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Abstract—This work deals with the issue of the spoofing attack
identification required for secure automatic speaker verification
(ASV) systems. This topic has received increased attention in
recent years and, accordingly, a number of countermeasures has
been developed. Despite these anti-spoofing techniques have been
successfully applied in clean scenarios, it has been shown that
they perform poorly in noisy environments. In this work, we aim
at improving the performance of anti-spoofing detection for ASV
in noisy scenarios. To achieve this, we first propose the use of
Gated Recurrent Convolutional Neural Networks (GRCNNs) as
a deep feature extractor to robustly represent speech signals as
utterance-level embeddings, which are later used by a back-end
recognizer for performing the final genuine/spoofed classification.
Then, to further enhance the robustness of the system in noisy
conditions, we propose the use of signal-to-noise masks (SNMs)
along with the deep model. These masks inform the deep
feature extractor about the regions of the input spectrogram-
based features that are mostly affected by noise and, hence,
should be neglected when computing the embeddings. To evaluate
our proposals, experiments were carried out on the clean and
noisy versions of the ASVspoof 2015 corpus. The experimental
results show that our proposal clearly outperforms other methods
recently proposed such as the popular CQCC + GMM system
or other similar deep feature based systems for both seen and
unseen noisy conditions and, even in clean conditions.

Index Terms—Spoofing detection, noise robustness, speaker
verification, deep learning, signal-to-noise masks.

I. INTRODUCTION

AUTOMATIC Speaker Verification (ASV) aims to au-
thenticate the identity claimed by a given individual

based on the provided speech samples [1]. In recent years,
this technology has gained an increased interest due to its
commercial applications. As the importance of this technology
grows, so does the concerns about its security. In ASV,
an impostor could gain fraudulent access to the system by
presenting speech resembling the voice of a genuine user.
Four types of spoofing attacks have been identified [2]: (i)
replay (i.e. using pre-recorded voice of the target user), (ii)
impersonation (i.e. mimicking the voice of the target voice),
and, also, either (iii) text-to-speech synthesis (TTS) or (iv)
voice conversion (VC) systems to generate artificial speech
resembling the voice of a legitimate user.

The main problem which is present in all anti-spoofing
systems is that they have to be trained considering only a
finite number of spoofing attacks despite the fact they may
be exposed to other attacks in the evaluation phase, as it has
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been planned in the popular logical access spoofing detection
challenge ASVspoof 2015 [3]. Thus, it is desirable that the
system learns to detect not only the attacks observed in
the training dataset, but also how to generalize to unseen
attacks. To address this issue, deep feature extraction has been
proposed in [4], where features are extracted from an inner
layer of a deep neural network to represent every temporal
frame of the voice signal, or even the whole utterance.

In recent years, deep neural networks have shown to be
very effective for feature engineering in several speech-based
applications, such as speech recognition [5], speech synthesis
[6], speaker verification [7] and spoofing detection [8]. Their
nonlinear modeling and discriminative capabilities make them
not only a powerful back-end classifier [9], [10], but also
advantageous for feature extraction [11]. The architecture of
these deep feature extractors has shown to be determinant
for the performance of the anti-spoofing system. Depending
on the architecture employed, we can differentiate two types
of deep features: (i) frame-level, and (ii) utterance-level (or
spoofing identity vectors). Moreover, the nature of the speech
features which are fed into the deep feature extractor can also
determine the whole performance of the anti-spoofing system
[12], [13]. Thus, we can find in the literature three types
of speech features which have been successfully applied to
spoofing detection: (i) magnitude based spectral features [14],
(ii) phase based spectral features [15], and (iii) raw speech
samples [16].

The extraction of deep features (embeddings) at a frame
level has demonstrated to be effective in ASV [17] and spoof-
ing detection [18]. Fig. 1 shows the diagram of a common anti-
spoofing system based on frame-level deep feature extraction.
Fully-connected deep neural networks (DNN) and convolu-
tional neural networks (CNN) were used in [19] to obtain
frame-level deep features, showing that convolutional layers
have a powerful ability for detecting the artifacts produced by
the speech vocoders used in TTS/VC systems even in noisy
acoustic conditions, as they can be seen as filter banks whose
filters are optimized for the specific task of spoofing detection
[20].

These frame-level features must be combined into a sin-
gle identity vector which characterizes the utterance. There
are several ways to combine them, such as averaging [21],
attentive statistics pooling [17], or the use of recurrent neural
networks (RNNs) [8] as illustrated in Fig. 1. There is a
mounting evidence that recurrent neural networks are powerful
at extracting discriminative features to capture the temporal
artifacts in the spoofed speech. For instance, in our previous
work [8], we showed that an RNN, with cells based on
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Fig. 1. Extraction of frame-level deep features and utterance-level identity
vector for spoofing detection. Here, we consider 3 methods to extract the
utterance-level identity vector from frame-level deep features: average (left),
spectral statistics (middle), and recurrent neural network (right).

gated recurrent units (GRU), was able to model the long-
term dependencies of the consecutive frame-level deep feature
vectors for spoofing detection. Also, Long Short Term Memory
networks (LSTMs) [21] and a combination of CNNs and
recurrent neural networks (RNNs) [22] have been already
successfully applied to extract utterance-level deep features.

Once the spoofing identity vector of the utterance has
been extracted, a classifier must be used to decide between
genuine and spoofed speech. Choosing a reliable classifier is
particularly important given the unpredictable nature of the
attacks in a practical system (it is unknown what kind of attack
the perpetrator may use to access the verification system). The
classifier must be selected accounting for the dimensionality
and characteristics of the features. Standard classifiers such
as Gaussian Mixture Models (GMMs), Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVMs) are
often employed for this task.

While research on anti-spoofing has been mainly focused
on systems operating on clean conditions, little work has been
carried out considering the noise likely present in realistic
situations. Although noise will be, in general, a cause for
performance degradation, its effect varies according to the
type of attack. Thus, replay recordings made in high noise
conditions (noisier than bona fide speech) pose a lower threat
to ASV than the recordings made in low noise conditions
[23], so that high noisy replayed speech should be detected
with relative ease. The noise introduced by the playback
and recording devices may be even helpful to detect replay
attacks and cannot be easily separated from the noise present
in the acoustic environment. On the other hand, as shown
in [24], VC/TTS spoofing countermeasure systems trained
with clean speech perform poorly in noisy conditions and
their performance decreases rapidly as the signal-to-noise ratio
(SNR) worsens. This lack of robustness will be one of the main
motivations of this work.

