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Abstract

Many mobile devices now include an extra microphone, frequently placed at

their rear, intended to obtain information about the environmental noise for

speech de-noising purposes. Although this secondary sensor can be regarded

as just another element in a microphone array when performing beamforming,

in this paper we show that it can be considered differently in order to bet-

ter exploit the information about the acoustic environment. In particular, we

propose a novel spectral weighting based on Wiener filtering that takes bene-

fit from this secondary microphone to perform noise-robust automatic speech

recognition (ASR) in mobile devices. At first it is assumed that the secondary

microphone only captures noise while a reference sensor in the array (primary

microphone) observes the same noise spectrum (homogeneous noise field). Since

both assumptions are not always accurate, the Wiener filter (WF) weighting is

modified through 1) a bias correction term (to rectify the resulting spectral

weights when a non-negligible speech component is present at the secondary

channel) and 2) a novel noise equalization to be applied on the secondary chan-

nel before spectral weight computation. Speech recognition experiments are

performed on a dual-microphone smartphone (AURORA2-2C-CT/FT corpora)

and a tablet with six microphones (CHiME-3/4). Our results show the high
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performance of our approach as well as its great versatility regardless of the

analyzed mobile device and usage scenario.

Keywords: Power spectrum enhancement, spectral weighting, robust speech

recognition, dual-channel, mobile device

1. Introduction

Automatic speech recognition (ASR) systems suffer from accuracy issues

when they are deployed in noisy environments [1, 2, 3]. Many techniques have

been proposed to improve ASR robustness against environmental noise. How-

ever, they may likely fail when they are exposed to rapidly changing and low-5

SNR (Signal-to-Noise Ratio) environments [4], such as those that can be ex-

pected when using ASR on a mobile device. Mobile devices can be employed

anywhere at any time, in such a way that coping with a wide variety of noisy

environments is mandatory to provide a good user experience. With the aim of

enhancing noisy speech, these devices have begun to integrate small microphone10

arrays [5, 6, 7, 8], i.e., microphone arrays comprised of a few sensors close each

other. This technology can also be exploited for noise-robust ASR purposes

as is shown in [9, 10, 11, 12, 13]. In the first two references, the output of a

filter-and-sum beamformer is enhanced by post-filtering. Thus, while the out-

put of a Wiener post-filter is employed for the estimation of soft missing-data15

masks in [9], the post-filter in [10] is implemented through a deep neural net-

work (DNN) and its output is used to feed the recognition engine. Similarly,

post-filtering with multi-channel noise reduction is applied after minimum vari-

ance distortionless response (MVDR) beamforming in [11], where the speech

gains of the steering vector are computed by eigenvalue decomposition of the20

clean speech spatial covariance matrix. In [12], a binary mask is estimated from

the dual noisy observation by means of a DNN to perform feature compensa-

tion on smartphones with a dual-microphone. Mask estimation is based on the

power level difference (PLD) [5] between the two microphones of the device:

in a close-talk configuration (i.e., the loudspeaker of the smartphone is placed25
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at the ear) greater speech power is received at the primary microphone than

at the secondary one while almost the same noise power is assumed to be re-

ceived at both of them [14]. This way, a missing-data mask for the primary

channel can be inferred by comparing the noisy speech power at both channels

and applied to missing-data imputation [15]. Another alternative approach for30

dual-microphone smartphones is that proposed in [13] in which two power spec-

trum enhancement techniques are developed, one based on MVDR and another

on spectral subtraction (SS).

Mobile devices that embed small microphone arrays have one or more micro-

phones facing toward the speaker intended to capture her/his voice. In addition,35

many of these mobile devices have at least one extra microphone that is placed

at their rear (the so-called secondary microphone in this work). In this case,

valuable information about the acoustic environment can be captured since the

microphone is placed in an acoustic shadow with respect to the target speech

signal. While beamforming has proven to be useful in providing robustness in40

general microphone array scenarios [16, 17, 18], the secondary microphone is

barely able to improve beamforming performance since its main task is to ob-

tain information about the acoustic environment rather than directing the array

towards the speaker [19, 20].

In this paper we propose a novel spectral weighting technique based on45

Wiener filtering intended for noise-robust ASR in mobile devices that integrate

this kind of secondary sensor. We assume that only a single primary (front)

microphone is available in the device. If the device integrates more than one

front sensor, a virtual primary channel will be computed through the applica-

tion of beamforming. In such a case, our Wiener filter (WF)-based weighting50

behaves as a post-filter, the performance of which will be proven in this paper

to be superior than that of other well-known beamforming post-filters [21, 11].

To estimate the a priori signal-to-noise ratio (SNR) required by the WF, we ini-

tially assume that the secondary microphone captures no speech and that noise

acquired by this microphone coincides that one captured by the primary micro-55

phone. Although these assumptions can be acceptable in some situations (e.g.,
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when the mobile device is used in close-talk position and into a homogeneous

noise field [5, 14]), in general, they will not be satisfied. Hence, we introduce two

modifications to the basic WF weighting oriented to overcome the lack of real-

ism of these two initial assumptions. First, a bias correction term is introduced60

to rectify the resulting spectral weights when a non-negligible speech compo-

nent is present at the secondary channel. Second, we propose a novel noise

equalization procedure to be applied on the secondary channel before spectral

weight computation to make the noise power spectral densities (PSDs) at both

channels similar.65

Our proposals are evaluated on a smartphone with a dual-microphone as well

as on a tablet with six microphones (five of them facing forward and one facing

backwards). In the case of the smartphone, the primary microphone is located

at the bottom while the secondary one is located at the rear. This device is

analyzed in two different scenarios: close-talk and far-talk. The latter implies70

that the device is held at some distance (from a few centimeters to less than one

meter) from the face of the user. Thus, while for interactive voice response (IVR)

applications such as telephone banking it is common to make use of the device in

close-talk position, the far-talk configuration is especially interesting for some

other ASR applications where viewing the screen is required such as search-75

by-voice. To experiment with both scenarios two synthetic dual-channel noisy

speech databases, based on the well-known Aurora-2 corpus [22], are used: the

AURORA2-2C-CT (Aurora-2 - 2 Channels - Close-Talk) database (reported in

[13]) and the similarly defined AURORA2-2C-FT (Aurora-2 - 2 Channels - Far-

Talk) corpus. In the case of the tablet, a virtual primary channel is obtained by80

means of beamforming while the secondary microphone corresponds to the one

facing backwards. This type of device is only analyzed in real far-talk conditions

by using the CHiME-3 [1] and CHiME-4 [2] frameworks. Our experiments show

the great versatility of our approach according to its high performance regardless

of the analyzed device and usage scenario.85

The rest of the paper is organized as follows. In Section 2, the calculation of

the spectral weights based on Wiener filtering for power spectrum enhancement
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is briefly revisited and extended to a dual-channel framework. The biased and

unbiased approaches to compute the a priori SNR in order to derive the spectral

weights along with the noise equalization procedure are presented in Section90

3. The full enhancement system that integrates the stages described in the

previous sections as well as the implementation issues are explained in Section

4. In Section 5, the experimental framework is described. The experimental

results are shown in Section 6. Finally, in Section 7 conclusions and future work

are summarized.95

2. Distortion Model and WF Filtering

Let us consider a dual-channel additive noise distortion model yk(m) =

xk(m) + nk(m), where yk(m), xk(m) and nk(m) represent the noisy speech,

clean speech and noise signals, respectively, from the k-th channel (k ∈ {1, 2}).

