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Abstract: One way to improve automatic speech recognition (ASR) accuracy on the latest mobile

devices, which are employed on a variety of noisy environments, consists of taking advantage of

the small microphone arrays embedded in them. Since the performance of the classic beamforming

techniques with small microphone arrays is rather limited, specific techniques are being developed

to efficiently exploit this novel feature for noise-robust ASR purposes. In this paper, a novel dual-

channel minimum mean square error (MMSE)-based feature compensation method relying on a

vector Taylor series (VTS) expansion of a dual-channel speech distortion model is proposed. In

contrast to the single-channel VTS approach (which can be considered as the state-of-the-art for

feature compensation), our technique particularly benefits from the spatial properties of speech and

noise. Our proposal is assessed on a dual-microphone smartphone (a particular case of interest)

by means of the AURORA2-2C corpus. Word recognition results demonstrate the higher accu-

racy of our method by clearly outperforming minimum variance distortionless response (MVDR)

beamforming and a single-channel VTS feature compensation approach, especially at low signal-

to-noise ratios (SNRs).
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1. Introduction

Automatic speech recognition (ASR) technology has recently increased its popularity due to the

proliferation of speech-enabled services accessible from mobile devices (e.g. smartphones or

tablets). As such devices can be used under many different acoustic scenarios, it is crucial to deal

with the noise that may contaminate the speech [1, 2]. One way to improve ASR performance on

noisy environments is to exploit the small microphone arrays (i.e. microphone arrays comprising

a few microphones) that are being embedded in this kind of devices.

So far, most of the work done on exploiting this new feature has been for speech enhancement

purposes [3–7]. In [3, 4], spectral gain masks are computed to perform speech enhancement on

dual-microphone smartphones. Such masks are estimated by exploiting the power level difference

(PLD) between the two microphones in the device when used in close-talk position (i.e. when the

loudspeaker of the smartphone is placed at the ear of the user). In such a position, it is reasonable

to assume that the clean speech power spectral density (PSD) at the primary sensor is greater than

at the secondary one while approximately the same noise PSD is observed by both sensors [8].

In [5], an inter-microphone noisy speech PSD relation, similar to the PLD, is used to compute a

speech presence probability (SPP) which is applied to the estimation of a spatial noise correlation

matrix. Such a matrix is then used in a minimum variance distortionless response (MVDR) filter

applied to enhance the noisy speech captured by a dual-microphone smartphone.

As shown in recent works [9, 10], ASR can also benefit from these small microphone arrays

to further improve the recognizer performance on mobile devices. In [9], a missing-data mask

estimation for dual-microphone smartphones based on deep neural network (DNN) and PLD is

proposed. The resulting masks are employed to carry out spectral imputation on the noisy speech

spectrogram obtained by the primary sensor of the device. In [10], two dual-channel power spec-

trum enhancement techniques are developed for dual-microphone smartphones as well. While one

of these techniques is based on MVDR and the other on spectral subtraction (SS), both of them ex-

ploit clean speech and noise spatial correlations in order to provide more accurate estimates with

respect to related single-channel approaches. Such specific solutions are necessary since a poor
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performance of the classic beamforming techniques can be expected in this context. The main rea-

son for this is twofold: the small number of microphones in the device and the possible existence

of sensors placed in an acoustic shadow regarding the speaker’s mouth (e.g. a sensor located at the

rear of a smartphone which faces backwards) [11, 12].

In this paper we propose a novel dual-channel minimum mean square error (MMSE)-based

feature compensation method for noise-robust ASR on mobile devices. This method follows the

well-known vector Taylor series (VTS) approach widely used to perform single-channel feature

compensation (e.g., [13–15]). Our proposal is based on a stacked formulation that is able to exploit

the clean speech and noise spatial correlations between the two channels of the device. As will be

shown, this approach achieves more accurate clean speech estimates than a single-channel VTS

scheme. Experiments are carried out on a dual-microphone smartphone in close-talk conditions.

To do so, we use the AURORA2-2C (Aurora-2 - 2 Channels - Conversational Position) database

[10], which is an extension to the well-known Aurora-2 corpus [16]. Word recognition results

show that our dual-channel proposal greatly improves a single-channel VTS feature compensation

approach as well as other state-of-the-art single- and dual-channel techniques (such as MVDR

beamforming), especially at low signal-to-noise ratios (SNRs).

