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Abstract

This paper addresses the problem of feature compensation in
the log-spectral domain for speech recognition in noise by re-
casting the speech distortion problem as an occlusion one. The
usual non-linear mismatch function that represents the speech
distortion due to additive noise can be reasonably well approxi-
mated by the maximum of the two mixing sources (speech and
noise). Using this approximation, we propose to enhance the
degraded speech features by means of a novel minimum mean
square error (MMSE) estimator. The resulting technique shows
clear similarities with soft-mask missing-data (MD) reconstruc-
tion, although the experimental results on both Aurora-2 and
Aurora-4 databases show the effectiveness of the proposed tech-
nique in comparison with MD.

Index Terms: Feature compensation, MMSE estimation, Miss-
ing data imputation, speech recognition

1. Introduction

Automatic speech recognition (ASR) systems are currently
moving from close-talk dictation tasks to mobile scenarios in
which ASR is used as a more efficient and natural method to
access information. In these scenarios, a number of sources of
distortion such as different environmental noises, channel dis-
tortions, and room responses could affect the performance of
these systems. Consequently, accomplishing noise robustness
is becoming a key issue to make ASR deployable in real world
conditions.

Traditionally two different approaches has been considered
to minimize the mismatch produced by the noise [1]: feature
compensation, which tries to remove the noise from the param-
eters representing the speech, and model adaptation, where the
acoustic model parameters are modified to better represent the
operating conditions. Feature compensation has the advantage
that it can be seamlessly incorporated into existing systems as
a front-end. Moreover, it is usually more efficient than model
adaptation.

In this paper, a novel feature compensation technique work-
ing in the log-spectral domain is proposed. In this domain,
speech distortion caused by additive noise can be considered
as an occlusion problem: while some log-spectral speech fea-
tures are almost unaffected by the noise, other are completely
masked by it. To estimate the masked features, a minimum
mean square error (MMSE) estimator using a Gaussian mixture
model (GMM) to represent the distribution of clean speech fea-
tures is derived in Section 2 of this work. As will be shown, the
proposed estimator effectively tackles the occlusion problem by
computing a linear combination of the observed feature (non-
occlusion case) and a partial estimate obtained for the case of
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total occlusion. The analogies and differences of the proposed
reconstruction technique with other similar approaches are dis-
cussed in Section 3. Experimental results for the Aurora-2 and
Aurora-4 databases are reported in Section 4. Finally, conclu-
sions can be found in Section 5.

2. Proposed reconstruction technique

Lety = (y1,92,-.-.,Yn) be the feature vector corresponding
to the observed log-Mel filterbank energies for noisy speech.
This vector is related with the unknown vectors @ and n, corre-
sponding, respectively, to clean speech and additive noise log-
Mel filterbank energies, through the following model [2],

yi =i+ log (1+€™7") + 7y, (1)

where r; is a residual term that depends on the phase relation-
ship between clean speech and noise. Making the usual assump-
tion that r; is negligible compared to the other terms in (1), the
above model can be simplified as follows,

¥i ~ max(zi, n;), 2)

where the log-max approximation has been considered to fur-
ther simplify the model (i.e. log(e® + €™) = max(z,n)) [3].

We will refer to (2) as the noise occlusion model. According
to this model, the noise distortion involves that some spectro-
temporal regions of the original clean speech are completely
lost, while others remain almost unaffected. In this work, we
will use this fact to estimate the clean speech features masked
by noise. To do so, the redundancy and sparseness of speech
signals will be exploited.

In order to compensate for the effects of noise, the MMSE
criterion is adopted in this work. Thus, the MMSE estimate of
the clean feature vector can be computed as,

& = Blaly) = [ o (aly) da. )

As a first step to obtain the posterior distribution in (3), we
assume that the clean speech feature distribution can be mod-
eled using a GMM M x as follows,

M
p(@ldx) = Y- PNy (zipk, =), @)
k=1

where ;L];( and 3% are the mean vector and covariance matrix
of the kth component in the GMM.

We also consider that, for every time instant, the noise spec-
tra can be estimated. Note that this is the usual assumption



made by both feature compensation and speech enhancement
techniques. Moreover, it is assumed that a (diagonal) covari-
ance matrix is also available for every estimate, so that the un-
certainty of noise estimation can be accounted for. Hence, the
noise is assumed to be Gaussian distributed as follows,

p(n|)‘N):NN(NN72N)7 (©)

where A\ is the noise model and the time dependency is omit-
ted for the sake of simplicity.