In the following, sensors 1 and 2 will be referred to as the primary and secondary

microphones2. Assuming that clean speech and noise are uncorrelated, the

above distortion model can be expressed in the power spectral domain as

|Yk(f, t)|2 = |Xk(f, t)|2 + |Nk(f, t)|2, (1)

where f = 0, 1, ...,M− 1 denotes the frequency bin index and t = 0, 1, ..., T − 1

refers to the time frame index.

As the primary microphone is faced towards the speaker, we will assume

that the signal captured by this microphone has a higher SNR than the signal

captured by the secondary sensor and, hence, our objective is to provide an

estimate of the clean speech power spectrum at the primary channel, |X̂1(f, t)|2,

by taking advantage of the dual-channel information. To this end, a Wiener

filtering approach, widely used by many speech enhancement methods [23, 24,

25], is adopted. As it is well-known, the Wiener filter (WF) is optimal in the

sense of minimizing the mean square error between the target signal and the

2In the case of multiple front sensors, k = 1 refers to the virtual primary channel obtained

by means of beamforming.
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estimated one given the input corrupted signal. Under our framework, the

desired optimal non-causal filter in the frequency domain is given by [26]

H1(f, t) =
Sx1

(f, t)

Sx1(f, t) + Sn1(f, t)
, (2)

where Sx1
(f, t) and Sn1

(f, t) are the PSDs of the clean speech and the noise,

respectively, at the primary channel. Thus, the clean speech power spectrum

bin |X1(f, t)|2 can be estimated as

|X̂1(f, t)|2 = H2
1 (f, t)|Y1(f, t)|2. (3)

It should be noted that H2
1 (f, t) ∈ [0 1] may be seen as a spectral weight such

that H2
1 (f, t)→ 1 (H2

1 (f, t)→ 0) if speech (noise) dominates.100

The WF can be alternatively expressed as

H1(f, t) =
ξ1(f, t)

ξ1(f, t) + 1
, (4)

where

ξ1(f, t) =
Sx1(f, t)

Sn1
(f, t)

(5)

is the a priori SNR of the primary channel. Under our additive noise distortion

model, that is,

Syk(f, t) = Sxk
(f, t) + Snk

(f, t) (k = 1, 2), (6)

Eq. (5) can be alternatively expressed as

ξ1(f, t) =
Sy1(f, t)− Sn1

(f, t)

Sn1(f, t)
. (7)

A straightforward single-channel approach for obtaining ξ1(f, t) consists of

directly estimating the noise PSD Sn1
(f, t) from signal y1(m) [27]. This is often

a difficult task since speech and noise overlap. In the next section we will

alternatively exploit the spatial characteristics of speech and noise under the

considered dual-microphone configuration to obtain estimates of ξ1(f, t) from105

the available signals y1(m) and y2(m).
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3. Dual-Channel Spectral Weight Estimation

3.1. Biased Spectral Weight Estimation

Previous work on dual-channel noise reduction has shown that, when a mo-

bile device is used in a close-talk position, the clean speech PSD is considerably110

greater at the primary sensor than at the secondary one while a similar noise

PSD is observed by both sensors (i.e., Sn1(f, t) ≈ Sn2(f, t)� Sx2(f, t)) [5, 14].

This is due to the geometry of the speaker-device acoustic system (the secondary

microphone is purposely placed in an acoustic shadow with respect to the speech

source) and the typical existence of a homogeneous noise field. Under ideal con-115

ditions, we can consider that Sn1(f, t) = Sn2(f, t) and Sx2(f, t) = 0. Therefore,

Sn1
(f, t) = Sy2(f, t) and the a priori SNR of Eq. (7) can be expressed as

ξ1,b(f, t) =
Sy1(f, t)− Sy2(f, t)

Sy2(f, t)
. (8)

Hence, the corresponding WF is

H1,b(f, t) =
Sy1(f, t)− Sy2(f, t)

Sy1(f, t)
. (9)

Its practical computation is described in Subsection 4.3.

The WF estimation described above strongly depends on the accuracy of

the two assumptions made, that is, a negligible speech component at the sec-120

ondary sensor and similar noise PSDs at both sensors. These assumptions can

be acceptable in some specific cases but, in general, they will not be accurate.

In the next subsections we will present two novel procedures that will allow the

application of the WF-based spectral weighting in a wider range of situations.

3.2. Unbiased Spectral Weight Estimation125

The assumption of a negligible speech component at the secondary channel

may be appropriate, for instance, when a dual-microphone smartphone is em-

ployed in close-talk position [5], but it will clearly fail when the device is used

in far-talk conditions [6]. In fact, the rear-side microphone also captures a com-

ponent of speech mainly because of diffraction at the borders of the device and130
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Figure 1: Result of applying the bias correction term on H1,b(f, t) for several A21(f, t) values.

reflections from the acoustic environment. In this case, Sy2(f, t) > Sn2
(f, t)

so that ξ1,b(f, t) and, therefore, H1,b(f, t), will be underestimated, i.e., biased

(indicated by subscript b in the above variables). To address this problem, a

bias correction term is introduced in the following.

Let us assume that the clean speech PSD at the secondary channel can be

related to that at the first one by means of the gain factor A21(f, t). This factor

can be seen as the relative speech gain (RSG) between both microphones, that

is, Sx2(f, t) = A21(f, t)Sx1(f, t). Assuming, again, a homogeneous noise field

(Sn1
(f, t) = Sn2

(f, t)), Eq. (6) for k = 2 can be written as

Sy2(f, t) = A21(f, t)Sx1
(f, t) + Sn1

(f, t)

= A21(f, t) (Sy1(f, t)− Sn1
(f, t)) + Sn1

(f, t).

(10)

This equation allows us to express the noise PSD at the primary channel in

terms of the PSDs of the available noisy signals, that is,

Sn1
(f, t) =

Sy2(f, t)−A21(f, t)Sy1(f, t)

1−A21(f, t)
. (11)

By substituting this noise PSD into (7) we obtain the following expression for135

the a priori SNR:

ξ1,u(f, t) =
Sy1(f, t)− Sy2(f, t)

Sy2(f, t)−A21(f, t)Sy1(f, t)
, (12)
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where subscript u indicates an unbiased approach. The SNR expression in (12)

yields the following WF:

H1,u(f, t) =
Sy1(f, t)− Sy2(f, t)

Sy1(f, t)(1−A21(f, t))
. (13)

By comparing this expression with that of Eq. (9), we observe that the WF bias

can be corrected by dividing (9) by B(f, t) = (1−A21(f, t)). In other words, the

new WF can be obtained from the one in the previous subsection by applying

the bias correction term B−1(f, t) as

H1,u(f, t) = B−1(f, t)H1,b(f, t). (14)

Figure 1 shows the effect of the bias correction term on H1,b(f, t) for different

values of A21(f, t). As can be observed, if A21(f, t) = 0 (i.e., no speech is

captured by the secondary microphone), the assumption made when calculating

ξ1,b(f, t) according to (8) holds true, so that the WF is not modified. On the140

other hand, as A21(f, t) increases, the initial underestimation of H1,b(f, t) due to

a non-negligible speech component at the secondary channel is rectified. It must

be noted that, since H1,u(f, t) > 1 has no physical sense, B−1(f, t)H1,b(f, t) has

been bounded by 1 in Figure 1.

