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A Real-Time Silent Speech System for Voice Restoration after Total 
Laryngectomy 
 
 

Resumen 

Antecedentes y objetivo: Aquellas personas que han perdido su voz después de una laringectomía se 

ven limitadas irremediablemente en su comunicación diaria. A pesar de existir en la actualidad métodos 
para recuperar el habla tras la laringectomía, todos ellos presentan limitaciones. El objetivo de este 

trabajo es explorar un método alternativo para hablar tras la laringectomía en el que el movimiento de 

los órganos de la voz se transforma en una señal acústica utilizando técnicas de aprendizaje 

automático.  

Materiales y métodos: En esta investigación participaron 6 adultos sanos. Para cada sujeto se grabaron 

simultaneamente tanto su voz como los movimientos de sus labios y lengua. Los movimientos de los 

órganos del habla fueron capturados usando una técnica conocida como Articulografía de Imán 

Permanente (PMA), en la cual pequeños imanes se colocan sobre estos órganos y el campo magnético 
generado por los imanes se captura usando unos sensores sensibles al campo magnético. Se utilizaron 

redes neuronales artificiales profundas para modelar la transformación entre los datos de los sensores 

y la acústica de la voz.  

Resultados: El sistema de habla silenciosa propuesto es capaz de generar voz que suena natural, se 

asemeja a la propia voz del sujeto y es inteligible (hasta un 92% de inteligibilidad para algunos sujetos). 

Conclusiones: El sistema propuesto podría ser en el futuro una opción viable para restaurar la voz tras 

una laringectomía total. 

 

Palabras clave: Laringectomía; interfaces del habla silenciosa; rehabilitación de la voz; síntesis de voz; 
articulografía por imanes permanentes. 

 

  



Abstract 

Background and aim: Individuals who have lost their voice following a laryngectomy as a treatment for 
cancer will inevitably struggle with their daily communication. Unfortunately, current existing methods 
for speaking after laryngectomy all have limitations, either because of the poor acoustics generated by 
these methods or because they can be potentially harmful. The aim of this work is thus to explore an 
alternative method for post-laryngectomy voice restoration in which the movement of the intact 
articulators is captured and then converted into audible speech using machine learning techniques.  

Materials and methods: To demonstrate the feasibility of speech generation from captured articulator 
movement, 6 healthy adults were recruited. For each subject, both the speech acoustics and the 
subject’s articulator movements were recorded simultaneously. Articulator movements were captured 
using a technique known as Permanent Magnet Articulography (PMA), in which small magnets are 
attached to the articulators (typically tongue and lips) and the magnetic field generated by the magnets 
is captured with sensors located close to the mouth. Deep artificial neural networks were then used to 
model the mapping between the sensor data and the speech acoustics, thus, enabling the synthesis of 
speech from captured articulatory data.  

Results: The proposed silent speech system is able to generate speech that sounds natural, resembles 
the subject’s own voice and is fairly intelligible (up to 92% intelligibility for some speakers on a 
phonetically-rich corpus). 

Conclusions: With further research, the proposed system could be in future a real option to restore lost 
voice after laryngectomy. 

 

Keywords: Laryngectomy; silent speech interfaces; speech rehabilitation; speech synthesis; 
permanent magnet articulography. 

  



Introduction 

Individuals who undergo total laryngectomy to treat throat cancer often find themselves struggling with 

oral communication after losing their voice after the laryngectomy. Although larynx cancer only accounts 
for ~1% of all cancers (‘Laryngeal cancer statistics’, 2015), according to a recent study (Ferlay Jacques 

et al., 2010) it has a high survival rate: around 70% of the patients live 5 years or more after the 

laryngectomy. Worldwide, this accounts for more than 425,000 individuals (Jones, De, Foran, 

Harrington, & Mortimore, 2016). After losing their voice, many laryngectomies report feelings of loss of 

identity and clinical depression as well as social isolation (Braz, Ribas, Dedivitis, Nishimoto, & Barros, 

2005; Byrne, Walsh, Farrelly, & O’Driscoll, 1993; Danker et al., 2010). 