Using (4) and (5), the posterior p(xz|y) = p(x|y, Ax, An)
in (3) can be obtained by marginalizing over the Gaussian com-
ponents of the clean speech GMM as follows,

M
p(@ly, Ax, An) = > p(@ly, k, Ax, Av) P (Kly, Ax, An) .

k=1
(6)

Applying (6) to (3), the MMSE estimate becomes

M
50:ZP(kly,AX,AN)/:vp(wlyvk,/\x,/\zv)dw (7)
k=1

Elz|y,kAx,AN]

As can be seen, the MMSE estimate requires the compu-
tation of the posterior P(k|y, Ax, An) and the partial estimate
Elz|y, k, Ax, An] for every Gaussian component k. Let us
first consider the computation of the posterior probability. Us-
ing Bayes’ rule, we obtain:

p (y‘k, )‘X7 AN) P(kp‘x)
w=r P WK e ) P D)
)
where speech and noise are assumed to be statistically indepen-
dent. Furthermore, by assuming independence among features,
p(ylk, Ax, An) in (8) can be expressed as

P (ylk, Ax, An) = [ [ o (wilk, Ax, An)- ©)
=1
The value of p(y;|k, Ax, An) can be obtained by marginal-
izing p(xs, ni, yi|k, Ax, An) over those values of x; and n; that
satisfy the occlusion model in (2), i.e. max(x;,n;) = y;. Thus,
this probability can be obtained as,

p(Yilk, Ax, An) = //p(:vi,m,y¢|k,)\x,/\1v)dxidm.
(10)
Assuming again independence between speech and noise,
the probability distribution in (10) can be factorized as the prod-
uct of the three following terms,

p (@i, ne, yilk, Ax, An) = p (yilzi, ni) p (zilk, Ax) p (ni An)
(11)
where we have considered that y; is statistically independent of
the models A x and An provided that z; and n; are known.
Taking into account the noise occlusion model in (2),
p(ys|xi, n;) is given by,

p (yilwi, ni) = 0 (yi — max (i, 1))
=0(yi — i) Ln;<a, + 0 (¥i — 1) Lay<n, (12)
with §(z — a) being the Dirac delta function translated to a,

and 1¢ is the usual indicator function being equal to 1 for those
values that satisfy the condition C, and O otherwise.

Finally, using (11) and (12) into (10), results in the ob-
servation probability shown in (13) (next page), where ®(-) is
the Gaussian cumulative distribution function (CDF). As can
be seen, the resulting equation is the same as that proposed
by Varga and Moore in [3] to perform speech recognition in
noise. Nevertheless, while Varga and Moore propose a 3-
dimensional Viterbi algorithm to decode speech over separate
hidden Markov models (HMMs) for speech and noise, a feature
compensation technique is proposed here.

Once the derivation of the posterior probability in (7) is
completed, we will tackle the computation of the expectation
term in the MMSE estimate. Assuming again independence
among features, this term corresponds to the following integral,

E [xilyi, k, Ax, AN] :/lfip(myuk,kx)\zv)dm, (14)

where the probability can be obtained through marginalization
over the hidden noise variable n;:

P (@slyi, ks Axs Aw) :/p(xi7ni|yi,k,Ax7AN)dm. (15)

Applying Bayes’ rule, p (i, ni|ys, k, Ax, An) can be ex-
pressed as,

(yilmi, na) p (Ta]ky Ax) p (na] Aw)

p
sy A Av) = P (lF Ax, )

(16)
where p(y;|xi,n;) is given by (12) and p(y:|k, Ax, An) by
(13).

Then, using (15), (16) and (12), the expected value in (14)
becomes that in (17) (next page), where we introduced the
weights w? being defined as,

ok — p (yilk, Ax) [Y p(ni|An) dn
o p (yilk, Ax, An)

(18)

and /1’)““ is the mean of a right-truncated Gaussian distribution
taking values within the interval (—oo, y;]. This value can be
obtained as [4],

. 1 i
N§(,i =~ / zip (x| k, Ax ) dx;
Yi~HlXx,i —o0
X,
NX (yto:x’i)
X,i
= N?{,i - Ul)c(,i7~ (19)
@ <yr#’§“>
X,

The resulting estimator in (17) has a clear interpretation as
a linear combination of two terms. The observation in the first
term, y;, corresponds to the clean speech estimate for the case
of undistorted speech. The second term, [L};(,i, is the estimate
when the speech is completely masked by noise. In this situa-
tion, the estimate computed for each Gaussian is the expected
value between —oo and the upper bound constraint imposed by
the observation y;. Both terms y; and ﬁ’)“(’i are weighted by
the probabilities wf and 1 — wf, corresponding, respectively,
to the probability of speech being unaffected by noise and the
probability of total occlusion.
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3. Comparative discussion

We can find in the literature several other feature compensa-
tion techniques based on the noise occlusion model in (2) that
are similar to the proposed log-spectral reconstruction method.
In this section, we will analyze the relationship between these
techniques and our proposal. In particular, we will focus on the
missing-data approach to spectral reconstruction [5, 6, 7].