The rest of the paper has been organized as follows. In Section 2, the considered dual-channel

distortion model is briefly introduced. Section 3 is devoted to the formulation of our dual-channel

VTS feature compensation method. The experimental framework and results are shown in Section

4. Finally, in Section 5 conclusions and future work are presented.

2. Dual-Channel Distortion Model

We will consider a noisy speech signal yi(m) that consists of the sum of a clean speech signal xi(m)

plus a noise signal ni(m), i.e. yi(m) = xi(m) + ni(m). In this additive noise distortion model i

indicates the microphone that captures yi(m). Thus, i = 1 refers to the primary microphone often

located at the bottom of the mobile device while i = 2 is the secondary microphone at its top or

rear. Let us assume independence between speech and noise such that this additive noise distortion
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model can be expressed in the Mel power spectral domain as

|Yi(f, t)|2 = |Xi(f, t)|2 + |Ni(f, t)|2, (1)

where |Yi(f, t)|2, |Xi(f, t)|2 and |Ni(f, t)|2 denote, respectively, noisy speech, clean speech and

noise Mel power spectral bins from the i-th channel. Furthermore, f = 0, 1, ...,M − 1 and

t = 0, 1, ..., T − 1 indicate the frequency bin and time frame index, respectively. From these

quantities we define the followingM× 1 vectors:

yi =
(
log |Yi(0, t)|2, ..., log |Yi(M− 1, t)|2

)T
, (2)

xi =
(
log |Xi(0, t)|2, ..., log |Xi(M− 1, t)|2

)T
, (3)

ni =
(
log |Ni(0, t)|2, ..., log |Ni(M− 1, t)|2

)T
, (4)

where the time frame index t has been omitted in the new variables yi, xi and ni for the sake of

clarity. Thus, from (2)-(4), the speech distortion model in (1) is expressed in the log-Mel power

spectral domain as [13, 15, 17],

yi = log (exi + eni) , (5)

where the operators log(·) and e(·) are applied element-wise.

Besides the additive noise, we must also consider the acoustics involved in our problem. Thus,

we assume that the clean speech signal xi(m) is the result of filtering the clean source x(m) by the

acoustics hi(m) that affect sensor i, that is, xi(m) = hi(m) ∗ x(m) or, in terms of log-Mel power

spectra,

xi = hi + x

= ai1 + x1,
(6)

where hi and x are vectors of sizeM defined as (2)-(4) and ai1 = hi−h1, i = 1, 2, represents the

clean speech acoustic path from the source to sensor i relative to that of the primary sensor. While

a11 = 0M,1 is anM-dimensional zero vector by definition, a21 will be referred to as the relative
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acoustic path (RAP) vector.

For speech recognition purposes, we are interested in the estimation of the clean speech feature

vector x1 derived from the signal captured by the primary microphone. This is a reasonable choice

since a clear line of sight between the source (i.e. speaker’s mouth) and the primary microphone

can be assumed. Hence, we can expect that the primary signal y1(m) is less (or equally, in the

worst case) affected by the noise than the secondary one, y2(m).

Under the described framework, we can estimate the clean speech feature vector x in two steps.

First, x1 will be obtained by means of a dual-channel VTS estimation that benefits from the dual-

channel noisy observation. This novel method is formulated in the next section. Then, x can

be estimated through the application of channel deconvolution on the clean speech estimate x̂1.

For simplicity, in this work h1(m) is compensated by performing cepstral mean normalization

(CMN) [18] both on training and test data. This way, we are able to cancel or mitigate the possible

channel mismatch between training and test data.

3. Dual-Channel VTS Feature Compensation

In this section we develop an MMSE estimator for x1 that exploits the dual-channel noisy obser-

vations and relies on a VTS expansion of the dual-channel speech distortion model introduced in

the previous section. Through this approach, the noisy speech statistics, needed for the MMSE

estimation, are easily derived in an analytical way from clean speech, relative acoustic path (RAP)

and noise statistics. Our proposal, that performs on a frame-by-frame basis, follows a stacked form

that exploits clean speech and noise correlations across the two available channels.

