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Abstract. In this work, we present a silent speech system that is able
to generate audible speech from captured movement of speech articula-
tors. Our goal is to help laryngectomy patients, i.e. patients who have
lost the ability to speak following surgical removal of the larynx most
frequently due to cancer, to recover their voice. In our system, we use
a magnetic sensing technique known as Permanent Magnet Articulog-
raphy (PMA) to capture the movement of the lips and tongue by at-
taching small magnets to the articulators and monitoring the magnetic
field changes with sensors close to the mouth. The captured sensor data
is then transformed into a sequence of speech parameter vectors from
which a time-domain speech signal is finally synthesised. The key com-
ponent of our system is a parametric transformation which represents the
PMA-to-speech mapping. Here, this transformation takes the form of a
statistical model (a mixture of factor analysers, more specifically) whose
parameters are learned from simultaneous recordings of PMA and speech
signals acquired before laryngectomy. To evaluate the performance of
our system on voice reconstruction, we recorded two PMA-and-speech
databases with different phonetic complexity for several non-impaired
subjects. Results show that our system is able to synthesise speech that
sounds as the original voice of the subject and also is intelligible. How-
ever, more work still need to be done to achieve a consistent synthesis
for phonetically-rich vocabularies.

Keywords: Silent speech interfaces, speech rehabilitation, speech syn-
thesis and permanent magnet articulography.

1 Introduction

People whose larynx have been surgically removed following throat cancer, trauma
or destructive throat infection normally find themselves struggling with oral
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communication after losing their voice. This often has a severe impact on peo-
ple’s lives and can lead to social isolation, feelings of loss of identity and, some-
times, clinical depression [3,2,7]. To make things worse, existing methods for
voice restoration are far from ideal [13,18]. The ‘gold-standard’, the tracheo-
oesoephageal valve, requires frequent replacement every 3-4 months due to biofilm
growth and, for this reason, is an expensive treatment [22,12,11]. The electro-
larynx, on the other hand, despite being relatively easy to use and safe, produces
a robotic voice. Finally, oesophageal speech, a technique in which air is injected
into the mouth and then it is released in a controlled manner to make the oesoph-
agus vibrate to create speech, sounds gruff and masculine and, also, is difficult
to learn. Other methods such as Augmentative and Alternative Communication
(AAC) devices, where the user types words and the device synthesises them, are
only suitable for short conversations due to their slow manual text input [15].

In an attempt to surpass the limitations of current existing methods, we pro-
pose in this work a completely different approach for post-laryngectomy voice
rehabilitation. Our proposed method can be seen as a Silent Speech Interface
(SSI), which is a system that enables oral communication in the absence of au-
dible speech [9]. Somewhat akin to lip reading, the most common way a SSI
works is by first decoding the message encoded in other biosignals associated
with speech production using Automatic Speech Recognition (ASR) software
and then synthesising the recognised text using a Text-To-Speech (TTS) synthe-
siser. Many different SSIs have been proposed so far, mainly differing in the type
of biosignal they rely on. Thus, we can find SSIs that exploit the electrical signals
generated by the neurons in the brain [23] or in the articulator muscles [31,42,49]
or the movement of the speech articulators themselves [40,44,9,29,18,14,26,21].
In our work we use a magnetic sensing technique known as Permanent Mag-
net Articulography (PMA) [13,18] for capturing the movement of the speech
articulators. In brief, the principle of PMA is that articulator movement can be
captured by attaching a set of permanent magnets to the articulators (typically
the lips and tongue) and then sensing the variations of the resultant magnetic
field generated while the person articulates words with sensors located close to
the mouth. Compared to other techniques for articulator motion capture, such as
Electromagnetic Articulography (EMA) or surface Electromiography (sEMG),
PMA has the potential advantage of being unobtrusive, since there are no wires
coming out of the mouth or electrodes attached to the skin.

The recognise-then-synthesise approach outlined above is the most common
way of synthesising speech from articulator movement. This approach, however,
is not exempt from problems [21]. Firstly, due to the variable delay introduced by
the ASR and TTS systems, speech articulation and the corresponding acoustic
feedback produced by the SSI are disconnected (i.e. speech is not generated in
real time). An analogy for this would be like having an interpreter: the person
‘mouths’ words, waits and, after a while, the SSI generates the corresponding
acoustic signal. Another limitation is that speech can only be synthesised for
the language and vocabulary of the ASR and TTS systems. Finally, as another
limitation, the non-linguistic information embedded in the articulatory signal,
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such as emotion or speaker identity, is normally lost after speech recognition. To
address these shortcomings, we investigate in this work an alternative approach
for SSI-based voice restoration known as direct speech synthesis.