The way the RSG A21(f, t) is computed in this work is explained in Subsec-145

tion 4.1.

3.3. Noise Equalization

The assumption Sn1
(f, t) ≈ Sn2

(f, t) used for deriving the WF-based weight-

ing in Subsections 3.1 and 3.2 can be acceptable when the mobile device is

employed within a homogeneous noise field (e.g., in a diffuse noise field as in150

interior spaces, urban streets with high-rise buildings, etc. [28]). However, this

assumption may not be satisfied in several scenarios even in the presence of

a homogeneous noise field (e.g., in the case of two microphones with differ-

ent characteristics). In this subsection we propose a novel noise equalization

procedure to be performed before spectral weight computation. This proce-155

dure transforms the signal at channel 2 so that the noise component is forced
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to follow the one at the primary channel while keeping the speech component

untouched (this is a distortionless constraint similar to that of MVDR beam-

forming). Hence, we aim to obtain a signal |Ȳ2(f, t)|2 = |X̄2(f, t)|2 + |N̄2(f, t)|2,

where |X̄2(f, t)|2 ≈ |X2(f, t)|2 and |N̄2(f, t)|2 ≈ |N1(f, t)|2, to replace |Y2(f, t)|2160

in the estimation of the PSD Sy2(f, t) required in Eqs. (9) and (13) for WF

computation.

To make our equalization procedure more effective, we will additionally in-

troduce an overestimation of the noise power spectrum. This overestimation is

inspired by the oversubtraction typically applied in spectral subtraction (SS)

which helps to reduce the “musical” artifacts that SS tends to introduce, thus

yielding a better recognition performance as shown in [29, 30]. In our case,

since the PSD of the secondary channel carries the information about the noise

required in (9) and (13), we will consider an overestimation factor β(f, t) ≥ 1

so that

|Ȳ2(f, t)|2 ≈ |X2(f, t)|2 + β(f, t)|N1(f, t)|2. (15)

For computing β(f, t), we follow the same approach reported in [31], where

β(f, t) =

(
1 +

std
(
|N1(f, t)|2

)
|N1(f, t)|2

)
(16)

in which std
(
|N1(f, t)|2

)
is the standard deviation of |N1(f, t)|2 at frequency

bin f and time frame t. As a result, we aim to approximate

|Ȳ2(f, t)|2 ≈ |X2(f, t)|2 + |N1(f, t)|2 + std
(
|N1(f, t)|2

)
. (17)

In particular, we will obtain |Ȳ2(f, t)|2 from the following linear combination of

the dual-channel noisy observation:

|Ȳ2(f, t)|2 = gT
f,t

 |Y2(f, t)|2

|Y1(f, t)|2


= gT

f,t

 |X2(f, t)|2

|X1(f, t)|2

+ gT
f,t

 |N2(f, t)|2

|N1(f, t)|2

 ,

(18)

where gf,t is the weight vector to be estimated. By using the RSG A21(f, t)

as in |X2(f, t)|2 = A21(f, t)|X1(f, t)|2, and ν(f, t) =
(
|N2(f, t)|2, |N1(f, t)|2

)T
,
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(18) can be expressed as

|Ȳ2(f, t)|2 = gT
f,t

 1

A−121 (f, t)

 |X2(f, t)|2 + gT
f,tν(f, t). (19)

Then, by comparing (17) and (19) we can see that our goal is to estimate the

weight vector ĝf,t that transforms gT
f,tν(f, t) into |N1(f, t)|2 + std

(
|N1(f, t)|2

)
under a minimum mean square error (MMSE) criterion plus a distortionless

constraint for |X2(f, t)|2. In other words, if we define α(f, t) =
(
1,A−121 (f, t)

)T
and

εf,t =
(
|N1(f, t)|2 + std

(
|N1(f, t)|2

))
− gT

f,tν(f, t), (20)

we want to obtain

ĝf,t = arg mingf,t
E
[
ε2f,t

]
;

subject to gT
f,tα(f, t) = 1.

(21)

The optimization problem above is solved by the Lagrange multipliers method,

yielding the weight vector estimate

ĝf,t = Φ−1N (f, t)

[
γN (f, t)− αT(f, t)Φ−1N (f, t)γN (f, t)− 1

αT(f, t)Φ−1N (f, t)α(f, t)
α(f, t)

]
, (22)

which, as can be seen, depends on the noise spatial correlation matrix ΦN (f, t)

and the overestimated noise spatial correlation vector γN (f, t). First, ΦN (f, t)

is defined as

ΦN (f, t) =

 φN,f,t(2, 2) φN,f,t(2, 1)

φN,f,t(1, 2) φN,f,t(1, 1)

 , (23)

where φN,f,t(k, l) = E
[
|Nk(f, t)|2|Nl(f, t)|2

]
(k, l = 1, 2). Second, the overesti-

mated noise spatial correlation vector is

γN (f, t) = φ
(1)
N (f, t) + std

(
|N1(f, t)|2

)
µN (f, t), (24)

where

φ
(1)
N (f, t) =

 φN,f,t(2, 1)

φN,f,t(1, 1)

 (25)
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Figure 2: Block diagram of the full proposed enhancement system.

is a noise spatial correlation vector, and the noise mean vector is given by

µN (f, t) =

 E
[
|N2(f, t)|2

]
E
[
|N1(f, t)|2

]
 . (26)

In practice, the required noise statistical parameters ΦN (f, t) and γN (f, t)

may be estimated during noise-only periods identified by means of a voice activ-

ity detector (VAD). In Subsection 4.2 we detail how such parameters are finally165

obtained in this work.

4. Implementation Issues

A block diagram of the full proposed enhancement system is depicted in

Figure 2. This system integrates the different stages described above plus two

additional steps: RSG estimation and post-processing of the spectral weights.170

Both the implementation issues and the additional blocks are explained in the

subsections below. It should be remarked that the parameter values shown

below were chosen by means of preliminary speech recognition experiments over

development datasets.

Figure 3 shows an example of applying the estimated spectral weights by175

means of the full enhancement system in Figure 2 to the primary noisy power

spectrum of an utterance captured by a dual-microphone smartphone used in
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close-talk position. In this example, the noise reduction capability of our pro-

posal can be visually inspected.

4.1. Relative Speech Gain Estimation180

As seen above, the relative speech gain (RSG) between two microphones

relates either the clean speech PSD or the instantaneous clean speech power at

both sensors. Let us consider the latter case for the rest of this subsection, i.e.,

|X2(f, t)|2 = A21(f, t)|X1(f, t)|2. The RSG A21(f, t) may be pre-computed or

calculated online in various ways. Following the former approach makes sense185

when dual-channel clean speech data are available in advance and A21(f, t) is

virtually fixed. For example, this might be the case of using a dual-microphone

smartphone in close-talk conditions. On the other hand, if the above require-

ments are not fulfilled, A21(f, t) may be derived from an online estimation of

the steering vector as explained in the following.190

In a dual-channel configuration, we can state that X1(f, t)

X2(f, t)

 = d(f, t)X(f, t), (27)

where X1(f, t) and X2(f, t) are the clean speech primary and secondary signals

in the short-time Fourier transform (STFT) domain, respectively. Moreover,

X(f, t) is the source speech signal (i.e., as emitted by the speaker) in the STFT

domain, and d(f, t) is the steering vector, which is defined as

d(f, t) = (d1(f, t), d2(f, t))
T

=

 a1(f, t)e−j2πfτ1(t)

a2(f, t)e−j2πfτ2(t)

 .