First, we assume that the clean speech statistics at the primary channel can be accurately mod-

eled using a K-component Gaussian mixture model (GMM):

p(x1) =
K∑

k=1

P (k)N
(
x1

∣∣∣µ(k)
x1
,Σ(k)

x1

)
, (7)

where P (k) is the prior probability of the k-th multivariate Gaussian component N (·) with mean

vector and covariance matrix µ
(k)
x1 and Σ(k)

x1
, respectively. By considering this speech model, the
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log-Mel clean speech features will be estimated at every time frame t under an MMSE approach

as [19],

x̂1 =
K∑

k=1

P (k|y)E [x1|y, k] , (8)

where y is a stacked vector defined as

y =

 y1

y2

 , (9)

and the k-th clean speech partial estimate E [x1|y, k] is weighted by the posterior P (k|y) to be lin-

early combined. In the following subsection the estimation of the posteriors {P (k|y); k = 1, 2, ...,K}

is addressed while the computation of the clean speech partial estimates is detailed in Subsection

3.2.

3.1. Estimation of the Posterior Probabilities

Let us rewrite the speech distortion model of Eq. (5) by taking into account the relationship in (6)

as
yi = f(x1, ai1,ni) = log (eai1+x1 + eni)

= x1 + ai1 + log(1M,1 + eni−x1−ai1),
(10)

where f(x1, ai1,ni) : RM×M×M → RM and yi, x1, ai1 and ni are the log-Mel feature vectors at

time frame t introduced in the previous section, and 1M,1 is anM-dimensional vector filled with

ones.

From now on, let a = (aT
11, a

T
21)

T = (0T
M,1, a

T
21)

T and n = (nT
1 ,n

T
2 )

T be an augmented RAP

vector and a stacked vector of noise, respectively, both of them 2M-dimensional. By taking into

account the couple of sensors in the mobile device, the considered dual-channel distortion model

is given by the following stacked vector:

y =

 y1

y2

 = F (x1, a,n) =

 f(x1, a11,n1)

f(x1, a21,n2)

 , (11)
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where F(x1, a,n) : RM×2M×2M → R2M. We assumed in (7) that the clean speech statistics at

the primary channel are modeled by means of a K-component GMM. To complete the generative

model, we assume that the statistics for both the RAP and noise in each channel can be modeled by

Gaussian distributions [13, 20], i.e. p(a21) = N
(
a21

∣∣µa21 ,Σa21

)
and p(ni) = N

(
ni

∣∣µni
,Σni

)
(i = 1, 2), respectively. Since any linear combination of Gaussian variables follows another

Gaussian distribution [21], by linearizing the dual-channel distortion model in (11) we are able

to describe the dual-channel noisy speech statistics (required to compute the posteriors {P (k|y);

k = 1, 2, ...,K}) by means of a GMM (at every time frame t) as

p(y) =
K∑

k=1

P (k)N
(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
. (12)

Then, we linearize y = F (x1, a,n) by means of a first-order VTS expansion around the point(
µ

(k)
x1 ,µa,µn

)
, where

µa =

 µa11

µa21

 =

 0M,1

µa21

 (13)

and

µn =

 µn1

µn2

 (14)

are 2M× 1 vectors of stacked means. This procedure is accomplished by accordingly lineariz-

ing the speech distortion model for each channel, f(x1, ai1,ni) (i = 1, 2), around the point(
µ

(k)
x1 ,µai1

,µni

)
, that is,

f(x1, ai1,ni) ≈ f
(
µ

(k)
x1 ,µai1

,µni

)
+ J

(i,k)
x

(
x1 − µ

(k)
x1

)
+

+J
(i,k)
a

(
ai1 − µai1

)
+ J

(i,k)
n

(
ni − µni

)
,

(15)

where J
(i,k)
x , J

(i,k)
a and J

(i,k)
n are M ×M Jacobian matrices, the calculation of which will be

detailed later.

To finally characterize the probability density function (PDF) p(y) we need to derive its mean
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vectors and covariance matrices. By taking into account (11) and (15), it is straightforward to show

that the mean vectors
{
µ

(k)
y : k = 1, 2, ...,K

}
can be obtained as

µ(k)
y =

 E [y1|k]

E [y2|k]

 =

 f
(
µ

(k)
x1 ,µa11 ,µn1

)
f
(
µ

(k)
x1 ,µa21 ,µn2

)
 . (16)

On the other hand, the covariance matrices can be easily calculated in accordance to their definition

as

Σ(k)
y = E

[(
y − µ(k)

y

) (
y − µ(k)

y

)T]
, (17)

where y−µ
(k)
y is defined in the following manner by again considering the approximation in (15)

as well as (16):

y − µ(k)
y =

 J
(1,k)
x

(
x1 − µ

(k)
x1

)
+ J

(1,k)
a

(
a11 − µa11

)
+ J

(1,k)
n

(
n1 − µn1

)
J
(2,k)
x

(
x1 − µ

(k)
x1

)
+ J

(2,k)
a

(
a21 − µa21

)
+ J

(2,k)
n

(
n2 − µn2

)
 . (18)