In the direct synthesis approach, a parametric transformation is applied to
the captured articulatory data to obtain a sequence of speech parameter vectors
from which a time-domain speech signal is synthesised. Thus, no intermediate
speech recognition step is performed. To enable this method, we present a sta-
tistical approach in which simultaneous recordings of articulator movement and
speech data captured before laryngectomy are used to learn the parameters of
the transformation. In particular, in our statistical framework the transforma-
tion adopts the form of a joint probability distribution represented as a Mixture
of Factor Analysers (MFA) [17]. Once this transformation is learned, it can be
used in conversion time to compute the speech-parameter posterior distribution
given the articulatory data which, in turn, allows us to estimate the speech
parameters associated with the measured articulator gesture. Because the trans-
formation is estimated from recordings of the the patient’s voice, our method has
the potential to synthesise speech that sounds as the original voice. Moreover, if
the conversion can be done in real-time, the voice will sound spontaneous and
natural and it will enable the patient to receive real-time acoustic feedback of
her/his articulation.

This chapter is organised as follows. First, the details of the PMA technique
for capturing articulator movement are provided in Section 2. In Section 3, we
describe the proposed technique for synthesising audible speech from PMA data.
Then, in Section 3.3, we discuss some practical implementation issues. The de-
tails about the experimental evaluation of the proposed technique and the results
obtained can be found in Section 5. Finally, we summarise this work and outline
some future research in Section 6.

2 Articulator Motion Capture based on Magnetic Sensing

As commented above, in our work we use PMA, a magnetic sensing technique,
for capturing the movements of the speech articulators, more typically the lips
and tongue [13,18,5]. The principle of PMA is simple as illustrated in Fig. 1:
small magnets are attached to the speech articulators whose movement we wish
to capture and magnetic sensors located close to the mouth are employed for
measuring the magnetic field generated by the magnets. In the current set-up
magnets are temporarily attached to the flesh using Histoacryl surgical tissue
adhesive (Braun, Melsungen, Germany), but eventually the magnets will be sur-
gically implanted for long term usage. A total of six magnets are used: four are
attached to the lips (1 mm diameter × 5 mm height), one to the tongue tip (2
mm × 4 mm), and one to the tongue blade (5 mm × 1 mm). As shown in Fig.
1, an external headset is used to hold the four magnetic sensors employed in
the current prototype, though other arrangements such as an intra-oral device
similar to a dental retainer has been and are currently being investigated [5,4].
From the four sensors in Fig. 1, only the first three sensors (Sensor1-Sensor3),
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Fig. 1. Upper-left and lower-left : placement of magnets used for measuring lips and
tongue movements. Right : components of the PMA headset: micro-controller, battery
and magnetic sensors used to detect the variations of the magnetic field generated by
the magnets.

the ones which are closer to the mouth, are actually used for data acquisition,
while the last one (Sensor4) is used as a reference sensor for Earth’s magnetic
field cancellation in the data captured by Sensor1-Sensor3 [5]. Each sensor pro-
vides three channels of data for the 3D spatial components of the magnetic field
at the sensor location, thus making 9 channels of data in total.

The data recorded by the sensors may then be used to determine the speech
associated with the articulatory gestures, either by performing ASR on the PMA
data [18,26] or by transforming the data to an acoustic signal, as we do in this
work. It should be noted that contrary to other mechanisms for capturing ar-
ticulator movement data such as EMA, in PMA the exact coordinates of the
magnets in the mouth are unknown since the magnetic field sensed by the sen-
sors is a composite of the fields generated by all the magnets. Nevertheless, as
each articulatory gesture generates a recognisable pattern in the captured articu-
latory data, we can resort to statistical approaches for modelling the relationship
between the PMA data and the corresponding acoustics. This is developed in
the next section.

3 Speech Synthesis from Articulator Movement

In this section we describe the technique for synthesising audible speech from
articulator movement data. The goal of the proposed technique is to model the
mapping yt = f(xt) between source parameter vectors xt derived from the PMA
signal and target parameter vectors yt, which correspond to a low-dimensional,
parametric representation of the audio signal. Because the positions of the mag-
nets cannot be easily inferred from PMA data (inference of the Cartesian co-
ordinates of the magnets from the magnetic field captured by the sensors is an
inverse problem), we cannot resort here to approaches such as that proposed in
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[45,47] where 2-dimensional vocal tract shapes are directly computed from the
measured positions of the EMA sensors and, from the vocal tract shapes, speech
is synthesised by using an articulatory synthesis method [35]. In contrast, we
propose a data-driven approach for modelling the mapping function yt = f(xt).
The proposed approach assumes the existence of a parallel dataset containing si-
multaneous recordings of PMA and acoustic data acquired before laryngectomy.
From this parallel dataset, the parameters of the mapping function, which is rep-
resented here as a Mixture of Factor Analysers (MFA) [17], are estimated during
an initial training stage. Later, in conversion time, the learned transformation
is used to convert PMA parameter vectors into speech parameter ones. More
details about the training and conversion phases are given in the next sections.

