes in the identification of appropriate
parents and efficient selection of progeny (Austin,
1993; Slafer et al., 1999) either using the traits
themselves or identifying cost-effective surrogate
traits (e.g. Araus, 1996; Araus et al., 2001). In
summary, breeding to improve cereal yields (either
by traditional or biotechnological means) could
increase its efficiency if based on attributes at the
crop level of organization putatively maximising
yields (Araus, 1996; Richards, 1996; Slafer & Araus,
1998; Slafer et al., 1999). For this to be realised,
knowledge of the crop-physiological attributes
determining yield of cereals has to be improved
considerably (Araus et al., 2004).

Promising Eco-Physiological Traits

Water deficit is the main environmental constraint
limiting cereal yield worldwide, and particularly
within the Mediterranean Basin, a problem likely to
become even worse in the future. Cereal plants
respond to drought through morphological,
physiological, and metabolic modifications
occurring in all plant organs and therefore traits
associated with improved performance under water-
limited conditions, or improved survival to
extremely low water availability, are diverse. In this
paper we will only refer to those associated with

yield to improve performance of a different genetic
background to that of the mapping population and
also in a wide range of environments (those in which
a successful cultivar will be released, including
different sites, different managements and different
years), has still to be demonstrated. On the other
hand, examples of failures have been reported in the
literature. For instance, Reyna & Sneller (2001)
attempted to evaluate to what degree they might
breed for higher yields in their soybean programme
by introgressing QTLs for yield, identified in a
mapping population, through successive
backcrosses. A few years earlier, Orf et al. (1999)
had identified a number of QTLs for yield in a
mapping population in which the soybean cv. Archer
contributed the QTLs associated with improved
performance in the studies conducted with this
mapping population. Reyna & Sneller (2001)
decided to build up near-isogenic lines for each QTL
for yield identified in Archer; they used four genetic
backgrounds for each of the isogenic lines. Later
they compared performance of the lines with the
“wild” genome with those with the QTL for yield
introgressed in that background in field experiments
in six different environments. There were no
significant interactions between marker genotype
and NIL set or between QTL and environment (the
effect of the QTL could be averaged across near
isogenic lines and environments, Fig. 1). It has been
clear from the experience illustrated in Fig. 1 that
the value assigned to a QTL for yield in a particular
mapping population and set of environments in
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Fig. 1. Yield of soybean near-isogenic lines with the
same genetic background (that adapted to the region
in which breeding was taking place) but with either
the genes corresponding to the adapted germplasm
(“wild”) or those of the three QTLs for yield (Satt144,
Satt002 and Sct_33/SOYHsp176) identified in cv.
Archer in a previous study (Orf et al., 1999). Each
value is the average of four different NILs and for the
six environments in which these NILs were field-
trialled (interactions marker genotype × NIL set and
QTL × environment were non-significant). Figure was
built up with data taken from Reyna & Sneller (2001).
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improved performance, which are the most useful
under field conditions (Passioura, 1996; Slafer &
Araus, 1998; Richards, 2000). These traits deal more
with the economy of dry matter acquisition and
partitioning under water-limited situations than with
the mechanisms allowing survival under extremely
dry conditions, in which agriculture can be hardly
practiced. In addition, these traits must be directly
related to crop yield under field conditions rather
than focused on levels of organisation much lower
than the crop canopy, frequently poorly and
inconsistently related to yield in the field (Araus,
1996; Richards, 1996; Slafer et al., 1999; Araus et
al., 2001).

Traits putatively related to yield must positively
affect water use, water use efficiency (WUE) or
biomass partitioning towards reproductive organs
(Passioura, 1977, 1996; Richards, 1996, 2000; Araus
et al., 2002b). Doubtless the single most important
attribute of the crop conferring the ability to perform
better under stressful conditions is its phenological
development (Passioura, 1996, 2002; Richards,
1996; González et al., 1999; Villegas et al., 2000;
Araus et al., 2002b). Changes in phenological
development allow the crop to escape stresses, either
actually avoiding stress during the crop cycle or,
most frequently, by avoiding the coincidence of the
most sensitive phases with the most likely
occurrence of the stress. Once developmental pattern
is fitted, traits associated with improved water use
are relevant when crops do not completely use the
water potentially available for growth, while traits
related to WUE and partitioning become more
important when available water is already depleted.
This issue may result in some differences between
strategies being suggested (e.g. selecting either for
a higher or lower WUE) for regions with
Mediterranean climate (Richards et al., 2002; Araus
et al., 2003a).