One of the first studies about the impact of noise on anti-
spoofing systems was carried out in [25], where the robustness
of several front-end features were evaluated under different
noisy conditions. In [24] an anti-spoofing system based on
neural networks was trained using different front-end features
and tested under five additive noises and reverberant condi-
tions. Also, [19] showed that deep feature extractors improve
significantly the noise robustness of the spoofing detector
when multi-condition training is used, since the nonlinear
modeling capability of neural networks allows to learn features
which are more invariant to the effects of noise. Furthermore,
[19] also proposed the use of the mean noise vector, being
justified as a mean to provide useful information about the
noise to the neural network. More recently, we proposed to
extend the deep feature extractor with information about the
distorsion level of each temporal frame of the signal [8].

The search of solutions for the issues mentioned above is
the main motivation of this work, whose major contributions
can be summarized as follows:

1) Gated Recurrent Convolutional Neural Network: We
propose the use of a new architecture which introduces several
convolutional layers inside a gated recurrent unit (GRU) based
RNN. Our goal is to combine the ability of the convolutional
layers for extracting discriminative features at frame level with
the capacity of RNNs for learning long-term dependencies
of the subsequent deep features. The architecture is called
Gated Recurrent Convolutional Neural Network (GRCNN),
and although similar deep learning frameworks have been
applied in learning video representations [26], audio tagging
[27] and optical character recognition [28], to the best of our
knowledge, this is the first time that this type of neural network
is adapted to spoofing detection.

2) Combination of magnitude and phase spectrum: Typi-
cally, TTS and VC systems employ a vocoder which may in-
troduce artifacts in both the magnitude and phase spectrums of
the reconstructed signal. Most antispoofing systems use either
only one type of features or a fusion of systems employing
different types of features [25]. To take into account both
the amplitude and phase information of the speech spectra,
we propose the combination of magnitude and phase based
features to feed the GRCNN. To the best of our knowledge,
optimizing a single anti-spoofing system which is fed with
both magnitude and phase based features has not been ex-
plored yet.

3) Signal-to-Noise Masks: To enhance the robustness of
the anti-spoofing system against noise, we propose a new
technique for estimating masks based on a deep learning
framework. In a previous work [8], we demonstrated that
applying classical SNR-based masks [29], [30] for spoofing
detection obtain the best state-of-the-art results in noisy sce-
narios. Here, we improve the estimation of signal-to-noise
masks by means of deep learning techniques.

II. GATED RECURRENT CONVOLUTIONAL NEURAL
NETWORK

In this section we describe the details of the GRCNN
architecture for spoofing detection. Based on our previous
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Fig. 2. Block diagram of the proposed utterance-level spoofing identity vector
extractor. It consists of a Gated Recurrent Convolutional Neural Network
(GRCNN) which processes the spectral features of a context of W consecutive
frames in each time step through the N recurrent layers. The utterance has
T temporal frames and the training set of the speech corpus has K spoofing
attacks.

work [8], our hypothesis is that introducing the convolutional
layers of a CNN inside the cell of a recurrent neural network
strive to: (1) extract discriminative features at frame level, (2)
learn long-term dependencies, and (3) integrate the extraction
of frame-level deep features and the utterance-level identity
vector into a single network.

An RNN can process a sequential input with possibly
variable lengths. It defines a recurrent hidden state whose ac-
tivation at each time is dependent on that of the previous time.
Specifically, given an input sequence X = (x1,x2, ...,xT ), the
RNN hidden state at time t is defined as ht = φ(ht−1,xt),
where φ is a nonlinear activation function. Typical RNN
architectures are the Long Short Term Memory (LSTM) [31]
and the Gated Recurrent Unit (GRU) [32], which shows
similar performance to LSTM but with lower memory and
computational requirements [33]. In our work, we will use
GRU structures as the basis for the GRCNN.

Unlike the RNN architectures mentioned above, the hidden
state ht of a GRCNN model is computed by convolving the
current input features xn

t and the previous state hn
t−1 with

multiple convolutional filters (n = 1, ..., N stands for the index
identifying the network layer as remarked later in this section).
Taking into account that most of the cues that enable the
detection of spoofing attacks can be found in certain frequency
bands [34], we embed such a prior in our neural network
architecture by replacing the fully-connected operations in the
GRU with convolutions. This has the potential advantage that
more discriminative features can be extracted at the frame level
[19].

The proposed feature extractor is shown in Fig. 2. At each
time step, the GRCNN is fed with the set of spectral features
corresponding to a context window of W frames. Therefore,
the number of steps of the GRCNN is T −W , where T is the
number of frames of the utterance being processed. Moreover,
the GRCNN has N consecutive layers. This architecture acts
as a classifier whose task consists of determining whether
the utterance is either genuine or belongs to one of the K

Fig. 3. Gated recurrent convolutional unit cell (GRCU) of the first recurrent
layer. The input is 2-dimensional and may include several channels. The output
consists of M 2-dimensional feature maps, which are passed to both the next
layer and next step of the GRCNN.

spoofing attacks of the training set (S1, S2, ..., Sk). In order to
do this, a fully connected layer is connected to the output of
the last time step, followed by a softmax layer which contains
K+1 neurons (one per class: genuine, S1, S2, ..., Sk). In fact,
the state of the last time step represents the spoofing identity
vector of the whole utterance.

Our GRCNN cell contains three different gates where each
one includes 2 different single-layer convolutional nets with
M filters in parallel. Each time step of the GRCNN plays the
role of a frame-level deep feature extractor providing N state
(feature) vectors for each context window of W consecutive
frames, which are passed to the next time step of the GRCNN.
The unit cell of each layer of the GRCNN is a gated recurrent
convolutional unit (see Fig. 3; only first layer is shown), which
applies a total of 6 convolution operations (4 for computing
the update and reset gates, and 2 for computing the candidate
activation). This results in an output volume yn

t of [F,W,M ],
where F is the number of frequency bins considered for the
spectral features. After a max-pool downsampling, every yn

t

is fed into the following layer as xn+1
t (details provided in

Section IV).
The update gate at time step t, which is computed as

znt = σ(Wn
z ∗ xn

t +Un
z ∗ hn

t−1), (1)

determines which information from the previous frames needs
to be passed along the next steps, avoiding the risk of the
vanishing gradient problem [35]. The operator ∗ denotes a
convolution operation. Similarly, the reset gate

rnt = σ(Wn
r ∗ xn

t +Un
r ∗ hn

t−1) (2)

is used to decide whether or not to forget some information
from the previous frames. These convolutional layers can be
interpreted as filter banks which are trained and optimized to
detect artifacts from the spoofed speech. The main advantage
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Fig. 4. Convolutional neural network for the estimation of the signal-to-noise
ratio for each time-frequency bin. The utterance noise mean is concatenated
with the output of the convolutional layers as a noise reference.