To speak again, laryngectomees can use any of the following three voice restoration methods (Jassar, 
England, & Stafford, 1999): valved speech, oesophageal speech and the electrolarynx. Valved speech 

is the most popular and preferred method. In this method, a one-way valve allowing air from the lungs 

to pass into the oesophagus without food and liquids passing into the trachea is inserted into the tissue 

separating the trachea and oesophagus. Although valved speech provides the most natural voice 

among the three methods, it has to be replaced frequently and its voice sounds masculine, thus disliked 

by many females. Oesophageal speech is a type of alaryngeal speech which does not require any 

instrumentation. To speak in this way, you move air down to the upper oesophagus and then release it 

in a controlled manner making the oesophagus to vibrate. Oesophageal speech, however, is difficult to 
learn and has a low speaking rate. The third method, the electrolarynx, is a handheld vibrating machine 

that produces sound for you to create a voice. To speak using the electrolarynx, it has to be hold against 

the neck, then the device is activated and it will inject sound into the vocal tract apparatus for you to 

form words. The electrolarynx is relatively cheap and easy to use, but requires manual dexterity and 

produces a robotic voice.  

Recently, the use of silent speech interfaces (SSIs) (Denby et al., 2010) has gained increased interest 

as a real alternative to restore speech communication. SSIs are devices enabling oral communication 

when the acoustic speech signal is not desirable (e.g. to maintain privacy when speaking in public 
places) or not available (e.g. after laryngectomy) by exploiting other non-audible biosignals generated 

during speech production. Examples of these biosignals are the electrical activity in the brain or the 

movement of the speech articulators. From these signals, a SSI recover the speech the user wished to 

produce, either by performing automatic speech recognition on the biosignals or by directly converting 

them into speech, as we investigate in this work. 

The present works describes a SSI system which can be used for speech restoration after laryngectomy. 

Our system is able to generate audible speech from captured movement of the speech articulators. In 
particular, the movements of the lips and tongue of the patient is captured using a technique known as 

Permanent Magnet Articulography (PMA) (Cheah et al., 2015, 2016; Fagan, Ell, Gilbert, Sarrazin, & 

Chapman, 2008; Gilbert et al., 2010; Hofe et al., 2013), in which small magnets are attached to the 

articulators and the variations of the magnetic field generated by those magnets when the person 

articulates words are captured by sensors located close to the mouth. To transform PMA data into 

speech, we use deep learning techniques (Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & 



Hinton, 2015) trained with simultaneous recordings of articulatory and speech data made by the patient 

before she/he loses her/his voice. The proposed system is implemented as an app running on a 

smartphone. The app can generate speech in real time and, because the deep learning techniques are 

trained with recordings of the person’s own voice, it generates speech resembling the person’s original 

voice. 

To evaluate the feasibility of the proposed voice restoration method, preliminary results are reported 

here for healthy subjects. Speech generated by our system from the captured PMA data is evaluated in 
term of naturalness, quality and intelligibility. 

 

Materials and methods 

Participants and database 

Although the aim of our research is to help laryngectomees to recover their voice, for the present study 

our aim is to determine whether speech of sufficient quality can be synthesised from articulator 

movement. Thus, 6 healthy British subjects were recruited: 4 men (M1 to M4) and 2 women (F1 and 

F2). None of the subjects had any record of speech and language disorders. For each subject, 

articulatory data was recorded in synchrony with her/his speech for a random subset of the CMU Arctic 

corpus of phonetically-rich sentences (Kominek & Black, 2004). The amount of data recorded by the 

subjects is shown in Table 1. 

Data was recorded in a sound-proof room to optimize the audio quality. During the recordings, the 

subjects were asked to read aloud a random subset of sentences included in the CMU Arctic corpus. A 

visual prompt of each sentence was presented to the subject at regular intervals of 10 s. PMA and audio 

signals were recorded simultaneously at sampling frequencies of 100 Hz and 48 kHz, respectively. The 

audio was recorded using a AKG C1000S condenser microphone located about 20 cm from the subject, 

whereas the articulatory data was captured using the in-house PMA device described in the following 

section. Later, the audio signals were digitally downsampled to 16 kHz. 