Phenology
As stressed above, the single most important

attribute determining performance under water stress
is that related to the rate of crop development
determining the phenology of the genoptype in a
particular population of environments. The most
largely recognised impact of phenological
development on performance under Mediterranean
conditions is related to the escape from water stress,
due to the benefits of tailoring a developmental
pattern that matches the pattern of rainfall. As
Mediterranean conditions are characterised by
exposing cereal growth to drought developing
increasingly throughout the late reproductive and
grain-filling phases (Loss & Siddique, 1994), the
natural outcome of breeding for adaptation has been
the selection for earliness. For example, comparing
the outcome of breeding for yield per se during the

last century or so, in terms of developmental patterns
in regions characterised by wheat being grown under
stressful environments but with different timings of
this stress, illustrates this point. Whereas, in regions
with stresses not necessarily occurring late in the
season (like in Canada or Argentina) breeding has
not tended to consistently change the timing of
anthesis (e.g. Hucl & Baker, 1987; Slafer & Andrade,
1989), in Mediterranean regions (like in Western
Australia or Spain) time to anthesis has tended to be
reduced systematically as new cultivars have been
released (e.g. Siddique et al., 1989a; Ramdani,
2004). Selection for earliness has two important
consequences on the physiology of cereal yields:
firstly it increases the likelihood to escape droughts
that are expected to be terminal, and secondly it
improves the partitioning of the total water used by
the crop actually absorbed and transpired after
anthesis. There is a curvilinear, hyperbolic
relationship between harvest index (and yield) and
the amount of post-anthesis transpiration as a
percentage of the total amount of water used
(Siddique et al., 1990; Sadras & Connor, 1991; Slafer
et al., 1994).

Breeding for earliness of flowering is relatively
simple, as major genes responsible for sensitivity/
insensitivity to photoperiod and vernalisation are
well known and relatively easily manipulated,
enabling crop duration to flowering to be
manipulated (e.g. Hay & Ellis, 1998; Snape, 1996;
Slafer & Whitechurch, 2001) (although genes for
intrinsic earliness (or earliness per se; Slafer, 1996),
may allow fine-tuning developmental rates for small
changes in phenology exist, they are not as well
known (Snape et al., 2001) and may also interact
with temperature (Slafer and Rawson, 1995;
Appendino and Slafer, 2003) making them
impractical for traditional breeding). However, in
most Mediterranean regions where cereal breeding
has been carried out for decades, selection for
earliness has already taken place and there may be
only marginal scope for further raising yield due to
selecting for even earlier flowering crops (still
avoiding frost risks and yield penalty). Thus earliness
may not be very relevant as a major prospective trait
for future breeding.

Another indirect effect of developmental patterns
influencing performance, more recently proposed
and consequently less discussed than earliness,
relates to the partitioning of a particular crop cycle
into different proportions of vegetative and
reproductive phases (Fig. 2). As recently
hypothesised (e.g. Slafer et al., 2001), extending the
duration of stem elongation would raise the number
of grains per spike and the harvest index (Miralles
et al., 2000; González et al., 2003), without altering
the amount of water used by the crop. This may be
particularly relevant in cases when the crop actually
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uses all the water available in the soil, and therefore
crop improvements would not be expected from a
higher root:shoot ratio, associated with a longer
vegetative phase. However, this developmental
pattern may be only achieved if deliberately selected
for as empirical breeding has not tended to produce
these sort of changes when directly selecting for
yield per se (e.g. Slafer et al., 1994), though
exceptional cases may be found (Abeledo et al.,
2003).

An extended stem elongation period can be
achieved by selecting either for higher sensitivity to
photoperiod or for differences in intrinsic earliness
during the stem elongation phase. It has been
reported that the stem elongation phase of cereals is
sensitive to photoperiod and that extending this
phase (by exposure to short photoperiod) does result
in an increased number of fertile florets and grains
produced by the crop (Slafer et al., 2001), and
therefore a higher yield. This sensitivity of stem
elongation to photoperiod seems to be independent
of that of previous phases (Slafer & Rawson, 1994;
González et al., 2002), though we must learn much
more on the genetic bases determining sensitivity
to photoperiod during stem elongation before this
information may be useful for practical breeding.
So far we have only a partial understanding of the
important genes (Whitechurch & Slafer, 2001, 2002),
since we only know (and have worked with) a few

major genes for photoperiod sensitivity, whilst many
others are expected to exist (Snape et al., 2001).
Alternative approaches, that have just started to be
analysed, include (i) determining what genes are
down- or up-regulated when responses to
photoperiod take place during different phases
(before and after the onset of stem elongation), and
(ii) identifying genes/QTLs for differences in length
of different phases (and/or for responsiveness to
photoperiod in these phases) within mapping
populations.