Missing-data techniques assume that knowledge about the
feature reliability is available a priori through a binary mask m.
In this mask the undistorted clean speech features (reliable fea-
tures) are represented by m; = 1, while the occluded features
(unreliable or missing features) are represented by m; = 0. Us-
ing this information, the conditional probability in (12) for the
missing-data techniques is,

P (yilwi, ni) =mid (yi — @) Ly <o+
(1 —ml)é (yl —ni) ]1951'<ni' (20)

We define s, and s,, as the sets containing the frequency in-
dexes corresponding to reliable and unreliable features, respec-
tively. Then, substituting (10), (11) and (20) into (9), the obser-
vation probability p(y|k, Ax, An) employed by the missing-
data techniques can be obtained as,

p ik Ax av) = T pwilk, AX/ p(nilAn) dn;

1€ES,
i
< [T pwlAn) / p(z|k, Ax) dz;
JESu
= Hp (yilk, Ax) H / p(zjlk, Ax) dz; 21
i€Esy JESy
with
= H/ pulw)dn [T pwiiv). @2
i€sy JESu

As can be noted, v can be considered as a constant value
since it depends only on the noise model A . Thus, it does not
affect to the computation of P(k|y, Ax, An) in (8) and, hence,
it can be discarded from (21).

Proceeding in the same manner as for the derivation of
(21), it is easy to see that the expectation in (7) obtained by
the missing-data approach is given by,

s — yi  omi=1
E[xz\yz,k,)\XM\N]*{ [ﬂj(l m; =0 23

By comparing the estimation formulae of the missing-data
approach (eqns. (21) and (23)) with those obtained for the pro-
posed reconstruction (eqns. (9), (13), and (17)), an important

[Clean 20dB 15dB 10dB 5dB 0dB -5dB[Avg. RI1%

Baseline|99.11 97.29 92.55 75.56 42.82 22.69 12.92166.18 -
Oracle [99.11 99.01 98.74 97.84 95.72 89.64 73.79|96.19 45.34
BMD |98.88 97.45 95.32 90.01 78.47 54.99 25.55|83.25 25.79
SMD |98.91 9791 96.32 91.74 79.77 55.30 26.20|84.21 27.24
SRO [98.91 98.08 96.69 92.77 82.18 58.76 27.21|85.70 29.49

Table 1: Word accuracy results (%) for Aurora-2 at different
SNRs.

difference can be observed. While the use of a binary mask
in the missing-data approach involves a hard decision, i.e. the
features are considered either reliable or completely masked, a
soft decision is implemented in our approach by exploiting the
probabilities of feature occlusion. Hence, it is expected that our
technique will be more resilient to errors in noise estimation or,
alternatively, errors in the estimation of the missing-data masks,
than the missing-data approach.

To overcome the limitations of the binary masks, the use of
soft masks has been also considered for missing-feature recon-
struction [8, 9]. Instead of performing a binary classification
of the features according to their reliability, a confidence value
m; € [0,1] is now assigned to every feature. Then, using soft
masks, p (yi|k, Ax, An) in (9) is computed as follows [8],

Yi

p (il Axs Aw) = map (yiwc,Ax)/

— o0

p (ni|An) dni

Yi

+(17m¢)p(yi|/\1\z)/ p(lﬂk’,kx)dmi 24)

oo

and the estimate for each Gaussian component is,
~k
=mqyi + (1 —mq) fix i (25)

As can be seen, the resulting missing-data technique us-
ing soft masks turns out to be very similar to the proposed re-
construction technique. Nevertheless, the proposed technique
requires no a priori knowledge about the feature reliability. In-
deed, our technique can be alternatively considered as a robust
technique for soft mask estimation, in which the confidence val-
ues for every feature are computed as,

E [Ii‘yi7k7>‘x7 )‘N]

M
m; = Y P (kly, Ax, An) wf (26)

k=1

with w¥ being computed according to (18).