3.1 Training Phase

Instead of trying to directly model the mapping function yt = f(xt), we assume
that xt and yt are the outputs of a stochastic process whose state vt is not
directly observable. We also assume that the dimensionality of vt is much less
than that of xt and yt, such that the latent space offers a more parsimonious
representation of the observable data. Under these assumptions, we have the
following model:

xt = fx(vt) + εx, (1)

yt = fy(vt) + εy, (2)

where εx and εy are Gaussian-distributed noise processes with zero mean and
diagonal covariances Ψx and Ψx, respectively.

In general, fx and fy will be non-linear and, hence, difficult to model. To
represent them, a piece-wise linear regression approach is adopted in which the
functions are approximated by a mixture of K local factor analysis models, each
of which has the following form,

x
(k)
t = W (k)

x vt + µ(k)
x + ε(k)x , (3)

y
(k)
t = W (k)

y vt + µ(k)
y + ε(k)y , (4)

where k = 1, . . . ,K is the model index; W
(k)
x , W

(k)
y are the factor loadings

matrices; µ
(k)
x , µ

(k)
y are bias vectors that allow the data to have a non-zero

mean, and x
(k)
t , y

(k)
t are respectively local approximations of xt and yt around

the means µ
(k)
x , µ

(k)
y . This model can be written more compactly as,

z
(k)
t = W (k)

z vt + µ(k)
z + ε(k)z , (5)

where zt = [x
(k)>

t ,y
(k)>

t ]>, W
(k)
z = [W

(k)>

x W
(k)>

y ]>, µ
(k)
z = [µ

(k)>

x ,µ
(k)>

y ]>,

and ε
(k)
z ∼ N (0,Ψ

(k)
z ), with Ψ

(k)
z being the following diagonal covariance matrix,

Ψ (k)
z =

[
Ψ

(k)
x 0

0 Ψ
(k)
y

]
. (6)
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From (5) we see that the conditional distribution of the observed variables

given the latent ones is p(z|v, k) = N (z;W
(k)
z v+µ

(k)
z ,Ψ

(k)
z ). By assuming that

the latent variables are independent and Gaussian with zero mean and unit
variance (i.e. p(v|k) = N (0, I)), the k-th component marginal distribution of
the observed variables, i.e.

p(z|k) =

∫
p(z|v, k)p(v|k)dv, (7)

also becomes normally distributed as p(z|k) = N (z;µ
(k)
z ,Σ

(k)
z ), where

Σ(k)
z = Ψ (k)

z +W (k)
z W (k)>

z (8)

is the reduced-rank covariance matrix.
The generative model is completed by adding mixture weights π(k) for each

mixture component (
∑

k π
(k) = 1). Then, the joint distribution p(z) ≡ p(x,y)

finally becomes the following mixture model,

p(z) =
K∑

k=1

π(k)p(z|k). (9)

To learn the parameters {〈π(k),µ
(k)
z ,W

(k)
z ,Ψ

(k)
z 〉, k = 1, . . . ,K} of the MFA

model in (9) we use a slightly modified version the expectation-maximization

(EM) algorithm proposed in [17] in which the noise covariances Ψ
(k)
z are cluster

dependent. Let
{
zi = [x>i ,y

>
i ]>, i = 1, . . . , N

}
be the parallel dataset used for

training. Then, the E-step and M-step of the EM algorithm are as follows:

1) E-step: Using the MFA parameters estimated in the previous iteration, com-

pute the component posterior probabilities γ
(k)
i = P (k|zi) and the expecta-

tions 〈vik〉 and 〈vikv>ik〉 for the hidden variables:

γ
(k)
i =

p(zi|k)π(k)∑K
k′=1 p(zi|k′)π(k′)

, (10)

〈vik〉 = S
(k)
k

(
zi − µ(k)

z

)
, (11)

〈vikv>ik〉 = I − S(k)W (k)
z + 〈vik〉〈vik〉>, (12)

with S(k) = W
(k)>

z Σ
(k)−1

z and Σ
(k)
z as given by (8).