Articulator motion capture 

Permanent Magnet Articulography (PMA) (Cheah et al., 2015, 2016; Fagan et al., 2008; Gilbert et al., 

2010; Hofe et al., 2013) is used in this work to capture the movement of the speech organs. As shown 

in Figure 1b, six Neodymium Iron Born (NFeB) permanent magnets are used in the current setup: four 

of them are attached to the lips, one to the tongue tip and one to the tongue blade. During the 

experiments the magnets are temporarily attached to the articulators using tissue glue, which last 1-2 

hours approximately, but they will be implanted for long-term usage. The magnetic field generated by 

the magnets is then captured by four tri-axial magnetic sensors mounted on the wearable headset 
shown in Figure 1a. Each sensor captures the 3-dimensional spatial components of the magnetic field 

at the sensor location. The headset also includes a rechargeable battery and a control unit with a 

Bluetooth transmitter, which sends the articulatory data to a processing unit (e.g. PC or smartphone) for 

further processing. 



In contrast to other methods for articulator motion capture, such as electromagnetic articulography 

(EMA) (Schönle et al., 1987) or electropalatography (EPG) (Hardcastle, Gibbon, & Jones, 2011), the 

exact position of the speech organs during speech production cannot be easily derived from PMA data. 

In other words, it is not currently possible to determine the positions of the magnets from the captured 

PMA data. Rather, pattern recognition techniques are used in the current work to map the articulatory 

data into acoustic speech parameters from which an acoustic signal can be synthesised. As an 

advantage, the PMA system is potentially unobtrusive, as there are no wires coming out of the mouth 
(as in EMA or EPG) or electrodes attached to the skin (as in surface electromyography (Schultz & Wand, 

2010)).  

 
Figure 1. Permanent Magnet Articulography (PMA) capturing device. (a) Wearable PMA headset with 
control unit, battery and 4 tri-axial magnetic sensors. (b) Placement of six magnets on lips (pellets 1-4), 
tongue tip (pellet 5) and tongue blade (pellet 6). 

 

Speech generation procedure 

 

 
Figure 2. Block diagram of the training and conversion stages of the speech synthesis procedure. In the 
training phase, the parameters of an artificial neural network, which maps PMA-derived feature vectors 
into speech feature vectors, are learned. In the conversion phase, the neural network is employed to 
transform the captured articulatory data into speech. 

 

A block diagram of the speech synthesis procedure used to transform PMA data into speech is depicted 

in Figure 2. The procedure consists of two distinct stages: training and conversion. The aim of the 

training phase is to model the relationship between the articulatory data and the acoustics for each 

subject. Deep neural networks (LeCun et al., 2015), which are a class of machine learning techniques 

that have been shown to provide unparalleled performance in a number of real-word tasks, are used to 



this end. The neural networks are trained with a set of synchronous recordings with PMA and speech 

signals made by the same person before the laryngectomy. This allows the neural network to learn the 

mapping between the PMA data and the corresponding acoustics. Rather than training the network with 

the raw signals, as illustrated in Figure 2, the PMA and speech signals are independently represented 

as sequences of feature vectors which contain less redundancy than the raw signals. The speech 

signals are parametrised as sequences of 32-dimensional feature vectors extracted every 5 ms from 25 

ms-long analysis windows using the STRAIGHT vocoder (Kawahara, Masuda-Katsuse, & de 
Cheveigné, 1999): 25 parameters are employed to represent the vocal tract filter as Mel-frequency 

cepstral coefficients (MFCCs) (Fukada, Tokuda, Kobayashi, & Imai, 1992) and the 7 remaining 

parameters represent the glottal signal as 5-band aperiodicity values, fundamental frequency (F0) and 

unvoiced/voiced decision. Similarly, the PMA signals as represented as sequences of features vectors 

extracted at the same frame rate as for the speech signals. These feature vectors are computed by 

applying the principal component analysis (PCA) technique for dimensionality reduction over the 25 ms 

signal windows. After the feature extraction procedure, the PMA and speech derived features are 

standardised. 