(28)

In the above equation, ak(f, t) and τk(t) are, respectively, the gain and traveling

time of the signal from the source to the k-th sensor, k = 1, 2. From (27) and

(28), it is clear that

|X2(f, t)|2 =

∣∣∣∣d2(f, t)

d1(f, t)

∣∣∣∣2︸ ︷︷ ︸
A21(f, t)

|X1(f, t)|2, (29)
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Figure 3: Example of spectral weighting by using the enhancement system of Fig. 2 for the

utterance “nine eight seven oh” obtained from a dual-microphone smartphone in close-talk

position. The utterance is contaminated with car noise at 0 dB in the primary channel. From

top to bottom: clean speech power spectrum in the primary channel, noisy versions at the 1st

and 2nd channels, estimated spectral weights and enhanced power spectrum.
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where A21(f, t) can be alternatively expressed as

A21(f, t) =
a22(f, t)

a21(f, t)
. (30)

The particular algorithm applied in this work for steering vector estimation

is specified in Section 6.

4.2. Noise Equalization Implementation

In practice, both the noise spatial correlation matrix ΦN (f, t) of Eq. (23)

and the overestimated noise spatial correlation vector γN (f, t) of (24) are cal-195

culated as follows. First, two initial noise spatial correlation matrices as well

as two initial overestimated noise spatial correlation vectors are computed per

utterance and frequency bin f , one from the first M frames (Φ
(0)
N,f and γ

(0)
N,f , re-

spectively) and another from the last M frames (Φ
(e)
N,f and γ

(e)
N,f , respectively).

As for the noise estimates, ΦN (f, t) (γN (f, t)) is calculated by means of linear200

interpolation between Φ
(0)
N,f (γ

(0)
N,f ) and Φ

(e)
N,f (γ

(e)
N,f ).

To avoid any possible negative power spectrum bin in (18), |Ȳ2(f, t)|2 is

bounded below by η|Y2(f, t)|2, where 0 < η � 1 is a thresholding factor set to

0.1.

An example of application of the proposed noise equalization procedure is205

depicted in Figure 4. The figure shows the noise spectra obtained from a dual-

microphone smartphone in close-talk position averaged across time over the

whole utterance. It can be observed that the equalized noise |N̄2(f, t)|2 is much

more similar to |N1(f, t)|2 than the original |N2(f, t)|2. The effect of the noise

overestimation factor β(f, t) can also be assessed.210

4.3. Spectral Weight Computation

The PSDs of the two available noisy signals required by a priori SNR com-

putation in (8) and (12) are obtained by applying a two-dimensional 3×3 mean

smoothing filter over the spectrogram |Yk(f, t)|2 (k = 1, 2), that is,

Ŝyk(f, t) =
1

K

1∑
ν=−1

1∑
τ=−1

|Yk(f + ν, t+ τ)|2, (31)
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Figure 4: Example of the proposed noise equalization when applied on an utterance from

a dual-microphone smartphone used in close-talk position. Both the estimated noise av-

erage power |N̄2(f, t)|2 (β(f, t) = 1) and its overestimated version, |N̄2(f, t)|2 (β(f, t) ≥

1 as in Eq. (16)), are represented by frequency bin along with the actual noise average power

from the two channels.
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where we also assume |Yk(f, t)|2 = 0 for f, t < 0, f ≥ M and t ≥ T , and K

is a normalizing factor equal to 9, 6 or 4 depending on the number of available

spectrogram points. From these PSDs, the a priori SNRs ξ1,b(f, t) and ξ1,u(f, t)

are similarly estimated in practice as

ξ̂1,b(f, t) = max

(
Ŝy1(f, t)− Ŝy2(f, t)

Ŝy2(f, t)
, ηξ

)
, (32)

ξ̂1,u(f, t) = max

(
Ŝy1(f, t)− Ŝn1

(f, t)

Ŝn1(f, t)
, ηξ

)
, (33)

where both expressions are floored at ηξ in order to avoid negative values (dis-

cussed in the following subsection). Moreover, the noise PSD Sn1
(f, t) calculated

through (11) is also thresholded by ηn = 103 (which roughly corresponds to an

SNR of 40 dB) to avoid negative PSD bins, i.e.,

Ŝn1(f, t) = max

(
Ŝy2(f, t)− Â21(f, t)Ŝy1(f, t)

1− Â21(f, t)
, ηn

)
. (34)

Finally, the estimated WFs Ĥ1,b(f, t) and Ĥ1,u(f, t) are obtained by substi-

tuting (32) and (33) into (4), respectively.

4.4. Post-Processing Block

Once either the WF-based spectral weights Ĥ2
1,b(f, t) or Ĥ2

1,u(f, t) are ob-

tained, some post-processing operations are performed on them. For the sake

of clarity let us consider only Ĥ2
1,u(f, t) in the rest of this subsection. First,

for speech recognition purposes, previous works have shown that better speech

recognition accuracy can be achieved by leaving a small fraction of noise energy

in the enhanced signal [29, 32]. Hence, Ĥ2
1,u(f, t) is bounded below in accordance

with

H̄2
1,u(f, t) = max

(
Ĥ2

1,u(f, t), η
)
, (35)

where η = 0.1 is the same thresholding factor as in Subsection 4.2. Indeed,

thresholding Ĥ2
1,u(f, t) by η is equivalent to consider

ηξ =

√
η

1−√η
(36)
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in (33) in accordance with the WF definition of (4). Therefore, this thresholding215

enhancement is directly accomplished substituting (36) into (33). It should be

noticed that η = 0.1 implies that ηξ ≈ −3.35 dB.

Second, as in [33], we exploit the spectro-temporal correlation of speech

in order to refine H̄2
1,u(f, t) by applying a couple of two-dimensional filters in

the time-frequency domain. The first one consists of a median filter of size220

3 × 5, that tries to remove high-valued H̄2
1,u(f, t) bins surrounded by low val-

ues of H̄2
1,u(f, t). This procedure is justified by the fact that it is more likely

that those bins constitute artifacts rather than real isolated clean speech spec-

tral bins. Indeed, this kind of artifact often appears when the assumption

Sn1
(f, t) ≈ Sn2

(f, t) does not hold but instead Sn1
(f, t) is significantly greater225

than Sn2
(f, t). Finally, in order to further increase the spectro-temporal co-

herence, the spectral weights resulting from median filtering are smoothed by

convolving them with a Gaussian kernel of standard deviation σ = 1 and size

5× 5.

5. Experimental Framework230

The techniques presented above are assessed in terms of word accuracy

and/or word error rate for two types of mobile device: a smartphone with a

dual-microphone, used both in close-talk and far-talk conditions, and a tablet

with six microphones only employed in a far-talk position. In this section we

briefly describe the different corpora used during our experimental evaluation235

(AURORA2-2C-CT/FT, and CHiME-3 and CHiME-4 databases) along with

their related setup particularities (i.e., the feature extraction process and the

baseline back-end configuration).

