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Introduction 
Currently, the knowledge of the biochemical and molecular basis on which the complex 

processes of CO2 acquisition by plants are based may allow attempts to improve it by genetic 
modification. Since photosynthesis is the basis of plant growth and productivity, improving its 
efficiency may contribute to greater food security in the coming decades as the world population 
increases. Multiple targets have been identified that could be improved through biotechnology to 
increase photosynthesis of crops [1-6].

Engineering photosynthetic enzyme activity
Under intense light conditions, photosynthesis is limited by the CO2 supply, by the working 

capacity of Rubisco and by the regeneration rate of ribulose 1,5-bisphosphate (the five-carbon 
substrate for Rubisco). Potential possibilities are to increase the amount of Rubisco molecules 
and to improve their affinity for the CO2 to increase their carboxylase capacity and decrease 
oxygenase activity (photorespiration) [3,7,8]. However, the problem arises since carboxylase 
activity is not only a function of the number of Rubisco molecules, but is modulated by the 
concentrations of its cofactors (mainly supply of CO2 and Mg2

+) and by the regeneration 
rate of ribulose 1,5-bisphosphate, in addition to other enzymes of the Calvin cycle [3,7,9]. 
However, by overexpressing the small and large subunits of the Rubisco, together with an 
assembly chaperone protein, it was possible to increase photosynthesis and biomass in 
corn [10]. In tobacco, enzymes involved in glycolate metabolism have been inserted into 
chloroplasts to reduce photorespiration, along with reduced expression of a glycolate and 
glycerate transporter to minimize the flow of glycolate out of the chloroplast, increasing thus 
vegetative biomass in a 40% under field conditions [11]. Other actions at the enzymatic level 
have involved an increase in the activity of sedoheptulose 1,7-bisphosphatase, one of the key 
enzymes in the regulation of the Calvin-Benson cycle [12]. Thus, in transgenic wheat, the 
overexpression of this enzyme caused an increase in photosynthesis and grain yield [13]. It 
has also been suggested that the tolerance of photosynthesis at higher temperatures could be 
increased by improving the thermal stability of Rubisco activase, the enzyme that induces its 
activity under lighting conditions [14].
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Abstract
Photosynthesis is the basis of the primary production. Conventional breeding has produced notable 
increases in crop productivity, although a substantial improvement in photosynthesis per se has not 
yet been achieved. This mini review summarizes the possibilities for biotechnological manipulation of 
photosynthesis and their possible application for crop improvement.
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Introducing the C4 cycle in C3 crops
The possibility of introducing C4 photosynthetic metabolism 

in C3 crops such as wheat or rice, is one of the most important 
challenges in engineering photosynthesis [15-17]. At present, 
transgenic C3 plants have been obtained that express at least one 
set of key enzymes of the photosynthetic C4 pathway. However, 
those C3 transgenic plants that overproduce a single C4 enzyme 
show alterations in carbon metabolism [15-17]. Therefore, 
the correct post-translational regulation of the introduced 
heterologous enzymes, the adjustment of the levels of auxiliary 
enzymes (such as carbonic anhydrase, adenylate kinase and 
pyrophosphatase) and the metabolite transporters must also be 
addressed, as well as to achieve an effective mechanism of CO2 

concentration in the chloroplast stroma [15-17]. Alternatively, 
work is currently underway on the engineering of cyanobacterial 
carboxysomes or pyrenoid algae in C3 plants. Carboxysomes are 
bacterial polyhedral micro-compartments consisting of protein 
layers containing Rubisco and a carbonic anhydrase, so that they 
act by concentrating CO2, thus improving photosynthesis efficiency, 
while reducing photorespiration. Currently, it has been possible 
to partially assemble carboxysomes of cyanobacteria in tobacco, 
as well as to express genes for the enzyme Rubisco specific for 
cyanobacteria [18-20]. The introduction of the BicA and SbtA 
membrane transporters with a high affinity for bicarbonate ion 
of cyanobacteria in the envelope of the chloroplast has also been 
proposed as a mechanism for CO2 concentration [21]. Another 
strategy, although less developed, is to introduce algae pyrenoids, 
subcellular organelles located in the plastid stroma of almost all 
eukaryotic microalgae with large amounts of Rubisco together with 
a high activity of carbonic anhydrase [22,23].