4. Experimental results

The proposed technique was evaluated on Aurora-2 [10] and
Aurora-4 [11] databases. Aurora-2 consists of utterances of En-
glish connected digits distorted by noise. Three tests sets are



[T—Ol T-02 T-03 T-04 T-05 T-06 T-07 T-08 T-09 T-10 T-11 T-12 T-13 T-14 [ Avg. RI%
Baseline | 87.69 75.30 53.24 53.15 46.80 56.36 4538 77.04 64.24 4530 42.07 36.15 47.43 36.67|54.77 -
Oracle |87.69 86.74 84.46 84.44 83.19 8590 82.38 79.13 77.86 74.03 73.45 70.48 75.04 71.77|79.75 45.61
BMD |86.96 80.78 58.47 52.74 59.63 56.14 61.42 79.39 74.13 54.83 46.76 50.55 51.26 56.17|62.09 13.36
SMD |[87.52 83.65 66.62 63.78 63.48 69.19 6531 81.00 75.64 60.98 55.02 54.89 62.39 57.74|67.66 23.52

SRO | 87.54 83.28 69.23 64.49 64.88 70.63 66.93 80.52 76.48 63.53 55.67 56.62 63.87 60.38|68.86 25.72

Table 2: Word accuracy results (%) for the different test sets of Aurora-4.

defined: Set A, Set B, and Set C. Set A and Set B employs eight
different types of additive noise at 7 signal-to-noise ratio (SNR)
values. Set C employs only two types of additive noise and also
considers a different linear filtering distortion. For the Aurora-4
large vocabulary database, 14 test sets are defined. In the first
seven sets (T-01 to T-07), six different noise types are consid-
ered (T-01 is the clean condition) with SNR values between 5
dB and 15 dB. The last seven sets are obtained in the same way,
but the utterances are recorded with different microphones than
the one used for recording the training set. For both databases,
the acoustic models are trained with the usual scripts provided
with the databases using clean speech.

The speech features employed by the recognizer are 13
Mel-frequency cepstral coefficients (MFCCs) (CO is used in-
stead of the log energy) along with their delta and delta-delta
coefficients. Spectral reconstruction is applied to the 23 log-
Mel filterbank channels. After reconstruction, the discrete co-
sine transform (DCT) is used to obtain the final cepstral parame-
ters. Cepstral mean normalization (CMN) is applied in all cases
to increase the robustness against channel mismatches.

Spectral features are modeled using a GMM with 256 com-
ponents and diagonal covariances. Training is carried out by
means of the EM algorithm on the same clean dataset as for
acoustic model training. Noise estimates are obtained for ev-
ery time instant through linear interpolation of initial noise es-
timates computed by averaging the first and last frames of each
utterance (20 frames for Aurora-2 and 35 frames for Aurora-4).
A fixed time-invariant diagonal covariance is assumed for all
the noise estimates. This covariance is also computed from the
first and last frames of the utterance.

For comparative purposes, both binary-mask and soft-
mask missing-data approaches described in Section 3 are also
tested. The binary masks are obtained from the aforementioned
noise estimates using a fixed SNR threshold of 0 dB for both
databases. The soft masks are obtained from the noise estimates
using (26).

Table 1 shows the word accuracy results (WAcc) for the
Aurora-2 database. This table compares the baseline system
(MFCC features plus CMN) with four reconstruction tech-
niques: the missing-data reconstruction technique using per-
fect knowledge about the feature reliability (Oracle), the same
technique using estimated binary masks (BMD), the soft-mask
missing-data approach (SMD), and the proposed spectral recon-
struction technique based on the occlusion model (SRO). The
results from the three test sets are averaged for each SNR. In
addition, the result from an overall average between 0 dB and
20 dB (Avg.) and the relative improvement (R.I.) regarding the
baseline are also shown for every technique.

Spectral reconstruction with perfect knowledge about the
feature reliability (Oracle) yields the best results. Hence, this
can be considered as an upper bound for the performance of
the techniques derived from the occlusion model in (2). When
noise is estimated, the performance of these techniques suffer
a degradation. Nevertheless, SRO presents a better robustness
than BMD and SMD to noise estimation errors. For BMD, this
difference can can be explained by the use of binary masks.

Thus, in case of mask estimation errors, unreliable features
could be identified as being reliable and vice-versa. In the first
case, unreliable features will be kept untreated. In the second
case, the reliable features labeled as unreliable will be replaced
and, hence, a greater error will be obtained. In SMD, the use
of both soft masks and a noise distribution as shown in (24) is
somehow redundant, resulting in a poorer performance.

Table 2 shows the results for the Aurora-4 database. Again,
SRO outperforms BMD and SMD, yielding average relative im-
provements of 10.90 % and 1.77 % regarding both techniques,
respectively.

5. Conclusions

In this work, a novel technique for compensating log-spectral
features distorted by additive noise has been proposed. This
technique is based on a simplification of the noise distortion
model that only considers features as reliable or completely
masked by noise. Experimental results show the effectiveness
of our proposal in compensating the noise effects.
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