2) M-step: To simplify the derivation of the updating equations, we define the
following augmented variables,

〈ṽik〉 =

[
〈vik〉

1

]
, (13)

〈ṽikṽ>ik〉 =

[
〈vikv>ik〉 〈vik〉
〈vik〉> 1

]
, (14)

Σ̃
(k)
v|z = 〈ṽikṽ>ik〉 − 〈ṽik〉〈ṽik〉>. (15)
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Then, the updated MFA parameters are obtained as follows,

π̂(k)
z =

1

N

N∑
i=1

γ
(k)
i , (16)

Λ̂(k)
z =

[
N∑
i=1

γ
(k)
i zi〈ṽi〉>

][
N∑
i=1

γ
(k)
i 〈ṽikṽ

>
ik〉

]−1
, (17)

Ψ̂ (k)
z = diag

(
Λ̂(k)

z Σ̃
(k)
v|z Λ̂

(k)T

z +

∑N
i=1 γ

(k)
i ε̃

(k)
i ε̃

(k)>

i∑N
i=1 γ

(k)
i

)
. (18)

with ε̃
(k)
i = zi − Λ̂(k)

z 〈ṽi〉. The updated values for the factor loadings Ŵ
(k)
z

and mean vectors µ̂
(k)
z are obtained from the augmented factor loadings

matrix Λ̂
(k)
z = [Ŵ

(k)
z µ̂

(k)
z ].

3.2 Conversion Phase

The conversion phase involves two steps. First, the sequence of speech parameter
vectors Y = (y1, . . . ,yT ) associated with the articulatory gesture captured by
the PMA device is estimated under the probabilistic framework presented above.
Then, a parametric synthesis algorithm is used to generate the final time-domain
signal from the estimated speech parameters. To estimate the speech parame-
ter vectors, we employ a frame-by-frame procedure based on the well-known
Minimum Mean Square Error (MMSE) estimator:

ŷt = E[y|xt] =

∫
yp(y|xt)dy. (19)

where ŷt is the estimate for the speech parameters at time t, E[·] represents the
expected value, and p(y|xt) is the speech parameter posterior distribution. This
distribution is derived from the joint distribution p(x,y) in (9) as

p(y|xt) =

K∑
k=1

P (k|xt)p(y|xt, k), (20)

where

P (k|xt) =
π(k)N

(
xt;µ

(k)
x ,Σ

(k)
xx

)
∑K

k′=1 π
(k′)N

(
xt;µ

(k′)
x ,Σ

(k′)
xx

) , (21)

p(y|xt, k) = N
(
y;µ

(k)
y|xt

,Σ
(k)
y|x

)
. (22)

The parameters of the k-th component conditional distribution p(y|xt, k)
are derived from those of the joint pdf p(x,y|k) in (7). As already mentioned,
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the latter distribution is Gaussian with mean µ
(k)
z and covariance matrix Σ

(k)
z .

Then, using the standard properties of the joint Gaussian distribution, we can
derive the parameters of the conditional distribution as follows,

µ
(k)
y|xt

= µ(k)
y +Σ(k)

yx Σ
(k)−1

xx

(
xt − µ(k)

x

)
, (23)

Σ
(k)
y|x = Σ(k)

yy +Σ(k)
yx Σ

(k)−1

xx Σ(k)
xy , (24)

where the marginal means µ
(k)
x , µ

(k)
y and covariance matrices Σ

(k)
xx , Σ

(k)
yy , Σ

(k)
xy

are obtained by partitioning µ
(k)
z and Σ

(k)
z into their x and y components.

Finally, by substituting the expression of the conditional distribution p(y|xt)
in (20) into (19), we reach the following expression for the MMSE estimation of
the speech parameter vectors,

ŷt =

K∑
k=1

P (k|xt)

∫
yp(y|xt, k)dy

=

K∑
k=1

P (k|xt)
(
A(k)xt + b(k)

)
, (25)

with A(k) = Σ
(k)
yx Σ

(k)−1

xx and b(k) = µ
(k)
y − A(k)µ

(k)
x as can be deduced from

(23).
For comparison purposes, we also evaluate a fast, approximate version of the

above estimator, which we will refer to as fast MMSE (fMMSE), in which only
the most likely Gaussian component k∗ is involved:

k∗ = argmax
1≤k≤K

P (k|yt).