5.1. The AURORA2-2C-CT/FT Databases and Settings

The AURORA2-2C-CT (Aurora-2 - 2 Channels - Close-Talk) and the AURORA2-240

2C-FT (Aurora-2 - 2 Channels - Far-Talk) databases are two synthetic dual-

channel noisy speech databases generated from the well-known Aurora-2 corpus

[22]. On the one hand, the AURORA2-2C-CT database, described in detail
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in [13], tries to emulate the acquisition of dual-channel noisy speech data by

using a dual-microphone smartphone in close-talk conditions (i.e., when the245

loudspeaker of the smartphone is placed at the ear of the user). On the other

hand, the AURORA2-2C-FT database is generated in a similar way but emu-

lating a far-talk scenario (i.e., when the user holds the device in one hand at

some distance from her/his face). To the best of our knowledge, no similar real

data corpora are available.250

Two test sets, A and B (with the same structure as in Aurora-2), are defined

in AURORA2-2C-CT/FT with different types of noise in each one. The types

of noise used in test set A are bus, babble, car and pedestrian street, while test

set B comprises the noises café, street, bus station and train station. These

noises were recorded with a smartphone equipped with a dual-microphone (one255

at the rear).

To extract acoustic features from the speech signals, the European Telecom-

munications Standards Institute front-end (ETSI FE, ES 201 108) is used [34, 3].

A 39-dimensional feature vector, comprising twelve Mel-frequency cepstral co-

efficients (MFCCs) along with the 0th order coefficient and their respective260

velocity and acceleration, is employed by the recognizer. The power spectra

considered by our techniques are represented by M = 129 frequency bins as

the sampling frequency of the AURORA2-2C-CT/FT speech data is 8 kHz [34].

To obtain the cepstral coefficients for recognition, the discrete cosine transform

(DCT) is applied to the enhanced 23-component log-Mel feature vectors com-265

puted from the power spectra. Finally, to improve the robustness of the system

against channel mismatches, cepstral mean normalization (CMN) is applied.

Two sets of Gaussian mixture model (GMM)-based acoustic models are used

for evaluation by employing the HTK toolkit: clean acoustic models trained on

the Aurora-2 clean speech training dataset and multi-style models trained with270

distorted speech features to strengthen the ASR system against noisy condi-

tions. In AURORA2-2C-CT/FT, their respective training datasets for multi-

style acoustic modeling are built from the 8440 clean training utterances of

Aurora-2. Similarly to [22], the multi-style training datasets consist of dual-

19



channel utterances contaminated with the same types of noise as in test set A,275

at the SNRs of 5 dB, 10 dB, 15 dB and 20 dB as well as the clean condition. To

train the multi-style acoustic models, the multi-style training datasets are first

compensated with the technique under evaluation. To model each digit in both

sets of acoustic models, left-to-right continuous density hidden Markov models

(HMMs) with 16 states and 3 Gaussians per state are employed. Silences and280

short pauses are modeled by HMMs with 3 and 1 states, respectively, and 6

Gaussians per state [22].

5.2. CHiME-3 and CHiME-4 Databases and Settings

CHiME-3 [1] and CHiME-4 [2] are novel frameworks especially intended

for researching on multi-channel noise-robust speech recognition that include285

ASR baseline software which uses the Kaldi ASR toolkit [35]. The CHiME-

3 and CHiME-4 databases are comprised of both simulated and real speech

data. Real data were recorded in noisy environments by using a tablet with six

microphones, five of them facing forward and one facing backwards. Similarly,

simulated data were created by mixing clean speech utterances with background290

noise recordings. In particular, the speech data correspond to utterances from

the well-known speaker-independent medium (5k) vocabulary subset of the Wall

Street Journal (WSJ0) corpus [36]. The main difference between CHiME-3 and

CHiME-4 is that the latter increases the level of difficulty of the former by

constraining the number of microphones available for evaluation. Therefore,295

the rest of the description in this subsection is common to both frameworks and

their differences are explicitly remarked.

Training data are composed by 8738 noisy utterances (1600 real plus 7138

simulated from the standard WSJ0 training dataset) in the four different noisy

environments considered: public transport (BUS), café (CAF), pedestrian area300

(PED) and street junction (STR). Development and evaluation datasets are

also defined separately for the simulated and real cases. Each development

dataset contains 1640 utterances (410 from each noisy environment) while each

evaluation dataset is comprised of 1320 utterances (330 per noisy environment).
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Speech recognition tests are performed by using not only GMMs but also305

DNNs for multi-style acoustic modeling. Again, by using the ETSI FE front-

end we compute a 13-dimensional feature vector that consists of twelve MFCCs

along with the 0th order coefficient. In this case M = 257 as the sampling

frequency of the CHiME-3 and CHiME-4 speech data is 16 kHz [34].

For evaluation, the ASR engines provided by the CHiME Challenge orga-310

nizers are used with no modifications. While these CHiME-3 and CHiME-4

baseline systems are briefly described down below, the reader is referred to [1]

and [2] for further details.

For GMM-based acoustic modeling, three frames from the left and right

temporal context are appended to each frame, which defines an augmented 91-315

dimensional MFCC feature vector. Then, a linear discriminant analysis (LDA)

procedure (to reduce the number of components of the augmented feature vec-

tor to only 40) as well as maximum likelihood linear transformation (MLLT)

and feature-space maximum likelihood linear regression (fMLLR) with speaker

adaptive training (SAT) are applied. The resulting feature vectors are then used320

to train 2500 different tied triphone HMM states, which are modeled by a total

of 15000 Gaussians [1].

On the other hand, for DNN-based acoustic modeling, the Kaldi recipe for

Track 2 of the 2nd CHiME Challenge is considered [37]. A DNN with 7 hidden

layers and 2048 neurons per layer is employed. In this case, five frames from the325

left and right temporal context are appended to each frame, which generates an

augmented 143-dimensional MFCC feature vector that is used as input to the

DNN. A generative pre-training using restricted Boltzmann machines (RBMs)

as well as cross-entropy training and sequence-discriminative training employ-

ing the state-level minimum Bayes risk (sMBR) criterion [38] are performed on330

the DNN [1]. In first instance, the DNN is trained from the alignments gener-

ated by the above GMM-based ASR system. Then, once the DNN is trained,

realignments are done and the DNN is re-trained from these new alignments.

This procedure is repeated until completing four iterations.

In CHiME-3, a 3-gram language model is employed. On the other hand,335
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the ASR performance is improved in CHiME-4 (only when considering DNNs

for acoustic modeling) by means of a 5-gram language model with Kneser-Ney

smoothing [39] (5-gram KN), and a recurrent neural network language model

(RNNLM)-based rescoring [40].

6. Experimental Results340

In this section, our power spectrum enhancement proposals are evaluated on

the different databases described in the previous section. We should recall here

that the primary channel in the AURORA2-2C-CT/FT databases is identified

with the primary microphone of the smartphone. On the other hand, in CHiME-

3 and CHiME-4, a virtual primary channel is obtained by means of MVDR345

beamforming from all the six microphones in the tablet. With this arrangement,

our WF-based weighting acts as a beamformer post-filter which helps to mitigate

the beamformer weak points such as its poor performance at low frequencies or

the effect of noise sources placed along the steering direction [21]. The use of

MVDR in particular will be justified in the CHiME results subsection.350

In addition to our proposals, other single-channel and multi-channel noise-

robust techniques are evaluated for comparison purposes. First, the following

three single-channel noise-robust methods are tested on the primary channel:

a soft-mask weighting (SMW) technique in the log-Mel domain [33], the ETSI

advanced front-end (AFE) [41] and a classic Wiener filtering with the same355

post-processing as in Subsection 4.4 (Wiener+Int). For Wiener+Int, Sn1(f, t)

in Eq. (7) is approximated from noise estimates obtained by means of a linear

interpolation in the log-power spectral domain that uses the averages of the

first and last M = 20 frames in each utterance. Noise estimation by linear

interpolation is selected for a fair comparison, as the noise statistical parameters360

required by our noise equalizer are obtained by following this same approach

(as explained in Subsection 4.2).