For notational convenience let us define the following block Jacobian matrices:

J(k)
x =

 J
(1,k)
x

J
(2,k)
x

 ; (19)

J(k)
a =

 J
(1,k)
a 0M,M

0M,M J
(2,k)
a

 ; (20)

J(k)
n =

 J
(1,k)
n 0M,M

0M,M J
(2,k)
n

 , (21)

where J
(k)
x is a 2M×M matrix, J

(k)
a and J

(k)
n are 2M× 2M matrices and 0M,M is anM×M

zero matrix. Then, (18) can be expressed in a more compact form as

y − µ(k)
y = J(k)

x

(
x1 − µ(k)

x1

)
+ J(k)

a (a− µa) + J(k)
n (n− µn) . (22)
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Finally, by combining (22) and (17), as well as considering independence between clean speech,

the RAP and noise, an expression for the dual-channel noisy speech model covariance matrix can

be obtained as

Σ(k)
y = J(k)

x Σ(k)
x1

J(k)
x

T
+ J(k)

a ΣaJ
(k)
a

T
+ J(k)

n ΣnJ
(k)
n

T
, (23)

where

Σa = E
[
(a− µa)(a− µa)

T
]
=

 0M,M 0M,M

0M,M Σa21

 (24)

and

Σn = E
[
(n− µn)(n− µn)

T
]
=

 Σn1 Σn12

Σn21 Σn2

 (25)

are 2M×2M spatial covariance matrices of the RAP and noise, respectively. In addition, Σn12 =

ΣT
n21

= E
[
(n1 − µn1

)(n2 − µn2
)T
]
. The Jacobian matrices, which are diagonal in accordance to

the speech distortion model described by Eq. (10) (independent frequency components), are easily

calculated by employing the Jacobian matrix mathematical definition as,

J
(i,k)
x =

∂yi

∂x1

∣∣∣∣
µ

(k)
x1

,µai1
,µni

= diag

(
1M,1

1M,1 + eµni
−µ(k)

x1
−µai1

)
;

J
(i,k)
a =

∂yi

∂ai1

∣∣∣∣
µ

(k)
x1

,µai1
,µni

=

 0M,M if i = 1

J
(2,k)
x if i = 2

;

J
(i,k)
n =

∂yi

∂ni

∣∣∣∣
µ

(k)
x1

,µai1
,µni

= IM − J
(i,k)
x ,

(26)

where diag(·) indicates a diagonal matrix whose main diagonal corresponds to its argument, divi-

sion ÷ operates element-wise and IM is anM×M identity matrix.

Finally, by using the Bayes’ rule and the previous derivations, in the knowledge that p(y|k) =

N
(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
, the posteriors are obtained as

P (k|y) = p(y|k)P (k)∑K
k′=1 p(y|k′)P (k′)

, k = 1, 2, ...,K. (27)
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The computation of the parameters of the PDFs p(x1), p(a21) and p(ni), i = 1, 2, along with

Σn12 required to perform the calculations above is detailed in Subsection 4.2.

3.2. Clean Speech Partial Estimate Computation

While the calculation of the partial expected values in (8), E [x1|y, k] (k = 1, 2, ...,K), is defined

as

E [x1|y, k] =
∫

x1p(x1|y, k)dx1, (28)

it is again necessary to linearize the non-linear speech distortion model of (10) to make inference

feasible. In this regard, two different proposals for VTS feature compensation are considered in

this paper.

In the first approach, that will be referred to as 2-VTS-a, we exploit the dual-channel informa-

tion. If we assume that the joint PDF p(x1,y|k) is Gaussian then the conditional PDF p(x1|y, k)

will also be Gaussian, so that the expected value of p(x1|y, k), E [x1|y, k], can be approximated

as [22]

E [x1|y, k] = µ(k)
x1

+ Σ(k)
x1y

Σ(k)
y

−1 (
y − µ(k)

y

)
, (29)

where the cross-covariance matrix Σ(k)
x1y

is approximated by again considering a VTS approach.