Several neural network architectures were investigated for modelling the PMA-to-speech mapping 

(Gonzalez, Cheah, Gomez, et al., 2017; Gonzalez, Cheah, Green, et al., 2017). From this investigation 

it was clear that recurrent neural networks (RNNs) (Cho et al., 2014; Graves, Mohamed, & Hinton, 2013; 

LeCun et al., 2015), a class of neural networks especially suited for modelling sequential data, provided 

the best speech reconstruction performance among all the architectures. A RNN consists of a set of 

recurrently connected processing blocks which allow not only for the current articulatory data, but also 

for historic data, to be taken into account in the PMA-to-speech mapping. Because RNNs can use the 

historic data, it can model long-term correlations which are beneficial when modelling different aspects 
of speech, such as the prosody, etc. 

As shown in Figure 2, the neural network obtained in the training phase is used in the conversion phase 

to transform PMA feature vectors into speech feature vectors. Finally, the STRAIGHT vocoder is used 

again to synthesise a waveform from the estimated speech feature vectors.  

In summary, the proposed SSI system is able to restore the person’s speech following laryngectomy. 

Provided that the latency of the conversion process is small enough, it will be possible to restore the 

normal auditory feedback to the subject (Yates, 1963).  

 

Real-time speech synthesis 

To evaluate our system for speech restoration, the conversion stage in Figure 2 was implemented as a 

Mobile app running on an Android smartphone. The communication between the PMA headset in Figure 

1a and the app is done via Bluetooth. All the remaining processing steps are implemented on the app. 

In particular, the app is responsible for transforming the articulatory data into speech feature vectors, 

synthesising speech from those vectors and, finally, playing the speech waveform back to the user via 

loudspeakers integrated in the smartphone.  



Timings of the time incurred by the processing steps indicate that the app is able to generate speech in 

real-time. In other words, the delay between an articulatory gesture and the corresponding acoustic 

feedback generated by the app is always less than 50 ms. As indicated in (Yates, 1963), this value can 

be considered as the upper for the maximum acceptable delay without causing disfluencies or stress to 

the subject. 

Results 

To evaluate the quality of the speech generated by our SSI, we compared the speech signals obtained 

from PMA data with the original signals recorded by the subjects. Then, speech quality was objectively 

measured by using the Mel-cepstral distortion measure (MCD) (Kubichek, 1993), which is a well-known 

spectrographic distortion metric. This allows us to compute the error of the synthesised speech signals 
with respect to the original ones recorded by the subjects. In MCD, higher values indicate a higher 

distortion, whereas a perfect reconstruction would yield a value of 0 dB in terms of this metric. 

Figure 3 shows the average MCD results over all subjects for different phone categories. To obtain 

these results, the original speech signals were first segmented into phones by force-aligning their word-

level transcriptions using automatic speech recognition. The phone-level transcriptions were then used 

to segment the original and synthesised speech signals. Next, the MCD metric was independently 

computed for each phone. When considering the manner of articulation, it can be seen that the vowels 

and fricatives are the sounds that are more accurately synthesised, while plosive, affricate and 
approximant consonants are less well reconstructed due to their more complex articulation and 

dynamics. For the place of articulation, the phones articulated at the middle and back of the mouth (i.e. 

palatal, velar and glottal consonants) are systematically more poorly reconstructed. This is due to those 

areas of the vocal tract not being well captured by the current PMA device (Gonzalez et al., 2014; 

Gonzalez, Cheah, Green, et al., 2017). 

 

Figure 3. Objective distortion results for the speech generated by the proposed SSI for different phonetic 
categories. Speech distortion is measured using the Mel-cepstral distortion metric. 

 



Next, we conducted a listening test to evaluate the intelligibility of the speech generated by the SSI. 

Twenty one raters participated in the listening test. Each rater was asked to manually transcribe 9 

speech samples from those generated by our system. The raters were allowed to replay the speech 

samples as many times as they wanted. Table 2 presents the mean intelligibility results over all subjects 

in our database (Average) and the results for the most intelligible subject, M4 (Best). Two intelligibility 

measures are reported: the percentage of words correctly identified by the raters (word correct) and the 

word accuracy, which corresponds to the ratio of words correctly identified after discounting the insertion 
errors.  