Water use
There are different traits that may confer the ability

to the crop canopy for capturing more water. Some
of the most widely recognised are deeper root
systems, osmotic adjustment and early vigour. The
former two would actually increase the amount of
water evapotranspired by the crop, while the latter
increases the proportion of the total
evapotranspiration that is actually transpired by the
canopy and then directly linked to crop productivity.

Deeper root systems allow the crop access to water
in deeper soil layers that might otherwise be
unavailable. An option to improve this trait may be
to identify genotypes with faster-growing crop roots;
a trait presenting large genetic variation (Watt et al.,
2001). Cereals with fast-growing roots may also
reduce the accumulation of bacteria that can limit

Fig. 2. Schematic diagram of a hypothesised avenue for cereal yield improvement through manipulating the proportion
of developmental time allocated to the stem elongation phase, describing some reported relationships supporting the
hypothesis.
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shoot growth (Watt et al., 2003), and then they may
have an improved access to resources down the soil
profile later in the growing season. Besides
absorbing more water, deeper root systems may help
prevent groundwater contamination from nitrate
leaching. A major problem with rooting depth as
candidate trait is that it is intrinsically difficult to
measure and therefore surrogates must be identified.

Osmotic adjustment (accumulation of solutes
during water stress decreasing osmotic potential and
maintaining water absorption) is an important
adaptive mechanism of drought tolerance in major
crops (e.g. Morgan, 1983; Ludlow & Muchow, 1990;
Chimenti & Hall, 2002). In turn, greater osmotic
adjustment may result in more root growth and then
an increased ability to extract additional soil water
under drought if water is available at deeper layers.
Although the genetic basis of this mechanism has
been identified in wheat and barley (e.g. Morgan,
1991; Morgan & Tan, 1996; Teulat et al., 1998,
2001), its direct use in selection seems unworkable.
Although some methods of selection for this trait
have been reported (e.g. Morgan, 2000), there is not
conclusive evidence that crop yields benefit by
increased osmolyte accumulation (Serraj & Sinclair,
2002).

Two surrogates that offer promise for estimating
which genotypes extract more water than others are
canopy temperature depression and discrimination
against the heaviest stable isotope of carbon (13C).

Canopy temperature depression (the magnitude of
the difference between the temperature of the canopy
and that of the air surrounding it) is a candidate
surrogate, as genotypes having lower canopy
temperature at midday have relatively better water
status (Blum et al., 1982; Garrity & O’Toole, 1995).
A positive relationship has been generally found
between canopy temperature depression and yield
for different genotypes (Blum, 1988; Blum et al.,
1990; Reynolds et al., 1994, 1998; Amani et al.,
1996; Fischer et al., 1998; Reynolds & Pfeiffer,
2000), though sometimes it did not work well (e.g.
Villegas et al., 2000; Royo et al., 2002). Infrared
thermal sensing of canopy temperatures has been
proposed as a tool for easy and rapid screening
(Blum et al., 1982; Reynolds et al., 1998; Araus et
al., 2001), as it can determine the surface temperature
of a field plot within a few seconds (Royo et al.,
2003).

Carbon isotope discrimination (δ13C) is a
promising trait for assessing genetic variation in
water extracted by different genotypes. It measures
the ratio of stable carbon isotopes (13C/12C) in the
plant dry matter compared to the value of the same
ratio in the atmosphere (Farquhar & Richards, 1984).
δ13C is associated with different attributes of the soil-
plant-atmosphere system, but it is dominated by the
discrimination of Rubisco (ribulose-1,5-

bisphosphate carboxylase/oxygenase) against the
heavier isotope, in turn related to the intracellular
concentration of CO2 (Ci) relative to that in air (Ca)
(Farquhar et al., 1982, 1989). This indicates that the
level of 13C discrimination by Rubisco would
decrease as leaf internal CO2 concentration
decreases, then the value of ∆ correlates negatively
with transpiration efficiency (here considered as the
ratio of net assimilation to transpiration). However
as δ13C usually also correlates positively with
stomatal conductance associated with transpiration,
δ13C also reflects the water status of the plant.
Therefore a stronger δ13C becomes an indirect
indicator of better water status (Araus et al., 2002a,
2003b) and then, under restricted water availability,
of improved ability to access water unreachable for
other genotypes.