Thus, by using the result in (22),

Σ(k)
x1y

= E
[(

x1 − µ(k)
x1

) (
y − µ(k)

y

)T]
= Σ(k)

x1
J(k)
x

T
, (30)

where it should be reminded that independence between clean speech, the RAP and noise was

assumed.

In the second approach, only the information from the main channel is used to compute the

clean speech partial estimates. For this second strategy, which is referred to as 2-VTS-b, Eq. (10)

is rewritten as yi = x1+g(x1, ai1,ni) [14,15], where g(x1, ai1,ni) = ai1+log(1M,1+e
ni−x1−ai1)

is a distortion vector. Then, the k-th clean speech partial estimate is calculated as

E [x1|y, k] ≈ E [x1|y1, k] = y1 − E[g(x1, a11,n1)|y1, k], (31)
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Fig. 1. Characteristics of the mobile device used for the generation of the AURORA2-2C database.

where it is assumed that the function g(x1, ai1,ni) is smooth for each k such that [14, 15]

E[g(x1, a11,n1)|y1, k] = g
(
µ(k)

x1
,µa11 ,µn1

)
. (32)

Considering 2-VTS-b instead of 2-VTS-a may be appropriate in our case, since, generally, the

secondary microphone of the mobile device captures a much noisier signal than the primary one.

4. Experimental Evaluation

4.1. Experimental Settings

Our dual-channel feature compensation method is evaluated in terms of word accuracy on the

AURORA2-2C (Aurora-2 - 2 Channels - Conversational Position) database [10]. This is a syn-

thetic dual-channel noisy speech database created from the well-known Aurora-2 corpus [16]. The

AURORA2-2C database emulates the recording of dual-channel noisy speech data by means of a

dual-microphone smartphone in close-talk conditions (i.e. the loudspeaker of the device is placed

at the ear of the user). Figure 1 depicts the geometrical characteristics of the mobile device used to

generate this corpus. This database has two test sets: A and B. Following the same Aurora-2 struc-

ture, utterances in test set A are distorted by bus, babble, car and pedestrian street noises, while

those in test set B are contaminated by café, street, bus station and train station noises. The SNRs

considered (referred to the primary channel) for the test sets are -5 dB, 0 dB, 5 dB, 10 dB, 15 dB

and 20 dB as well as the clean condition.
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The European Telecommunication Standards Institute front-end (ETSI FE, ES 201 108) [23,24]

is used to extract acoustic features from the speech signals. 39-dimensional feature vectors (twelve

Mel-frequency cepstral coefficients (MFCCs) along with the 0th order coefficient and their respec-

tive velocity and acceleration components) are employed by the recognizer. For feature compen-

sation, log-Mel feature vectors of M = 23 components are computed. To obtain the cepstral

coefficients for recognition, the discrete cosine transform (DCT) is applied to the enhanced log-

Mel feature vectors. Finally, to improve the robustness of the system against channel mismatches,

CMN is applied as previously commented.

Two sets of hidden Markov model (HMM)-based acoustic models with GMM state-output dis-

tributions are used for evaluation: clean and multi-style acoustic models. While clean models are

trained on the Aurora-2 clean training dataset, multi-style models are trained with distorted speech

features to strengthen the ASR system against noise. In AURORA2-2C, its multi-style training

dataset is created from the 8440 training clean utterances of Aurora-2. Similarly to [16], the multi-

style training dataset consists of dual-channel utterances contaminated with the types of noise in

test set A at the SNRs (referred to the primary channel) of 5 dB, 10 dB, 15 dB and 20 dB as well as

the clean condition. To train the multi-style acoustic models, training utterances are first compen-

sated with each method tested in this work. Finally, left to right continuous density HMMs with

16 states and 3 Gaussians per state are used to model each digit for both sets of acoustic models.

Silences and short pauses are modeled by HMMs with 3 and 1 states, respectively, and 6 Gaussians

per state [16].

4.2. Computation of Prior Statistical Parameters

The GMM defined in (7) to describe the clean speech statistics at the primary channel is comprised

of K = 256 multivariate Gaussian components with diagonal covariance matrices. GMM training

is performed by means of the expectation-maximization (EM) algorithm on the same dataset as

that used for clean acoustic model training in AURORA2-2C.