of employing these filters is the extraction of frame-level
features at every time step which are more discriminative than
those extracted by using fully connected units [22]. Finally,
the third gate is the update activation,

h̃n
t = δ(Wn

h ∗ xn
t +Un

h ∗ (rnt � hn
t−1)), (3)

which uses the reset gate to store the relevant information from
the past frames, removing firstly the non-relevant information
through an element-wise multiplication with the previous
state. In these equations, the functions σ(·) and δ(·) are the
sigmoid and tangent activation functions, and � denotes an
element-wise multiplication. The input x1

t (dimension F×W )
represents a context of consecutive spectral features at time
step t, and the model parameters Wn

z , Wn
r , Wn

h and Un
z ,

Un
r , Un

h are the convolutional filters of the 6 different single-
layer convolutional nets, which are shared in each time step
of the GRCNN.

III. NOISE ROBUSTNESS: SIGNAL-TO-NOISE MASKS

Based on the deep feature framework for spoofing detection
described in Section II, we propose a novel mask estimation
technique to increase the noise robustness. Its goal is not noise
reduction, but providing an estimation of the noise present in
each time-frequency bin to the network.

As a first step towards an increased robustness, training
a deep neural network with multi-condition data enables it
to learn features which are more invariant to the effects
of noise. In terms of feature engineering, the layers of a
deep learning framework are optimized to learn discriminative
features which are as invariant as possible for the acoustic
conditions present in the training data. However, the testing
acoustic conditions may meaningfully differ from the train-
ing ones. To overcome the mismatch between training and
testing acoustic conditions, we propose the use of signal-to-
noise masks (SNMs) in order to provide the GRCNN with
information about the amount of noise present in each time-
frequency bin of the signal spectrum. In order to do this, the
SNM will be defined as a score from 0 to 1 indicating the
relative amount of noise with respect to that of clean speech.

In our recent work [8] we proposed the use of masks, similar
to those employed by missing data techniques, for spoofing
detection, showing that this approach is better than appending
a feature vector with the averaged noise of the utterance [19].
In [8], the masks were computed from the noise estimates ob-
tained using a linear interpolation of the averaged noise spectra
of the first and last T = 10 frames of the utterance (assuming
that there is a short non-speech period at the beginning and

the end of the utterance). This approach, however, performs
poorly in highly non-stationary noise or when there is little
noise at the beggining/end of the utterance. To address this
issue, here we propose a new technique to estimate the SNR
using a deep learning framework. The proposed system is the
convolutional neural network shown in Fig. 4, whose output is
the estimated SNR of each time-frequency bin corresponding
to the frame which is being processed. The input is a context of
W magnitude mel filterbank features (computed as indicated
in [36] for the FE standard), centered at the frame being
processed. Furthermore, the mean noise of the utterance, which
is calculated averaging the first T = 10 frames, is concatenated
with the output of the convolutional layers. This way, instead
of providing the mean noise to the input of the CNN, we
combine the advantages from the topographical feature based
CNN and the assistance of the mean noise reference.

In the training phase, the instantaneous SNR target which
is presented to the CNN for each temporal frame computed
as,

SNR(t, f) = 10 ∗ log10

(
X(t, f)

N(t, f)

)
, (4)

where the tuple (t, f) represents the time-frequency bin, and X
and N are the (linear) filter bank outputs of the clean speech
and noise, respectively1. To obtain the signal-to-noise mask
target, this SNR is compressed in the range [0, 1] using a
sigmoid function centered at 0 dB:

mk =
1

1 + e−SNR(t,fk)
. (5)

The criterion used to train the CNN is the Binary Cross
Entropy (BCE) between the target mk and the output zk of
the network, that is,

Loss =
F∑

k=1

mk · log(σ(zk))+(1−mk) · log(1−σ(zk)), (6)

so that each frequency bin contributes equally to the loss
function. Therefore, the mask mk has the meaning of a SNR
compressed in the interval [0, 1]. The use of the BCE function
deserves some comments. First, it provides the masks with a
probability sense. Moreover, it allows us to benefit from the
power that neural networks have as statistical classifiers for the
estimation of the SNR. Fig. 5 shows an example of the ideal
mask and its estimation with the proposed technique for one
sample waveform contaminated with an additive babble noise
at 10 dB. The similarity between both masks clearly shows
the suitability of the proposed CNN for this task.

To implement the noise-aware technique based on SNMs
in the proposed GRCNN architecture of Section II, a second
channel is appended to the input features x1

t . Therefore, the
first layer cell units of the GRCNN are fed with two input
channels (total dimension 2 × F ×W ): (i) spectral features,
and (ii) signal-to-noise mask. Thus, this training method has

1Note that filter bank outputs are managed here in a linear scale while they
will be processed by the network in the logarithmic scale.
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Fig. 5. Estimation of a noise mask for babble noise (SNR = 10 dB):
(a) original clean voice, (b) babble noise of 10 dB, (c) distorted voice with
additive babble noise of 10 dB, (d) ideal noise mask, (e) estimated mask.

the advantage of optimizing the model parameters taking into
account the reliability of every time-frequency bin.

IV. EXPERIMENTAL FRAMEWORK

In order to evaluate the performance of our proposed
techniques, the ASVspoof 2015 corpus [3], a well-known
database containing data from different TTS and VC spoofing
attacks, was employed. Also, a noisy version of this corpus
[24] was also used to evaluate the robustness of the different
proposals against noise. The detection of replay attacks is
not covered in this work, since the noise introduced by the
playback and recording devices may be even helpful to detect
replay attacks. Details about the methodology followed for
training and testing are given in this section.

A. Speech Corpus

As mentioned, we conducted experiments on two databases:
(a) the automatic speaker verification spoofing 2015
(ASVspoof 2015) database, which contains TTS and VC based
attacks in clean acoustic conditions; and (b) a noisy version of
the ASVspoof 2015 corpus, which was artificially generated
distorting the original signals with different noise types.