Our dual-channel power spectrum enhancement methods MMSN and DCSS

(which also use, for CHiME, the virtual primary channel described above), pre-
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viously proposed in [13], are also evaluated as a reference. In addition, two365

beamforming techniques are also tested for comparison: delay-and-sum (D&S)

[42] and MVDR [43]. On the one hand, time difference of arrival (TDOA) esti-

mation for D&S is performed as explained in [1] and [44]. On the other hand,

the tested MVDR employs a state-of-the-art technique to estimate the steering

vector based on eigenvalue decomposition (ED) where the clean speech spatial370

covariance matrix is derived from complex GMM-based time-frequency masks

[43]. In addition, two post-filtering methods are evaluated in CHiME when

applied after MVDR beamforming. The first one consists of a multi-channel

Wiener post-filter (Lefkimmiatis) [21] using a noise coherence matrix estimated

per utterance and frequency bin from the noise spatial correlation matrix as375

computed for MVDR beamforming [43]. The second post-filter considered is a

multi-channel noise reduction post-filter as in [11] (MCNR), which also employs

the steering vector from [43] for consistency. The baseline system uses noisy

speech features from the primary channel in the case of the AURORA2-2C-

CT/FT databases and from the fifth microphone in the case of CHiME-3 and380

CHiME-4 (as in [1]). Finally, our biased WF-based spectral weighting approach

(Prop-B) is evaluated along with its unbiased version with and without noise

equalization (Prop-U+Eq and Prop-U, respectively). Again for a fair compar-

ison, the required RSG term A21(f, t) is computed using (30) from the same

ED-based steering vector estimator as the one used for MVDR beamforming385

[43] in the case of CHiME-3 and CHiME-4. However, fixed A21(f) factors were

a priori determined in AURORA2-2C-CT/FT from their corresponding devel-

opment datasets to be used with these corpora as better performance is achieved

by following this simpler approach. This might be related with the fact that

estimating a steering vector from a few microphones (only two in our scenario)390

is prone to severe inaccuracies.

6.1. AURORA2-2C-CT/FT Results

Tables 1 and 2 summarize the word accuracy results obtained for the AURORA2-

2C-CT database (close-talk) when clean and multi-style acoustic models are
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SNR (dB) Baseline SMW Wiener+Int MMSN DCSS D&S MVDR Prop-B Prop-U Prop-U+Eq AFE

-5 18.15 26.23 26.69 23.91 24.15 12.26 13.86 29.30 29.45 32.03 35.81

0 31.85 51.76 49.32 45.57 46.12 21.68 27.59 53.94 54.40 62.53 65.46

5 56.11 77.03 75.47 73.96 74.42 39.49 57.15 79.63 79.71 83.96 85.16

10 82.78 89.49 90.15 90.08 90.23 67.73 85.79 92.05 91.98 94.73 93.80

15 94.72 94.19 95.76 95.88 95.86 90.00 95.49 96.49 96.42 97.36 96.96

20 97.76 96.09 97.71 97.75 97.63 96.85 97.98 97.95 97.89 98.42 98.33

Clean 99.13 98.40 99.08 98.98 98.63 99.04 99.05 99.05 98.99 99.03 99.24

Average (-5 to 20) 63.56 72.47 72.52 71.19 71.40 54.67 62.98 74.89 74.98 78.17 79.25

Table 1: Word accuracy results (in terms of percentage and for different SNR values) obtained

for the techniques evaluated on the AURORA2-2C-CT database when using clean acoustic

models. Results are averaged across all types of noise in test sets A and B.

SNR (dB) Baseline SMW Wiener+Int MMSN DCSS D&S MVDR Prop-B Prop-U Prop-U+Eq AFE

-5 36.93 37.36 47.25 45.93 46.67 22.80 25.01 52.12 52.29 54.26 48.21

0 66.69 68.37 76.28 77.10 77.73 46.27 58.23 80.49 80.75 82.81 78.36

5 88.85 87.02 91.68 92.70 92.99 77.65 87.13 93.19 93.15 94.12 92.24

10 95.73 94.47 96.28 96.87 97.01 92.21 95.88 96.90 96.93 97.27 96.54

15 97.56 96.91 97.67 98.18 98.23 96.44 97.79 98.12 98.07 98.27 98.11

20 98.31 97.95 98.29 98.61 98.68 97.69 98.60 98.51 98.51 98.64 98.66

Clean 98.77 98.77 98.90 98.71 98.49 98.44 98.79 98.87 98.59 98.62 99.07

Average (-5 to 20) 80.68 80.35 84.58 84.90 85.22 72.18 77.11 86.57 86.62 87.56 85.35

Table 2: Word accuracy results (in terms of percentage and for different SNR values) obtained

for the techniques evaluated on the AURORA2-2C-CT database when using multi-style acous-

tic models. Results are averaged across all types of noise in test sets A and B.
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SNR (dB) Baseline SMW Wiener+Int MMSN DCSS D&S MVDR Prop-B Prop-U Prop-U+Eq AFE

-5 21.13 29.06 30.72 25.01 26.22 17.30 19.23 28.94 29.84 30.33 39.37

0 35.03 53.33 53.65 44.19 46.08 31.09 38.05 49.22 49.20 52.15 68.06

5 58.96 77.77 77.89 69.81 70.64 54.86 71.68 74.50 73.32 76.05 86.66

10 84.74 89.52 91.66 88.02 87.33 82.33 91.43 90.43 89.09 90.70 94.59

15 95.33 94.15 96.47 95.12 94.01 95.13 97.16 96.01 95.36 95.93 97.30

20 98.00 96.10 98.13 97.54 96.75 97.99 98.50 97.86 97.58 97.84 98.34

Clean 99.10 98.40 99.08 98.88 97.92 99.07 99.17 99.07 98.99 99.02 99.24

Average (-5 to 20) 65.53 73.32 74.75 69.95 70.17 63.12 69.34 72.83 72.40 73.83 80.72

Table 3: Word accuracy results (in terms of percentage and for different SNR values) obtained

for the techniques evaluated on the AURORA2-2C-FT database when using clean acoustic

models. Results are averaged across all types of noise in test sets A and B.

employed, respectively. Results are broken down by SNR and averaged across395

all types of noise in test sets A and B. As can be observed, the best result is ob-

tained with multi-style acoustic models when our unbiased proposal with noise

equalization (Prop-U+Eq) is applied, yielding a relative average improvement

over the baseline of 6.88%. Moreover, this approach also presents the best be-

havior in the most adverse acoustic condition tested (-5 dB) with an absolute400

word accuracy of 54.26% and a relative improvement of 17.33% with respect

to the baseline. As expected, since the speech component at the secondary

channel of a dual-microphone smartphone can be safely neglected in close-talk

conditions, Prop-U and Prop-B perform virtually the same.