The parameters of the PDF p(a21), µa21 and Σa21 , are a priori computed for the AURORA2-

2C. In this work we assume that p(a21) follows a stationary distribution. In this way, we consider
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Fig. 3. Example of noise spatial covariance matrix Σn estimated from 12 seconds of pedestrian
street noise captured with a dual-microphone smartphone.

that a21 at every time frame t is a realization of the variable. The mean vector µa21 and the

covariance matrix Σa21 are estimated as the sample mean and sample covariance, respectively,

from a21 samples. Moreover, we assume independence across frequency bins for a21 and, hence, a

diagonal covariance matrix Σa21 is used. We obtain a21 samples from the development dataset of

the AURORA2-2C corpus (as a21 = x2−x1). Figure 2 plots example histograms of a21(f) at four

different frequency bins. These histograms were calculated from the aforementioned development

dataset. It is worth noting that, from this figure, the Gaussian assumption seems reasonable.

Concerning noise estimation, we assume that the first and last ν = 20 frames (which corre-

sponds to 200 ms) of each utterance contain only noise energy. In this way, the mean vector of

the PDF p(ni), µni
(i = 1, 2), is computed for every time frame t from a linear interpolation be-

tween the averages of the first and last ν frames in the i-th channel of each utterance in the log-Mel

domain [25]. Additionally, the noise covariance matrices Σni
(i = 1, 2) and Σn12 are estimated
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per utterance as the sample covariance of the first and last ν frames as well [25]. Independence

across frequency bins is also assumed for the noise so that Σni
(i = 1, 2) and Σn12 are diagonal.

Figure 3 shows an example of a noise spatial covariance matrix Σn estimated from 12 seconds of

pedestrian street noise captured with a dual-microphone smartphone. This example clearly shows

the suitability of the diagonal assumption.

4.3. Results

In addition to our proposals, 2-VTS-a and 2-VTS-b, the dual-channel power spectrum enhance-

ment techniques MMSN and DCSS already proposed in [10] and a time-varying MVDR beam-

former with diagonal loading [26] were also evaluated. Furthermore, the advanced front-end

(AFE) [24,27] and a single-channel VTS feature compensation algorithm [13,14] were also tested

on the primary channel as a reference. For single-channel VTS compensation, the two types of

clean speech partial estimation described in Subsection 3.2 were evaluated. The corresponding

experiments are labeled as 1-VTS-a (where y1 is considered instead of y) and 1-VTS-b [15]. For a

fair comparison, in these experiments the required clean speech GMM as well as the hyperparam-

eters µn1
and Σn1 were obtained as in Subsection 4.2. Finally, an ASR system employing noisy

speech features from the primary channel after mean subtraction is used as baseline.

First, it should be noticed that the word recognition results obtained for the techniques evaluated

in both this paper and [10] are slightly different. This is because the AURORA2-2C database was

generated for this paper considering an anechoic chamber instead of a semi-anechoic environment

for the acoustic path estimation, as was the case in [10].

Tables 1 and 2 show the word accuracy results achieved on the AURORA2-2C database when

clean and multi-style acoustic models are used, respectively. Results are averaged across all types

of noise in test sets A and B as well as broken down by SNR. As expected, better word recognition

is generally achieved by considering multi-style instead of clean acoustic models, since the mis-

match between training and test data is reduced. Likewise, the results show that the approach for

clean speech partial estimate computation that only uses the information from the main channel,

VTS-b, provides better accuracy than VTS-a. Additionally, in all cases, the dual-channel VTS
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SNR (dB) Baseline MVDR MMSN DCSS AFE 1-VTS-a 2-VTS-a 1-VTS-b 2-VTS-b

-5 18.15 20.94 24.16 24.37 35.81 43.06 50.74 44.25 51.36
0 31.85 36.66 46.31 46.69 65.46 71.86 78.14 72.75 78.33
5 56.11 64.41 74.78 75.06 85.16 89.05 91.74 89.69 91.78

10 82.78 87.84 90.66 90.65 93.80 95.23 96.32 95.44 96.46
15 94.72 95.99 96.14 96.03 96.96 97.69 98.03 97.71 98.09
20 97.76 97.82 97.87 97.64 98.33 98.50 98.54 98.49 98.61

Clean 99.13 98.87 98.90 99.13 99.24 99.09 99.04 99.09 99.04

Avg. (-5 to 20) 63.56 67.28 71.65 71.74 79.25 82.57 85.59 83.06 85.77

Rel. improv. - 3.72 8.09 8.18 15.69 19.01 22.03 19.50 22.21

Table 1. Word accuracy results (%) obtained on the AURORA2-2C database for different SNR
values when using clean acoustic models. Results are averaged across all types of noise in test sets
A and B.