1) ASVspoof 2015 Clean Corpus: The clean ASVspoof
2015 corpus [3] is a standard data corpus for research on
spoofing detection. It defines three data sets (training, devel-
opment and evaluation), each one containing a mix of genuine
and spoofed speech. The structure of these three data sets are
shown in Table I. There is no overlap between speakers across
training, development and evaluation sets.

Spoofing attacks were generated either by speech synthesis
(TTS) or voice conversion (VC). A total of 10 types of
spoofing attacks (S1 to S10) are defined: three of them are
implemented by using speech synthesis (S3, S4 and S10),
while the remaining seven ones (S1, S2, S5, S6, S7, S8 and
S9) by means of different voice conversion systems. Attacks
S1 to S5 are referred to as known attacks, since the training

TABLE I
STRUCTURE OF THE ASVSPOOF 2015 DATA CORPUS [3]

Subset
# Speakers # Utterances

Male Female Genuine Spoofed

Training 10 15 3750 12,625
Development 15 20 3497 49,875

Evaluation 20 26 9404 184,000

and development sets contain data for these types of attacks,
while attacks S6 to S10 are referred to as unknown attacks,
because they only appear in the evaluation set. More details
about this corpus can be found in [3].

2) ASVspoof 2015 Noisy Corpus: To evaluate the robust-
ness of our system against noise, the noisy version of the
ASVspoof 2015 corpus was also employed. This version was
generated by artificially distorting the signals in the original
clean corpus with different noise types at various signal-to-
noise ratio (SNR) levels.

A total of 5 additive noise types (white noise, babble, volvo,
street and café) were added to the clean signals at three SNR
levels (20, 10 and 0 dB). Three reverberant scenarios were
also considered by convolving the clean signals with three
room impulse responses (RIR) with different T60 values (0.3,
0.6 and 0.9s). Thus, in total, 18 different noisy conditions
(15 additive noises and 3 reverberant conditions) were finally
considered.

As suggested in [19], data in the noisy corpus was divided
into seen and unseen conditions for further realism. The seen
condition consists of white, babble and street noises, and the
3 reverberant conditions, which are present in the training,
development and evaluation datasets. On the other hand, the
unseen condition contains café and volvo noises, which are
only present in the evaluation set. Another aspect to take into
account is that white and volvo noises are stationary noises,
while babble, street and café are non-stationary. This division
allows us to analyze stationary and non-stationary noises in
both seen and unseen conditions. More details about this
corpus are given in [24].

B. System

This section details the methodology followed to train our
proposed system based on a gated recurrent convolutional
neural network:

1) Spectral analysis: Speech signals were analyzed using
an analysis window of 25 ms lenght with 10 ms frame shift.
The size of the context window is W = 31 frames, and
the number of filters used to get the spectral features is
F = 48 filters. In contrast to [19] and [21], we used a 48-
dim static spectral features (detailed below) without delta and
acceleration coefficients, since we realized that the context
window of 31 frames already covers the correlations between
consecutive frames. Therefore, a higher spectral resolution is
achieved while the size of the spectral feature vector is smaller
than in [21].

Two kinds of spectral features are extracted to feed the
network: (i) traditional log filter bank features (FBANKs) [36]
which only contain information about the amplitude of the
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Fig. 6. Proposed architecture for the extraction of the utterance-level spoofing
identity vector. Two independent gated recurrent convolutional nets extract the
magnitude and phase identity vectors, which are stacked into a single spoofing
identity vector of 960 components.

speech signal, and (ii) modified group delay features (MGDs)
[37] which carry phase-related information. The core idea
is to provide the network with both amplitude and phase
information of the utterance. In addition, signal-to-noise masks
are appended to the input features as a second channel. In the
ASVspoof 2015 clean corpus, the SNMs are not employed, as
all the utterances are completely clean. The CNN presented
in Section III for SNMs estimation has been trained (inde-
pendently from the anti-spoofing system) using the genuine
data from the training set of the noisy version ASVspoof
2015 corpus. To this end, the ideal or target mask of every
utterance is calculated using (4), and the optimizing criterion
is the binary cross entropy presented in (6).

2) Spoofing identity vector extraction: FBANKs and MGDs
(along with the corresponding SNMs) are processed by two
independent gated recurrent convolutional networks, and their
outputs of 480 components are stacked into one single spoof-
ing identity vector of 960 components. As shown in Fig. 6,
this identity vector is passed to a fully connected layer of 960
neurons, whose output is then passed to a softmax layer to
carry out the classification of the utterance into the genuine
class or into one of the K spoofing attacks present in the
training set. Therefore, the parameters of the two parallel gated
recurrent convolutional layers are optimized jointly, being each
set of layers specialized in processing either the amplitude or
the phase based features.

Each GRCNN has N = 2 layers where the first recurrent
layer has M0 = 16 convolutional filters of size 9 × 9 and
the second recurrent layer has M1 = 32 convolutional filters
of size 5 × 5. As shown in Fig. 3, there are 6 single-layer
convolutional nets inside each gated recurrent convolutional
unit cell, and although they have the same number of filters,
they are totally independent (do not share any weights).
Moreover, a max pooling filter of size 3×3 is applied between
the 2 recurrent layers in order to reduce the size of the deep

feature maps. In this way, the output of the first GRCNN
layer is a volume of size [16 × 48 × 31], which is reduced
to [16× 16× 10] after this max pooling operation. Then, the
second layer of the GRCNN employs 32 feature maps resulting
in an output volume of [32 × 16 × 10]. After that, a second
max pooling operation is applied to the output of the second
layer to reduce the final volume to [32×5×3]. In both pooling
layers, we employ a stride of 3 and valid padding. Finally, the
32 feature maps of size [5×3] are flattened to make up a deep
feature vector of 480 components.

3) Training setup and toolkits: The proposed deep learning
framework was trained using the Adam optimizer [38] with a
learning rate of 3 · 10−4. Also, early stopping was applied
to stop the training process when no improvement of the
cross entropy across the validation set is obtained after five
epochs. To prevent the problem of over-fitting, a fixed 30%
dropout was applied in the convolutional layers. All the
specified hyperparameters of the system were optimized using
the validation set of the data corpus. The Pytorch toolkit [39]
was employed to implement the deep learning frameworks.
On the other hand, the FBANK features were obtained using
the HTK toolkit [40] and they were normalized in mean and
variance, while the MGD features were obtained using the
Covarep toolkit [41].