Engineering components of the photochemical system
Under excessive radiation and to avoid photooxidation of 

chlorophylls and subsequent damage to Photosystems, green leaves 
have several mechanisms that allow to dissipate excess energy 
that cannot be used for photosynthesis. One of these mechanisms 
is the so-called nonphotochemical quenching (NPQ) that protects 
chlorophylls from damage by heat emission, but in this process, 
energy is lost that is not used for photosynthesis and biomass 
production [24-26]. In the case of the NPQ, its activation is quite fast, 
but not its return to the basal level, so a faster thermal relaxation of 
the NPQ after a decrease in the light level, could increase the energy 
available for photosynthesis in instead of continuing to dissipate it 
in the form of heat, especially under conditions of fluctuating light, 
as they usually occur inside the leaf canopy. In fact, some theoretical 
studies of the kinetics of the process indicate that the loss in CO2 

fixation due to the slow deactivation of NPQ could be as high as 30% 
[27].Recently, it has been possible to accelerate the return of NPQ 
to its basal level in tobacco by introducing genes from Arabidopsis 
thaliana for three proteins (PsbS, VDE and ZEP) involved in the 
xanthophyll cycle, thus increasing biomass production by up 
to 20% in greenhouse trials and around 15% in field trials [28]. 
Another strategy is to extend the spectrum of photosynthetic active 
light absorption (PhAR), which is located in the band between 400 
and 700nm wavelengths and represents approximately 50% of the 

energy of sunlight [29]. Few photons with wavelengths greater 
than 700nm are absorbed by the leaves, as they are almost entirely 
reflected or transmitted by leaves. However, chlorophylls d and f 
from cyanobacteria are capable of capturing light up to 750nm, so 
they could be used to extend photochemistry in terrestrial plants, 
thus increasing photons available for photosynthesis in sunlight by 
up to 19% [30].

Increased CO2 uptake
To increase the uptake of CO2 in C3 plants, the classic approach 

has been to increase stomatal conductance [31], but this also 
drastically increases the rate of transpiration, since under most 
circumstances the outflow of water is much greater than the flow of 
CO2 input [3]. Consequently, increased stomatal conductance would 
be detrimental to productivity in dry environments, although it has 
been found to correlate with higher yields under good irrigation 
conditions [32]. Another alternative is to modify the conductance 
of the mesophyll to CO2, which depends on two anatomical 
attributes of the leaf, the surface of the mesophyll cells exposed 
to the intercellular airspaces and the thickness of their cell walls, 
factors that are currently difficult to modify by Genetic Engineering 
[33,34]. Furthermore, the permeability to CO2 of the plasmalema 
and the chloroplast membranes must be also considered.

In this sense, it has been pointed out that certain aquaporins 
could also function as channels for CO2 because although lipid 
bilayers are highly permeable to CO2, biological membranes are 
very rich in proteins, which greatly reduce the area available for the 
diffusion of CO2 through lipids [35,36]. In fact, the overexpression of 
some aquaporins such as HvPIP2;1 in rice [37], NtAQP1 in tobacco 
[38] and PIP1;2 in Arabidopsis thaliana [39] was associated with 
an increase in the conductance of mesophyll to CO2. However, the 
physiological interpretation of these results is not straightforward, 
due to associated pleiotropic changes and technical challenges 
since, unfortunately, measuring the permeability of the membrane 
to CO2 is difficult. For example, in rice, overexpression of HvPIP2;1 
was accompanied by an increase in the thickness of the mesophyll 
cell walls [37]. However, the modification of certain aquaporins is 
a very interesting strategy to facilitate the diffusion of CO2 through 
the plasma membrane and the envelope of the chloroplast and to 
collaborate in the possibility of introducing the C4 photosynthetic 
pathway in C3 agricultural crops.

Conclusion
While modern crops are highly efficient at rapidly unfolding 

their leaves to maximize light interception, they are not as 
efficient at converting absorbed light energy to carbohydrates 
through photosynthesis. This may be due to the fact that the 
proteins and enzymes implicated in the photosynthetic process 
evolved in a marine environment with little light and absence of 
oxygen, very different therefore from current agronomic and 
atmospheric conditions. However, as we have discussed, there are 
several biotechnological possibilities, although the modification 
of photosynthesis at the chloroplast or leaf level should be 
accompanied by an improvement at the level of the crop canopy.
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