SNR (dB) Baseline MVDR MMSN DCSS AFE 1-VTS-a 2-VTS-a 1-VTS-b 2-VTS-b

-5 36.93 46.31 46.70 47.28 48.21 45.29 53.94 47.98 55.58
0 66.69 77.99 78.14 78.45 78.36 74.72 81.44 76.07 81.69
5 88.85 92.67 92.99 93.12 92.24 91.08 93.59 91.22 93.45

10 95.73 96.81 96.86 96.93 96.54 95.97 96.86 96.00 96.85

15 97.56 98.01 98.17 98.15 98.11 97.77 98.27 97.91 98.27
20 98.31 98.53 98.53 98.45 98.66 98.33 98.49 98.49 98.61

Clean 98.77 98.59 98.61 98.24 99.07 98.84 98.73 98.79 98.82

Avg. (-5 to 20) 80.68 85.05 85.23 85.40 85.35 83.86 87.10 84.61 87.41

Rel. improv. - 4.37 4.55 4.72 4.67 3.18 6.42 3.93 6.73

Table 2. Word accuracy results (%) obtained on the AURORA2-2C database for different SNR
values when using multi-style acoustic models. Results are averaged across all types of noise in
test sets A and B.
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Fig. 4. Log-Mel estimation mean square errors (for different SNR values) obtained for the VTS
approaches evaluated on the AURORA2-2C database. Errors, calculated on a bin-by-bin basis,
are averaged across all types of noise in test sets A and B.

compensation approach outperforms on average the single-channel one. This is expected since the

former can exploit the spatial properties of speech and noise signals by means of the RAP vec-

tor a21 and the spatial covariance matrix of noise Σn. These parameters are directly involved in

the definition of the noisy speech PDF, p(y), determining more accurately the importance of each

clean speech partial estimate in the final estimation of (8) from (27). This is confirmed by Figure 4,

which depicts the mean square errors of the different estimates in the log-Mel domain as a function

of the SNR.

As can be seen, 2-VTS-b is, on average, our best approach when using both clean and multi-

style acoustic models. Moreover, in all cases, 2-VTS-b has the best performance at the SNRs of

-5 dB and 0 dB, making it a suitable approach for challenging low-SNR environments (as those

where mobile devices may be used). It is also worth mentioning that MVDR beamforming does

not achieve a competitive performance in comparison with AFE and VTS when clean acoustic

models are considered. This was expected since, as mentioned before, the efficiency of the classic

beamforming techniques with small microphone arrays is rather limited [11, 12] (only two sen-

sors are available in our framework and one of them is placed in an acoustic shadow regarding

the speaker’s mouth). That is, it is desirable to consider different noise-robust approaches to be

performed on this kind of devices, as those proposed in this work.

Finally, in [10], both MMSN and DCSS were also used as preprocessing techniques for 1-
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Clean models Multi-style models
SNR (dB) MMSN-1 MMSN-2 DCSS-1 DCSS-2 MMSN-1 MMSN-2 DCSS-1 DCSS-2

-5 56.14 56.97 56.25 57.09 61.58 62.83 61.61 62.91
0 81.05 81.58 81.04 81.69 84.15 85.05 84.07 85.12
5 92.38 92.92 92.37 92.86 94.10 94.48 94.05 94.47

10 96.55 96.80 96.54 96.78 97.08 97.27 97.14 97.26
15 98.16 98.26 98.13 98.21 98.28 98.36 98.24 98.37
20 98.61 98.62 98.55 98.59 98.57 98.56 98.54 98.51

Clean 98.94 98.90 98.78 98.79 98.82 98.76 98.73 98.70
Avg. (-5 to 20) 87.15 87.53 87.15 87.54 88.96 89.43 88.95 89.44
Rel. improv. 23.59 23.97 23.59 23.98 8.28 8.75 8.27 8.76

Table 3. Word accuracy results (%) obtained on the AURORA2-2C database when using MMSN
and DCSS as preprocessing methods for 1-VTS-b and 2-VTS-b. Clean and multi-style acoustic
models are considered. Results are broken down by SNR and averaged across all types of noise in
test sets A and B.