4) Classifier: After the extraction of the spoofing identity
vector which represents every utterance, these can be used with
different back-end classifiers. The objective of the classifier is
to assign a score indicating whether the utterance is genuine
or spoofed. In this work, some popular classifiers in ASV are
compared for spoofing detection: (i) support vector machine
(SVM), (ii) one-class support vector machine (One-Class
SVM [42]), which is trained using only genuine speech data,
(iii) linear discriminant analysis (LDA), which projects the
spoofing identity vectors onto K−1 dimensions and uses only
the genuine class for scoring in the evaluation phase, and (iv)
its probabilistic version (PLDA).

We also performed some preliminary experiments with
a GMM classifier with unsuccessful results. This could be
potentially due to a combination of two factors: (i) curse of
dimensionality and (b) insufficient data for robust parameter
estimation, as there is only one spoofing identity vector per
utterance.

C. Performance Metric

The equal error rate (EER) is used to evaluate the system
performance. It was computed using the Bosaris toolkit [43].
As described in the ASVspoof 2015 challenge evaluation plan
[3], the EER was computed independently for each spoofing
algorithm and then the average EER across all attacks was
used. Similarly, the different noisy conditions of the Noisy
ASVspoof 2015 corpus were evaluated individually to obtain
the EER for each scenario.

V. RESULTS

This section presents an experimental evaluation of the
proposed techniques. First, section V-A evaluates the proposed
GRCNN architecture on clean conditions using the original
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TABLE II
COMPARISON OF CLASSIFIERS AND SPECTRAL FEATURES USING THE
PROPOSED GRCNN SYSTEM ON THE ASVSPOOF 2015 EVALUATION

CLEAN DATA SET OF IN TERMS OF (%) EER

Classifier Features Known
Unknown

S6 - S9 S10

SVM-One
FBANK 0.18 0.53 5.45

MGD 0.32 0.59 6.35
FBANK + MGD 0.12 0.55 4.42

SVM
FBANK 0.22 0.53 5.78

MGD 0.41 0.55 6.15
FBANK + MGD 0.18 0.46 4.21

LDA
FBANK 0.14 0.42 4.75

MGD 0.31 0.43 5.34
FBANK + MGD 0.08 0.09 3.11

PLDA
FBANK 0.06 0.33 4.45

MGD 0.26 0.36 5.12
FBANK + MGD 0.02 0.09 2.51

TABLE III
COMPARISON OF THE FUSION OF SEPARATED FBANK + GRCNN AND

MGD + GRCNN SYSTEMS WITH THE JOINT FBANK + MGD + GRCNN
SYSTEM ON THE ASVSPOOF 2015 EVALUATION CLEAN DATA SET IN

TERMS OF (%) EER

System Known
Unknown

S6 - S9 S10

Fusion Scores SVM-One 0.14 0.45 5.13
FBANK + MGD + SVM-One 0.12 0.55 4.42

Fusion Scores SVM 0.20 0.42 5.44
FBANK + MGD + SVM 0.18 0.46 4.21

Fusion Scores LDA 0.12 0.37 4.51
FBANK + MGD + LDA 0.08 0.09 3.11

Fusion Scores PLDA 0.04 0.24 4.21
FBANK + MGD + PLDA 0.02 0.09 2.51

ASVspoof 2015 corpus. Then, Section V-B is devoted to evalu-
ate the noise robustness of the system with the proposed SNMs
estimation technique on the noisy version of the ASVspoof
2015 database.

A. Architecture evaluation on clean speech

Table II shows the EER results obtained using different
input features and classifiers with the GRCNN model on the
clean ASVspoof 2015 database. The results for the known and
unknown attacks of the evaluation set are presented separately.
Moreover, the results for the unknown S10 attack are also
presented, since this is the most difficult attack to detect.

In addition to our GRCNN model using as input both
the FBANK and MGD features, we evaluated a fusion of
separated FBANK + GRCNN and MGD + GRCNN systems.
The rationale of this comparison is to determine whether the
joint FBANK + MGD + GRCNN system, as shown in Fig.
6, can exploit better the input information than a fusion. The
results of this evaluation are shown in Table III. The fusion is
performed by normalizing the individual scores to zero mean
and unit variance using the pre-computed mean and standard
variance which are estimated on the training set. Finally, the
weighted average of the two scores obtained by the individual
systems is calculated for the detection decision.

As can be seen, the best result is obtained using a PLDA
classifier and employing FBANKs and MGDs jointly as input
features. The combination of FBANK and MGD features to
feed the deep feature extractor obtains the best performance
independently of the classifier, outperforming the fusion of the
individual systems FBANK + GRCNN and MGD + GRCNN.
This can be explained by the fact that the proposed GRCNN
is optimized using the magnitude and phase information of the
signal, being able to detect different artifacts of the spoofing
attacks from correlations detected between both types of fea-
tures. In the case of only employing one type of spectral fea-
tures to feed the deep feature extractor, FBANKs outperform
MGD features independently of the classifier, although the
difference is not really significant. This indicates that although
it is important to use the magnitude of the signal spectrum to
detect spoofing attacks, the phase also provides meaningful
information about the artifacts present in the spoofed speech.

Regarding the classifiers, PLDA yields the lowest EER
independently of the input spectral features. Furthermore, LDA
outperforms SVM and SVM-One for all attacks. There are
significant differences of performance depending on the final
classifier, but in general none of these perform very poorly in
the S10 attack in comparison with the results obtained in the
challenge ASVspoof 2015.

Based on the results from Tables II and III, in the rest of
the evaluation we will use the GRCNN architecture jointly
employing both FBANK and MGD features, and a PLDA
classifier to make the final detection decision (spoofed or
genuine speech). Table IV compares the performance of our
proposal with other relevant anti-spoofing systems from the
literature in the clean version of the ASVspoof 2015 corpus.
The 4 first systems are based on deep learning frameworks,
whereas the remaining 3 systems are based on the extraction
of features specifically developed to detect spoofing attacks
(CFCC-IF [44], CQCC [45] and LTSS [46]). We can observe
that all systems achieve low EERs on the attacks S1 to S9.
The main source of error is the S10 attack, for which we can
observe meaningful differences of performance.