The word accuracy results obtained for the AURORA2-2C-FT database (far-405

talk), when clean and multi-style acoustic models are employed, are shown in

Tables 3 and 4, respectively. With a relative average improvement of 4.94%

with respect to the baseline system using multi-style models, Prop-U+Eq is

again the best approach according to the results. In addition, with an absolute

word accuracy of 52.67% and a relative improvement of 14.25% with respect to410

the baseline, Prop-U+Eq with multi-style acoustic models is the best option at

-5 dB as well. In this case, the speech component at the secondary channel is not

negligible. Along with this, the relative position between the speaker and the
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SNR (dB) Baseline SMW Wiener+Int MMSN DCSS D&S MVDR Prop-B Prop-U Prop-U+Eq AFE

-5 38.42 36.40 48.83 46.91 47.45 29.64 31.74 48.20 49.65 52.67 50.64

0 67.81 66.77 76.88 76.37 76.69 57.82 68.20 75.61 76.22 79.27 79.46

5 89.81 87.69 91.96 91.87 92.05 84.67 91.58 91.74 91.66 92.79 92.54

10 96.20 94.72 96.56 96.57 96.56 95.47 96.97 96.52 96.43 96.93 96.85

15 97.80 97.15 97.79 97.74 97.80 97.79 98.28 97.87 97.84 98.02 98.22

20 98.46 98.06 98.32 98.36 98.40 98.54 98.67 98.59 98.46 98.48 98.65

Clean 98.76 97.23 98.81 98.54 98.45 98.60 98.85 98.79 98.64 98.63 99.06

Average (-5 to 20) 81.42 80.13 85.06 84.64 84.83 77.32 80.91 84.76 85.04 86.36 86.06

Table 4: Word accuracy results (in terms of percentage and for different SNR values) obtained

for the techniques evaluated on the AURORA2-2C-FT database when using multi-style acous-

tic models. Results are averaged across all types of noise in test sets A and B.

device is more variable in far- than in close-talk conditions, and, therefore, the

RSG is also more variable. This could explain the slight degradation of Prop-U415

regarding Prop-B when using clean acoustic models, as we are considering a

fixed RSG factor. Recall that employing A21(f, t) computed as in (30) from the

ED-based steering vector estimator of [43] is even more harmful in this scenario

than using a fixed RSG factor. As aforementioned, this might be related with

the fact that estimating a steering vector from only two microphones (one of420

them placed in an acoustic shadow with respect to the source to be localized)

is prone to errors.

While Prop-U+Eq with multi-style acoustic models achieves on average the

highest results, AFE performs the best on AURORA2-2C-CT/FT when clean

acoustic models are employed. In this case, recall that AFE involves multiple425

state-of-the-art strategies (e.g., a sophisticated two-stage Mel-warped Wiener

filter approach that uses a VAD, and waveform processing and blind equalization

stages [41, 3]), which are not incompatible with our proposals.

It is worth noticing that beamforming techniques do not provide a successful

performance. D&S yields a drop in performance since it only aligns the target430

signals from each channel so the primary channel is eventually combined with

a much noisier secondary one. On the other hand, while MVDR beamforming
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additionally manages both the speech gains (through the steering vector) and

the noise signals, it is only able to achieve an improvement under clean acoustic

modeling in far-talk conditions with respect to the baseline. These results are435

coherent with the fact that a poor performance of the classic beamforming

techniques can be expected with only two microphones very close each other,

one of them (i.e., the secondary sensor) placed in an acoustic shadow with

respect to the target signal [19, 20].

On average, Prop-U+Eq always outperforms both MMSN and DCSS, which440

can also be interpreted as spectral weighting techniques. In particular, MMSN

follows an approach similar to MVDR beamforming but in the power spectral

domain (i.e., it neglects the phase information). As can be observed, on aver-

age, MMSN outperforms MVDR in all conditions. In this sense we can consider

MMSN as an ad-hoc MVDR to be used with small microphone arrays, where445

acoustic shadows are more important than (not accurately estimated) time de-

lays.

6.2. CHiME-3 and CHiME-4 Results

Tables 5 and 6 report, for all the methods evaluated in this work, the word

error rates (WERs) obtained on the CHiME-3 real data evaluation set when450

using multi-style GMM- and DNN-based acoustic models, respectively. In all

cases, WERs are broken down by type of noise. Beamforming methods were

tested by using either the signals from only the five microphones facing forward

(5 ch.) or all the six microphones (6 ch.) in the tablet (i.e., by also including the

sensor that faces backwards). Similarly to what happened with the AURORA2-455

2C-CT/FT corpora, considering the secondary sensor for D&S yields a drop in

performance while MVDR modestly improves with respect to using only the

five sensors facing forward. In this way, an MVDR with all the six microphones

in the tablet is selected as the best beamforming choice and we apply it to

obtain our virtual primary channel for CHiME, as aforementioned. Nevertheless,460

even better results may be obtained using a more sophisticated beamforming

technique (e.g., a generalized sidelobe canceller (GSC) [45, 46] or a post-filtered
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beamformer [47, 48, 49]) for the virtual primary channel.

As expected, similar trends are obtained by employing GMMs and DNNs

for acoustic modeling. Moreover, the baseline WER from GMM-based acoustic465

modeling is 1.33% lower than that from DNN-based acoustic modeling as a result

of the more sophisticated front-end used in the former case (as explained in

Subsection 5.2). Nevertheless, all the tested techniques perform better by using

DNN-based acoustic models than the GMM-based ones. As can be seen, the

best result is achieved by Prop-U+Eq under DNN-based acoustic modeling, with470

an absolute WER of 16.77% and a relative average improvement of 17.23% and

1.87% with respect to the baseline and MVDR (6 ch.), respectively. Though the

secondary channel has already been used to define the virtual primary one, these

results reveal the convenience of treating the secondary signal in a differentiated

manner since it can be further exploited to provide useful information about475

the acoustic environment. This is confirmed by the results in both absolute and

relative terms since, on average and considering DNN-based acoustic models,

the percentage change between MVDR (5 ch.) and MVDR (6 ch.) is 0.36%

while the percentage change between MVDR (6 ch.) and Prop-U+Eq is 2.30%.

As we can see, using the ED-based steering vector estimator of [43] to de-480

rive the RSG in (30) leads to a performance improvement between Prop-B and

Prop-U for both types of acoustic models. However, it is true that while there

are meaningful improvements between Prop-U+Eq and Prop-U, this latter ap-

proach slightly enhances the results of Prop-B (which in turn worsens MVDR

(6 ch.)). This is because MVDR beamforming yields a strong dehomogeniza-485

tion of the noise at the virtual primary and secondary channels. Under this

circumstance, the homogeneity assumption underlying Prop-U is not accom-

plished, so the substantial improvement only comes when bias correction and

noise equalization, which also relies on A21(f, t), are applied together.