VTS-b, outperforming 1-VTS-b when applied isolatedly. Table 3 reports the word accuracy results

obtained when MMSN and DCSS are used as preprocessing techniques for 1-VTS-b (MMSN-1

and DCSS-1) and 2-VTS-b (MMSN-2 and DCSS-2). It should be remarked that, in this case,

the enhanced primary spectrum from either MMSN or DCSS is used as input for 1-VTS-b. In

addition, the input for 2-VTS-b consists of this enhanced primary spectrum along with the original

noisy spectrum from the secondary channel. Once again, clean and multi-style acoustic modeling

is considered and results are averaged across all types of noise in test sets A and B as well as broken

down by SNR. While 2-VTS-b clearly outperforms 1-VTS-b when they are applied in isolation,

differences become smaller when they are combined with MMSN and DCSS, as can be observed

from Table 3. It must be noted that when either MMSN or DCSS is combined with 1-VTS-b, the

same spatial information as in the case of 2-VTS-b is being used, since both MMSN and DCSS

exploit RAP information and noise spatial correlations. Therefore, it is reasonable to expect small

improvements when these are combined with 2-VTS-b. Nevertheless, as can be seen, 2-VTS-b is

better able to improve MMSN and DCSS than 1-VTS-b.

5. Conclusions and Future Work

In this paper, a novel dual-channel VTS feature compensation method for noise-robust ASR on

mobile devices has been proposed. It has been experimentally shown that our proposal is able
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to achieve high recognition accuracy when integrated in an ASR system working on challenging

noisy environments, especially at low SNRs. In particular, our results have demonstrated that a

dual-channel VTS approach outperforms a single-channel one by taking advantage of the spatial

properties of speech and noise (modeled as the relative acoustic path between the two sensors and

the dual-channel noise spatial covariance matrix, respectively).

As future work, we will evaluate the performance of our proposal on a large-vocabulary speech

recognition task with a DNN-HMM-based ASR back-end. It can be expected that our proposal

achieves relevant word accuracy improvements within the latter framework according to recent

research, as in [28, 29], where it has been shown that the application of certain preprocessing

stages (e.g. feature enhancement stages) can improve the performance of the DNN-HMM-based

ASR systems trained with both clean and multi-style data.
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[10] I. López-Espejo, A. M. Gomez, J. A. González, and A. M. Peinado. Feature enhancement

for robust speech recognition on smartphones with dual-microphone. In EUSIPCO 2014 –

22nd European Signal Processing Conference, September 1–5, Lisbon, Portugal, Proceedings,

pages 21–25, 2014.

[11] I. Tashev, S. Mihov, T. Gleghorn, and A. Acero. Sound capture system and spatial filter

for small devices. In EUROSPEECH 2008 – 9th Annual Conference of the International

19



Speech Communication Association, September 22–26, Brisbane, Australia, Proceedings,

pages 435–438, 2008.

[12] I. Tashev, M. Seltzer, and A. Acero. Microphone array for headset with spatial noise suppres-

sor. In IWAENC 2005 – 9th International Workshop on Acoustic, Echo and Noise Control,

Proceedings, 2005.

[13] P. J. Moreno, B. Raj, and R. M. Stern. A vector Taylor series approach for environment-

independent speech recognition. In ICASSP 1996 – 21st International Conference on Acous-

tics, Speech, and Signal Processing, May 7–10, Atlanta, GA, Proceedings, pages 733–736,

1996.

[14] P. Moreno. Speech Recognition in Noisy Environments. Ph.D. thesis (Carnegie Mellon Uni-

versity), 1996.

[15] J. C. Segura, A. Torre, M. C. Benitez, and A. M. Peinado. Model-based compensation of

the additive noise for continuous speech recognition. Experiments using the AURORA II

database and tasks. In EUROSPEECH 2001 – 7th European Conference on Speech Commu-

nication and Technology, September 3–7, Aalborg, Denmark, Proceedings, 2001.

[16] D. Pearce and H. G. Hirsch. The Aurora experimental framework for the performance evalua-

tion of speech recognition systems under noisy conditions. In ICSLP 2000 – 6th International

Conference of Spoken Language Processing, October 16–20, Beijing, China, Proceedings,

pages 29–32, 2000.

[17] A. Acero et al. HMM adaptation using vector Taylor series for noisy speech recognition. In

ICSLP 2000 – 6th International Conference of Spoken Language Processing, October 16–20,

Beijing, China, Proceedings, pages 229–232, 2000.

[18] B. S. Atal. Effectiveness of linear prediction characteristics of the speech wave for automatic

speaker identification and verification. J. Aco. Soc. Am., 55:1304–1312, 1974.

20
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