Compared to the deep learning based systems (Spectro +
CNN + RNN [22], Best DNN [21], Best RNN [21] and
FBANK + CNN + RNN [8]), our proposal outperforms all of
them for the known and unknown attacks. It can be observed
that the EER in the S10 attack is significantly lower than
in those systems, independently of the input features and
classifier employed. The performance for the S10 attack is only
outperformed by the CQCC + GMM and LTSS + MLP which,
to the best of our knowledge, have obtained the best overall
average performance. However, compared to these systems,
our proposal performs 0.03 and 0.07% better on average in the
known attacks, as well as 0.18 and 0.02% better on average
in the unknown S6-S9 attacks, respectively. Furthermore, we
will see in the next subsection that our GRCNN-based system
can also outperform CQCC + GMM and LTSS + MLP for
S10 attack in clean conditions when multi-condition training
is applied.
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TABLE IV
COMPARISON WITH OTHER SYSTEMS OF THE LITERATURE ON THE ASVSPOOF 2015 EVALUATION CLEAN DATA SET IN TERMS OF (%) EER

System
Known Attacks Unknown Attacks Total

S1 S2 S3 S4 S5 S1-S5 S6 S7 S8 S9 S10 S6-S10 Avg.

Spectro + CNN + RNN [22] 0.16 0.50 0.03 0.03 1.38 0.40 0.85 0.91 0.03 0.59 14.27 3.33 1.86
Best DNN [21] 0.00 0.10 0.00 0.00 0.20 0.10 0.20 0.00 0.00 0.00 25.5 5.10 2.60
Best RNN [21] 0.00 0.90 0.00 0.00 0.30 0.20 0.80 0.50 0.00 0.70 10.70 2.50 1.40

FBANK + CNN + RNN [8] 0.00 0.08 0.00 0.00 0.07 0.03 0.22 0.10 0.08 0.13 9.34 1.97 1.00
CFCC-IF [44] 0.10 0.86 0.00 0.00 1.08 0.41 0.85 0.24 0.14 0.35 8.49 2.01 1.21

CQCC + GMM [45] 0.00 0.10 0.00 0.00 0.13 0.05 0.10 0.06 1.03 0.05 1.07 0.46 0.26
LTSS + MLP [46] 0.01 0.15 0.00 0.00 0.35 0.10 0.29 0.05 0.04 0.07 1.56 0.40 0.25

FBANK + MGD + GRCNN + PLDA 0.00 0.06 0.00 0.00 0.06 0.02 0.12 0.08 0.09 0.03 2.51 0.57 0.30

B. Noise robustness evaluation

1) Evaluation on Seen Conditions: Table V presents the
per-attack results of the proposed anti-spoofing system on the
seen conditions of the noisy ASVspoof 2015 corpus evaluation
set. Multi-condition training is applied in order to get high
level features that are more robust against noise. Moreover,
the proposed signal-to-noise masks of Section III are also
employed to mitigate the effects of noise.

For all types of noisy conditions, it can be observed that
the EER is higher when the signal-to-noise ratio decreases.
When the noise power increases, the artifacts present in the
spoofed signal are more difficult to detect, as those artifacts
can be concealed by the noise. Babble and street are the
most challenging seen conditions for detecting attacks, as they
present non-stationary noises. Moreover, reverberation is the
distorsion type which is easier to counteract, independently of
the three types of impulse responses.

A very noticeable result obtained from these experiments
under multi-condition training is the excellent performance
of the proposed GRCNN under clean conditions. In fact, it
practically equals the performance of the CQCC + GMM
system (shown in table IV) in case of multi-condition training,
and outperforms it if SNM masks are also employed. Specif-
ically, our proposal performs 0.04% and 0.15% better in the
known and unknown attacks, respectively (including SNMs).
This result suggests that the variability introduced by the
noise employed for the multi-condition training increases the
generalization capability of the proposed network architecture.
Furthermore, it also suggests that the SNM masks make the
GRCNN focus on the spectral regions where speech is present.

2) Evaluation on Unseen Conditions: Although it is pos-
sible to collect multiple noise types for training and optimize
the model using multi-condition training, there would still be
many unseen noisy scenarios in real applications. Accordingly,
to validate the effectiveness and generalization capability of
the proposed approach, an evaluation on unseen noisy scenar-
ios is performed, and the detailed results of different training
techniques (clean, multi-condition and signal-to-noise masks
training) are shown in Table VI. Additionally, Fig. 7 shows
a box plot of the averaged EERs obtained by these training
techniques on the unseen noisy evaluation scenarios.

First of all, in order to assess the impact of noisy environ-
ments, a baseline test using the clean model (without SNMs)
is performed. In this case, the GRCNN is trained just using

Fig. 7. Box plot of averaged EERs (%) for unseen noisy evaluation scenarios
employing different training techniques. Box edges are at 25% and 75%
quantiles.

the clean ASVspoof 2015 corpus, and then used to extract
deep features. It is observed that the clean-condition training
technique only yields good performance in the matched clean
data. However, in the case of testing with noisy data, large
performance drops are observed due to the existing mismatch.

Then, multi-condition training (without SNMs) using the
seen noise data (white, babble, street and reverberation) is
evaluated. Compared to the clean-condition training, the per-
formance of the system is dramatically improved in all noisy
conditions. The EERs are decreased more than 30% in all
unseen conditions. This is due to the invariant effects across
different acoustic conditions which the deep features learned
from the multi-condition training.

After that, multi-condition training and the proposed SNMs
are employed to feed the GRCNN. Compared to simple
multi-condition training, the performance of the system is
meaningfully higher in all unseen noisy conditions. In fact,
the averaged EERs are decreased 5.28% and 8.52% for the
known and unknown attacks, respectively. These results show
the benefits of providing the neural network with information
about the noise present in each time-frequency bin, so that
it can discriminate which bins are more reliable to detect
spoofing artifacts.

3) Comparison with other systems: Table VII compares the
proposed approach (GRCNN + MASK-2) with five different
systems on the noisy version of the ASVspoof 2015 database:
CQCC + GMM evaluated in [19], CNN + NAT [8], CNN +
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TABLE V
PERFORMANCE ACHIEVED WITH MULTI-CONDITION TRAINING AND SIGNAL-TO-NOISE MASKS FOR THE SEEN SCENARIOS OF THE ASVSPOOF 2015

EVALUATION NOISY DATA SET IN TERMS OF (%) EER

Evaluated Condition
Known Attacks Unknown Attacks Total

S1 S2 S3 S4 S5 S1-S5 S6 S7 S8 S9 S10 S6-S10 Avg.