Early vigour is a complex trait related to a number
of seedling characteristics (Liang & Richards, 1994;
López-Castañeda & Richards, 1994a; López-
Castañeda et al., 1995) which allows faster ground
coverage, thus increasing the amount of water
actually transpired by the canopy by reducing direct
evaporation. This may be especially relevant in
Mediterranean regions, where rainfall occurs during
early growth stages and evaporation from the
uncovered soil may be important, with vigorous
genotypes yielding more than less vigorous types
(Richards et al., 2002). There is substantial intra-
specific variation in characteristics conferring early
vigour and breeding for them may be successfully
carried out (Rebetzke et al., 1996). Early vigour may
be directly selected for through visual scores of early
differences in ground coverage or through the use
of vegetation indexes that may be calibrated to
estimate the proportion of soil actually covered by
green tissues in a plot (Araus et al., 2001).

Water use efficiency
Where additional water is not available, higher

WUE based on transpiration efficiency (increasing
the efficiency for producing dry matter per unit of
transpired water) appears to be an alternative strategy
to improve crop yield (Condon et al., 2002; Richards
et al., 2002). This strategy, we think, would only be
preferred over improving water use in regions where
virtually all water attainable by a crop canopy is
actually being used by modern cultivars. To define
this situation may be important as for some attributes
water-saving plants may be those more efficient but
less productive.

High stomata sensitivity is a trait that optimises
the balance between carbon gains and water losses,
by minimising the latter through only allowing gas
interchange under low water vapour deficits.
Alternatively a constitutively (i.e. already expressed
in absence of stress) low stomatal conductance may
also optimise the transpiration efficiency. In this
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context, δ13C is again a reasonably simple and
reliable measure of WUE for cereals and other C3
plants, but in contrast to the situation with improved
water use, the relationship between yield and δ13C
is negative (lines producing higher yields due to
superior WUE tend to have lower δ13C; Farquhar &
Richards, 1984; Hubick & Farquhar, 1989; Condon
et al., 1990). Therefore, screening for low δ13C could
be instrumental in breeding for higher WUE
(Farquhar & Richards, 1984; Farquhar et al., 1989;
Hall et al., 1994) and this has been the criterion used
for producing the first two commercial cereal
(wheat) cvs –Drysdale and Rees– with δ13C as an
indirect breeding trait (Rebetzke et al., 2002;
Richards et al., 2002; http://www.csiro.au/rees).
However, it remains critical to guarantee that there
are no major genotypic differences in the ability to
use more water in the targeted environments where
selection for lower δ13C is going to be made. In the
case illustrated for Australia (Rebetzke et al., 2002)
it has been clear that the advantage of selecting for
lower δ13C is only expected to take place for the
lowest range of rainfall in their environments, with
no apparent advantages for regions with more than
350 mm of rainfall during the whole season.

Partitioning
Harvest index is the final level of dry matter

partitioning to grains among crop organs. Breeding
has been effective in improving harvest index in
bread wheat (Calderini et al., 1999), barley (Abeledo
et al., 2002) and other cereals (e.g. Peltonen-Sainio,
1994; Ramdani et al., 2003; García del Moral et al.,
2005). Thus, this trait has already been subjected to
an intense breeding effort in the past, and scope for
further improvement may be more limited. One of
the main attributes modified to increase harvest
index has been plant height, which has been
systematically reduced. In wheat (Slafer et al., 1994;
Calderini et al., 1999), barley and other small-
grained cereals (Abeledo et al., 2002) breeding has
always resulted in shorted-stature culms, at least until
the cultivars reached a plant height optimising yield.
As the relationship between height and yield is
parabolic, reducing height beyond the value
maximising yields will be disadvantageous and most
modern cultivars possess plant heights within the
optimum range (of between 70 and 100 cm; Fischer
& Quail, 1990; Richards, 1992; Miralles & Slafer,
1995; Flintham et al., 1997). It is therefore unlikely
that further increases will be achieved by altering
plant height.

Therefore, although opportunities to improve
harvest index in Mediterranean conditions still
remain, they are not extremely promising. Yield in
these conditions is strongly reduced by the terminal
drought typical of the Mediterranean environments
(drought evolves during crop growth and becomes

severe during grain filling). Thus, phenological traits
increasing the relative amount of water used during
grain filling, or adjusting the crop cycle to the
seasonal pattern of rainfall, may be useful, providing
the advancement of flowering does not increase the
risk of frost damages substantially.

An alternative may be increasing the contribution
of vegetative stem reserves to grain filling to raise
yields under terminal stresses that severely inhibit
actual photosynthesis (otherwise source limitation
is unlikely; Slafer & Savin, 1994; Richards, 1996;
Borras et al., 2004). In these cases, augmenting the
contribution of carbohydrate reserves accumulated
during vegetative growth to grain filling may be
worthwhile for improving harvest index (Loss &
Siddique, 1994). Genetic variation seems large in
both capacity to accumulate reserves in vegetative
organs and in remobilization efficiency (e.g. López-
Castañeda & Richards, 1994b; Richards et al., 2002).
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