On average, around 75% intelligibility is obtained when considering all subjects in our study, but this 

value yields 92% for the subject M4.  

 

Discussion 

In this work we have described an speech synthesiser which can be controlled in real time using motion 

data captured from the user’s speech organs. To synthesise speech from articulatory data, recurrent 

neural networks are trained with simultaneous recordings of articulatory and speech data from the same 

subject, thus effectively enabling the system to transform captured articulatory data into audible speech. 

To evaluate our system, experiments were conducted in which the system was used to generate speech 

from articulatory data recorded by several healthy subjects.  

We first assessed the objective quality of the speech generated by the system. To this end, the speech 

signals generated by our system were represented as a series of Mel-frequency cepstral coefficients 

(MFFCs) and compared with the MFCCs computed from the original speech signals recorded by the 

subjects using the MCD distortion metric. Broadly speaking, when considering the manner of articulation 

of the phones, plosive and affricative consonants were consistently moor poorly reconstructed, which 

can be due to their more complex behaviour, while the vowels were, on average, more accurately 

reconstructed. For the place of articulation categories, we found that the phones articulated at the middle 

and back of the mouth were more poorly estimated. This coincides with similar findings from other 
studies using Permanent Magnet Articulagraphy (Gonzalez, Cheah, Gomez, et al., 2017; Gonzalez et 

al., 2014, 2016). In those investigations, it was empirically shown that the PMA system has limitations 

in capturing the movements of the back of the mouth since no magnet is attached to the velum or the 

glottis. Moreover, PMA provides very little information about the voicing because, similarly, no magnet 

is attached to the vocal folds.  

Next, we evaluated the intelligibility of the speech generated by our system. Despite the limitations of 

the current PMA system for detecting some speech sounds, we found that the speech generated by our 
system was fairly intelligible: 75% intelligible (i.e. 75 out of 100 words are correctly identified) on average 

for all subjects in our database, but yielding 92% intelligible for a particular subject. It is worth pointing 

out that, in addition to the accuracy of the articulatory-to-speech mapping, for a normal conversation 

other factors come into play. For instance, contextual information is known to be beneficial to 



disambiguate possible word meaning confusions. Visual clues (e.g. lip reading), which the participants 

in our listening test did not have access to, are also of considerable help in following a conversation.  

Our results indicate the potential of the technology described in this work to be used for restoring the 

voice to laryngectomees. Before this could be achieved, several problems have to be addressed in 

future investigations. First, the magnets would need to be implanted for long-term usage as the current 

medical glue used to attach the magnets last 1-2 hours approximately. Second, the current system relies 

on the availability on parallel articulatory and speech data for training the deep models, but it may not 
be possible to obtain such a data always (e.g. if the patient has already lost the voice). In such a case, 

it might be possible to obtain the parallel data by asking the patient to mime to another voice while 

wearing the magnets implanted. Finally, improving the estimation of the speech prosody would also 

need to be addressed in future work. 

Conclusions 

In this work we have described a system which generates speech acoustic from lips and tongue 

movement. Our focus is to help laryngectomy patients to speak again. In comparison with other methods 

to restore speech, our technology is unobstrusive and produces speech which sounds as the person’s 

own voice. Results for healthy subjects demonstrate the feasibility of this approach. In future work we 

will investigate the application of our system to real laryngectomy patients. 
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Subject No. of sentences Minutes of data 

F1 353 20 

F2 432 22 

M1 420 22 

M2 470 28 

M3 509 26 

M4 519 35 

Table 1. Amount of data recorded by each subject. 

  



 Word correct (%) Word accuracy (%) 

Average 74.81 ±4.54 73.49±4.66 

Best 92.00±3.41 91.53±3.57 

Table 2. Results of the listening test for speech intelligibility. Average denotes the average intelligibility 
results over all subject and best denotes the results obtained for the most intelligible subject (M4). 95% 
confidence intervals are presented for each measure. 

 