Clean 0.00 0.02 0.00 0.00 0.03 0.01 0.02 0.01 0.00 0.00 1.51 0.31 0.16

White (SNR = 20 dB) 0.04 0.92 0.00 0.00 0.96 0.38 0.21 0.08 0.04 0.11 6.84 1.46 0.92
White (SNR = 10 dB) 0.29 1.57 0.00 0.00 2.58 0.89 1.14 0.43 0.08 0.19 8.82 2.13 1.51
White (SNR = 0 dB) 2.23 6.12 0.17 0.17 7.91 3.32 4.13 3.89 0.32 1.92 17.41 5.54 4.43

Babble (SNR = 20 dB) 0.03 2.11 0.00 0.00 2.71 0.97 0.18 0.10 0.04 0.09 7.12 1.51 1.24
Babble (SNR = 10 dB) 0.47 5.04 0.00 0.00 5.89 2.28 0.92 0.42 0.06 0.19 9.78 2.59 2.44
Babble (SNR = 0 dB) 4.12 12.54 0.56 0.56 14.62 6.68 5.62 4.88 0.48 2.69 21.56 7.05 6.87
Street (SNR = 20 dB) 0.04 3.11 0.00 0.00 3.30 1.29 0.28 0.15 0.09 0.12 8.24 1.78 1.54
Street (SNR = 10 dB) 0.42 4.83 0.00 0.00 5.70 2.21 1.10 0.52 0.07 0.24 10.12 2.41 2.31
Street (SNR = 0 dB) 3.58 9.34 0.35 0.35 12.98 5.32 1.89 4.15 0.56 2.56 20.24 5.88 5.60

Reverberation (T60 = 0.3 s) 0.00 0.06 0.00 0.00 0.15 0.22 0.18 0.07 0.06 0.05 4.22 0.92 0.57
Reverberation (T60 = 0.6 s) 0.00 0.20 0.00 0.00 0.19 0.10 0.37 0.18 0.15 0.23 4.53 1.09 0.60
Reverberation (T60 = 0.9 s) 0.08 1.12 0.00 0.00 0.78 0.40 0.82 0.34 0.21 0.31 5.09 1.35 0.88

Avg. EER seen conditions 0.94 3.91 0.36 0.36 4.81 2.00 1.40 1.27 0.18 0.73 10.33 2.81 2.41

TABLE VI
COMPARISON OF DIFFERENT TRAINING TECHNIQUES FOR THE CLEAN AND UNSEEN SCENARIOS OF THE ASVSPOOF 2015 EVALUATION NOISY DATA SET

IN TERMS OF (%) EER

Evaluated Condition
Clean-condition Training Multi-condition Training Multi-condition + SNMs Training

Known Unknown Avg. Known Unknown Avg. Known Unknown Avg.

Clean 0.02 0.57 0.30 0.02 0.48 0.25 0.01 0.31 0.16

Cafe (SNR = 20 dB) 37.82 39.04 38.43 3.29 6.87 5.08 1.27 2.21 1.74
Cafe (SNR = 10 dB) 37.12 42.84 39.98 6.32 10.67 8.50 2.31 3.42 2.87
Cafe (SNR = 0 dB) 46.85 47.62 47.24 13.51 22.54 18.03 8.34 12.21 10.28

Volvo (SNR = 20 dB) 38.78 39.14 38.96 2.89 5.93 4.41 0.65 1.96 1.31
Volvo (SNR = 10 dB) 42.79 44.21 43.50 6.04 8.68 7.36 0.87 3.02 1.95
Volvo (SNR = 0 dB) 44.31 46.73 45.52 7.65 9.58 8.62 2.61 3.42 3.02

Avg. EER unseen conditions 41.28 43.26 42.27 6.62 10.71 8.67 1.34 2.19 1.76

TABLE VII
COMPARISON OF DIFFERENT TECHNIQUES ON THE ASVSPOOF 2015 EVALUATION NOISY DATA SET IN TERMS OF AVERAGE (%) EER USING

MULTI-CONDITION TRAINING

Evaluated Condition
CQCC + GMM CNN + NAT CNN + MASK-1 nat-DNN + nat-CNN GRCNN

[19] [8] + RNN [8] + nat-RNN [19] + MASK-2
Kn. Un. Avg. Kn. Un. Avg. Kn. Un. Avg. Kn. Un. Avg. Kn. Un. Avg.

Clean 0.10 0.90 0.50 0.14 2.03 1.09 0.03 0.90 0.47 0.00 1.30 0.70 0.01 0.31 0.16
White (SNR = 20 dB) 46.8 44.6 45.7 1.7 4.3 3.0 0.8 2.5 1.7 0.4 2.8 1.6 0.4 1.5 0.9
White (SNR = 10 dB) 48.9 48.1 48.5 3.2 5.1 4.4 2.3 3.4 2.9 1.2 3.2 2.2 0.9 2.1 1.5
White (SNR = 0 dB) 49.3 48.9 49.1 7.9 10.0 9.0 5.9 8.6 7.3 3.8 7.2 5.5 3.3 5.5 4.4

Babble (SNR = 20 dB) 18.2 18.3 18.3 3.1 4.6 3.9 2.3 3.9 3.1 1.1 2.7 1.9 1.0 1.5 1.2
Babble (SNR = 10 dB) 33.9 33.6 33.8 5.7 6.7 6.2 3.7 4.5 4.1 3.4 4.0 3.7 2.3 2.6 2.4
Babble (SNR = 0 dB) 44.6 44.0 44.3 12.9 14.7 13.8 9.5 10.6 10.1 7.3 10.0 8.6 6.7 7.1 6.9
Street (SNR = 20 dB) 22.7 22.3 22.5 3.9 5.1 4.5 1.9 3.1 2.5 2.0 3.3 2.6 1.3 1.8 1.5
Street (SNR = 10 dB) 37.5 36.3 36.9 6.1 7.5 6.8 4.1 5.4 4.8 3.7 4.4 4.1 2.2 2.4 2.3
Street (SNR = 0 dB) 46.1 45.4 45.8 11.1 13.7 12.4 8.7 9.9 9.3 6.3 9.0 7.7 5.3 5.9 5.6