Wiener+Int, which can also be considered a single-channel post-filter and490

unlike both multi-channel post-filters (Lefkimmiatis and MCNR), is able to

improve MVDR (6 ch.). Prop-U+Eq, the parameters of which are obtained

in the same conditions as Wiener+Int, yields a relative average improvement
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GMM-based acoustic modeling

BUS CAF PED STR Average

Baseline 49.64 32.72 27.30 21.03 32.67

SMW 33.09 21.39 22.33 18.27 23.77

Wiener+Int 32.04 14.92 15.64 14.01 19.15

MMSN 33.18 15.58 16.78 14.76 20.08

DCSS 34.19 14.90 16.95 15.58 20.41

D&S (5 ch.) 32.08 22.60 25.82 15.13 23.91

D&S (6 ch.) 35.13 25.03 27.50 16.25 25.98

MVDR (5 ch.) 34.08 17.35 18.16 15.02 21.15

MVDR (6 ch.) 32.90 16.83 17.40 14.72 20.46

Lefkimmiatis 42.31 14.79 19.04 17.48 23.41

MCNR 33.60 15.92 17.31 15.14 20.49

Prop-B 34.51 17.24 17.69 14.85 21.07

Prop-U 33.95 16.14 17.17 15.13 20.60

Prop-U+Eq 29.48 13.02 14.82 13.86 17.80

AFE 35.91 16.96 17.84 15.75 21.62

Table 5: Word error rate results (in terms of percentage and per type of noise) for the different

techniques evaluated with CHiME-3 when multi-style acoustic models are employed. Results

are from the real data evaluation set when considering GMMs for acoustic modeling.
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DNN-based acoustic modeling

BUS CAF PED STR Average

Baseline 51.13 35.06 28.31 21.48 34.00

SMW 31.13 17.99 19.08 17.09 21.32

Wiener+Int 31.20 13.13 15.88 14.19 18.60

MMSN 29.50 13.09 16.12 13.39 18.03

DCSS 29.52 13.02 15.70 13.99 18.06

D&S (5 ch.) 30.90 21.16 25.52 14.61 23.05

D&S (6 ch.) 33.82 22.81 26.49 15.09 24.55

MVDR (5 ch.) 29.89 14.66 16.54 14.62 18.93

MVDR (6 ch.) 29.50 14.79 16.37 13.88 18.64

Lefkimmiatis 35.02 15.26 17.73 16.29 21.08

MCNR 29.40 14.82 16.95 14.96 19.03

Prop-B 30.57 13.95 16.52 13.78 18.71

Prop-U 29.73 13.78 16.27 14.27 18.51

Prop-U+Eq 26.94 11.80 14.63 13.69 16.77

AFE 31.00 14.77 16.69 14.10 19.14

Table 6: Word error rate results (in terms of percentage and per type of noise) for the different

techniques evaluated with CHiME-3 when multi-style acoustic models are employed. Results

are from the real data evaluation set when considering DNNs for acoustic modeling.

30



5-gram KN RNNLM

BUS CAF PED STR Average BUS CAF PED STR Average

Baseline 34.32 20.02 15.21 13.41 20.74 32.85 17.97 13.55 12.14 19.12

MVDR (6 ch.) 20.17 8.09 9.73 9.68 11.92 18.86 7.19 8.45 8.24 10.68

Wiener+Int 20.34 8.20 9.42 9.53 11.87 18.71 7.10 8.00 8.57 10.59

Prop-U+Eq 18.08 7.38 9.60 8.93 11.00 16.41 6.00 8.03 7.88 9.58

Table 7: Word error rate results (in terms of percentage and per type of noise) for different

techniques evaluated with CHiME-4 when multi-style acoustic models are employed. Results

are from the real data evaluation set when considering DNNs for acoustic modeling as well

as a 5-gram language model with Kneser-Ney smoothing (5-gram KN) and a recurrent neural

network language model (RNNLM)-based rescoring.

of 1.83% under DNN-based acoustic modeling with respect to this technique.

This confirms that the secondary microphone is providing additional valuable495

information about the ambient noise. Furthermore, unlike for the synthetic

AURORA2-2C-CT/FT corpora, it should be noticed that AFE does not present

a competitive performance on the CHiME-3 real data. In addition, Prop-U+Eq

is again clearly superior to both MMSN and DCSS. Finally, the result of Table

6 for Prop-U+Eq with respect to those of the CHiME-3 Challenge provided in500

[1] (Table 3) demonstrates that our proposal is quite competitive if we take into

account that it only applies multi-channel enhancement.

The more challenging CHiME-4 1-channel and 2-channel tracks are not ad-

dressed in this paper. First, the 1-channel track is not evaluated as we require

two channels. Second, the 2-channel track is not considered because our dual-505

channel proposals require a secondary channel and such a track randomly selects

signals only from the five front sensors of the tablet. Therefore, the most relevant

methods according to the results achieved on the CHiME-3 corpus are evaluated

with CHiME-4 again using all the microphones in the tablet (6-channel track).

Table 7 reports the WERs obtained on the CHiME-4 real data evaluation set510

when using multi-style DNN-based acoustic models as well as a 5-gram language

model with Kneser-Ney smoothing [39] (5-gram KN) and a recurrent neural net-
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work language model (RNNLM)-based rescoring [40]. Once again, WERs are

broken down by type of noise. We recall that both Wiener+Int and Prop-U+Eq

behave as beamformer post-filters since they are applied after MVDR (6 ch.).515

As expected, the same result trends as in CHiME-3 have been obtained on

CHiME-4. Thus, the best result is again achieved by Prop-U+Eq (when consid-

ering RNNLM-based rescoring) with an absolute average WER of 9.58% and a

relative average improvement of 9.54% and 1.10% with respect to the baseline

and MVDR (6 ch.), respectively. The benefit of using advanced language models520

can also be assessed, as both 5-gram KN and RNNLM significantly enhanced

the 3-gram language model performance (see Table 6).

6.3. Summary of Results

The dual-channel proposals in this paper and comparison methods were

evaluated in terms of speech recognition accuracy when applied on a dual-525

microphone smartphone (AURORA2-2C-CT/FT) and a tablet with six micro-

phones (CHiME-3 and CHiME-4). Both devices have a rear microphone the

main purpose of which is to get information about the acoustic environment. In

the case of the tablet, a virtual primary channel was generated by application

of MVDR beamforming, so our WF-based weighting behaved as a beamformer530

post-filter.

Results when correcting bias on the AURORA2-2C-CT/FT corpora by means

of Prop-U were consistent with the fact that the speech channel between the

primary and secondary sensors is more variable and yields less attenuation in

far- than in close-talk conditions. In the case of CHiME, we observed that535

MVDR beamforming yielded a strong dehomogenization of the noise at the

virtual primary and secondary channels, so the homogeneity assumption un-

derlying Prop-U was not accomplished and the substantial improvement came

when bias correction and noise equalization were jointly applied.

In general, our results proved the convenience of treating the secondary signal540

in a differentiated manner as such a signal is rather useful to provide information

about the acoustic environment. Thus, beamforming exhibited a poor perfor-
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mance when integrating the secondary signal, as was expected. Our best results

were consistently achieved by our WF-based weighting with bias correction and

noise equalization, Prop-U+Eq, which showed a remarkable performance at low545

SNRs.

7. Conclusions and Future Work

In this paper we have developed a novel spectral weighting approach for

noise-robust ASR in mobile devices that is capable of exploiting the informa-

tion provided by a secondary microphone placed in an acoustic shadow with550

respect to the speaker. A twofold contribution has been presented in this work:

two new ways of estimating the a priori SNR in a dual-channel context, and a

novel noise equalizer. According to our experimental results, we conclude that

although beamforming is able to provide robustness in ASR with general micro-

phone arrays [16, 17, 18], a proper integration of a secondary microphone can555

be achieved when that is treated in a suitable and differentiated manner, as it is

proposed in this paper. Moreover, our results have shown the great versatility

of our approach according to its high performance regardless of the analyzed

mobile device and usage position. Future work will investigate the performance

of our approach on other mobile devices with different small microphone array560

configurations and other beamformers to be used for virtual primary channel

computation.
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