Reverberation (T60 = 0.3 s) 8.4 9.3 8.9 1.3 2.1 1.7 1.1 1.9 1.5 0.2 1.3 0.7 0.2 0.9 0.6
Reverberation (T60 = 0.6 s) 10.6 7.8 9.2 1.6 2.0 1.8 1.6 1.5 1.6 0.3 1.2 0.8 0.1 1.1 0.6
Reverberation (T60 = 0.9 s) 7.6 6.9 7.3 1.5 1.9 1.7 1.1 1.6 1.4 0.5 1.4 0.9 0.4 1.4 0.9
Avg. EER Seen Conditions 31.2 30.5 30.8 5.0 6.5 5.8 3.6 4.7 4.2 2.5 4.2 3.4 2.0 2.8 2.4

Cafe (SNR = 20 dB) 30.7 30.1 30.4 2.9 5.3 4.1 1.8 4.5 3.2 3.0 4.6 3.8 1.3 2.2 1.7
Cafe (SNR = 10 dB) 42.1 41.3 41.7 5.6 8.1 6.9 4.5 5.7 5.1 5.5 7.4 6.4 2.3 3.4 2.9
Cafe (SNR = 0 dB) 49.8 47.1 47.3 13.5 20.0 16.8 10.1 14.3 12.2 12.9 18.4 15.6 8.3 12.2 10.3

Volvo (SNR = 20 dB) 0.9 2.7 1.8 1.0 3.7 2.4 0.8 3.0 1.9 0.8 2.8 1.8 0.7 2.0 1.3
Volvo (SNR = 10 dB) 4.3 5.6 4.9 2.4 4.9 3.7 1.5 3.4 2.5 2.3 4.0 3.2 0.9 3.0 2.0
Volvo (SNR = 0 dB) 13.0 13.0 13.0 3.7 5.0 4.4 2.7 3.5 3.1 3.7 4.7 4.2 2.6 3.4 3.0

Avg. EER Unseen Conditions 23.1 23.3 23.2 4.9 7.8 6.4 3.6 5.7 4.7 4.7 7.0 5.8 1.3 2.2 1.8
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Fig. 8. Box plot of averaged EERs (%) for all noisy evaluation scenarios
obtained by: (i) CQCC + GMM as evaluated in [19], (ii) a combination of a
DNN, CNN and BLSTM [19], and (iii) our proposal. Box edges are at 25%
and 75% quantiles.

MASK-1 + RNN [8], and a combination of three different
neural networks (DNN, CNN and BLSTM) [19]. The terms
MASK-1 and MASK-2 refer to different signal-to-noise mask
estimation techniques, being MASK-1 the technique proposed
in [8], and MASK-2 is the mask estimation technique proposed
here in Section III. The CNN + NAT system was proposed in
[19], but as its performance is not provided in this reference
for the seen conditions, we evaluated it on all conditions in
our previous work [8]. The term NAT stands for Noise-Aware
Training, in which a mean noise vector of the utterance is
appended to the input features. Additionally, Fig. 8 shows a
boxplot of the averaged EERs obtained by CQCC + GMM, the
fusion of systems proposed in [19] and our proposed system
on all noisy evaluation scenarios.

When multi-condition training is used, our proposed GR-
CNN + MASK-2 system achieves the best overall performance
in the clean condition, even outperforming CQCC + GMM,
which was the best system in Table IV. Compared to CQCC +
GMM and the fusion of systems proposed in [19], it achieves
a 0.34% and 0.54% better overall EER, respectively.

When evaluated under noisy conditions, the CQCC +
GMM system performs very poorly even for the seen noises
(those used for multi-condition training). On the contrary,
our proposed system achieves the best results with an overall
relative improvement of 28.4% compared to CQCC + GMM.
Moreover, although CNN + NAT and our previous proposal
CNN + MASK-1 + RNN already improved the performance on
all noisy conditions compared to CQCC + GMM, the proposed
system outperforms both of them in 3.4% and 1.8% on the
averaged EER of seen conditions, respectively.

Despite the fact that the combination of systems proposed
in [19] is not directly comparable with our GRCNN + MASK-
2, since, unlike our proposal, it is a fusion of techniques, it is
worth mentioning that our system achieves better performance
in both seen and unseen distorted conditions. This indicates
that the proposed GRCNN achieves a better utterance-level
representation than averaging the frame-level deep features
to extract the spoofing identity vector of the utterance. In
addition, the proposed mask estimation technique is better than
extracting the mean noise vector of the utterance in order to

provide the neural network with information about the noise
present in the utterance.

VI. CONCLUSION

In this paper we have proposed a novel technique for the
extraction of deep identity features for an efficient detection
of TTS and VC attacks in clean and noisy environments. In
our system, a gated recurrent convolutional neural network is
employed to integrate the extraction of discriminative features
at frame level and the utterance-level identity vector into
a single network, providing information about whether the
utterance is genuine or spoofed. Moreover, the anti-spoofing
system has been trained with magnitude and phase spectral
features (FBANKs and MGDs), yielding better results than a
fusion of single systems which are fed with one type of these
features. Experimental results on the clean ASVspoof 2015
corpus have shown that the proposed architecture outperforms
all the state-of-the-art deep learning systems to detect logic
access attacks.

Furthermore, to increase the noise robustness of our anti-
spoofing detector, a signal-to-noise mask estimation technique
has been proposed. Our proposal has been evaluated on a
distorted version of the ASVspoof 2015 corpus, including both
additive and noisy reverberant scenarios. The experimental
results have shown that our proposal obtains the best state-
of-the-art results for this corpus, when using multi-condition
training along with the proposed signal-to-noise masks, outper-
forming the state-of-the-art CQCC + GMM system (the best
system for the clean ASVspoof 2015 corpus and baseline of
the ASVspoof 2017 challenge [47]) and the fusion of deep
feature extraction systems proposed in [19] for both clean
and noisy conditions. Thus, as an additional result, we have
found that the variability introduced in the multi-condition
training increases the power of generalization of the proposed
GRCNN, since the results obtained even in the evaluation
clean condition dramatically improve with respect to those
obtained with clean condition training.

In future work it would be worthwhile to investigate the
integration of the ASV and anti-spoofing systems in order
to study how the ASV system processes the noisy spoofed
speech. Also, the proposed GRCNN architecture for spoofing
detection should be also effective to detect replay attacks.
Some modifications could be done to the architecture to ensure
a successful detection, such as employing input features with
a higher frequency resolution [48]. Finally, it would be inter-
esting to explore other types of mask estimation techniques
which do not require any knowledge of the corresponding
clean signal of a given noisy utterance in order to train the
model, which would allow us to collect more data for training.
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