Then, the fMMSE estimate is defined as:

ŷt ≈ A(k∗)xt + b(k
∗). (26)

3.3 Recalibration Procedure

The principle of the direct synthesis technique is that the mapping between
articulator movement and the corresponding acoustics can be estimated from a
parallel dataset containing simultaneous recordings of PMA and speech signals.
Ideally, this dataset should be recorded soon after it has been agreed that a
laryngectomy will be performed to the patient. During the recording session,
the patient’s voice and corresponding PMA data are acquired using adhesively
attached magnets. In addition, the information on the location of the magnets
is documented, so that they can be later surgically implanted accordingly. From
the collected data the PMA-to-acoustic transformation is learned as described
in Section 3.1, so it can be readily available to be used by the patient soon after
the laryngectomy, as described in Section 3.2.
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In certain conditions, however, the above training procedure might fail. For
example, it is highly unlikely that the magnet positions can be exactly replicated
during surgical implantation. Any magnet misplacement will inevitably lead to
discrepancies between the PMA data used for training and the data captured
during the use of the system, hence leading to the degradation of the speech
quality. Furthermore, variations of the relative positions of the magnets with
respect the head-frame used to hold the magnetic sensors (see Figure 1) will
also lead to mismatches. Therefore, in most of the practical cases it would be
necessary to recalibrate the system to compensate for any magnet misplacement
with respect to their original positions used for acquiring the training data. In
the following we present a data-driven recalibration procedure to this end.

We will assume that the positions of the magnets before (magnets glued) and
after magnet implantation only vary slightly. In this case, the mismatch between
the articulatory data captured for the same articulatory gesture pre- and post-
magnet implantation can be approximately modelled as,

xt = h(x̃t), (27)

where xt and x̃t denote the data for the pre- and post- magnet implantation
arrangements, respectively, and h is the mismatch function.

We propose the following procedure to estimate the mismatch function h.
First, after magnet implantation, the patient has to attend another recording ses-
sion in which he/she is asked to mouth along to some of the utterances recorded
during the first recording session. In this case, however, only PMA data is ac-
quired since the patient has already lost their voice. Furthermore, only a small
fraction of the data recorded during the first session needs to be recorded during
the second session, as the aim of it is not to estimate the full PMA-to-acoustic
mapping (as in the first recording session), but to learn the mismatch produced
by the magnet misplacement. Next, as the durations of the PMA signals ob-
tained for the same sentence in both sessions may be different, the PMA data
for both recording sessions are time-aligned using the Dynamic Time Warping
(DTW) technique [41]. From the time-aligned signals the mismatch function h
is estimated. Here, we investigate two alternative methods for modelling this
function. First, the function is represented as a simple linear mapping:

xt = Cx̃t + d, (28)

with C and d being estimated by least squares regression from the aligned data.
Alternatively, a Multilayer Perceptron (MLP) is used to model xt = h(x̃t).

The input to the MLP are the PMA parameter vectors x̃t and it tries to predict
the corresponding vectors xt used for training the MFA model. More details
about the MLP architecture and its training are given in Section 5.6.

After h is estimated (either as a linear operator or a neural network), it is
used in a second round of the recalibration procedure to improve the alignment of
the PMA data. Thus, the PMA data recorded after magnet implantation is first
compensated using the estimated transformation and then DTW-aligned with
the original data (recorded with magnets glued). Next, the alignments obtained
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for the compensated data are used to estimate a more accurate transformation
between the PMA data captured in both sessions. This procedure is repeated
several times until convergence.

4 Related Work

The direct synthesis technique presented in the previous section shares some
similarities with other recently proposed methods. In this section we discuss
the relationships between our proposal and those methods, pointing out the
similarities and differences.

First, regarding our own previous work, we reported in [13,18,26] that not
only speech recognition from PMA data is possible, but also that the performance
obtained is on par with that obtained using audio, at least on isolated words and
connected digits recognition tasks. This study was later successfully extended to
multiple subjects in [24]. With respect to the direct synthesis approach, in [25]
we carried out a feasibility study on prediction of the first two speech formants
(F1 and F2) from the sensor data using a simple linear transformation. Though
promising, the results showed that a more powerful transformation is required
for modelling the non-linear mapping between sensor data and acoustic parame-
ters. In [19], a more powerful conversion technique was investigated: a statistical
mapping based on shared Gaussian process dynamical models [6,50], which are
non-parametric models providing a shared low-dimensional embedding of the
articulatory and acoustic data as well as a dynamic model in the latent space.
Results reported for isolated-digit synthesis showed the superiority of this ap-
proach for modelling the PMA-to-acoustic mapping. Finally, in [21], we proposed
a conversion system based on mixture of factor analysers, similar to the one de-
scribed in this work, and showed the viability of voice reconstruction from PMA
data for continuous speech.

In addition to ourselves, other authors have also made important contribu-
tions to the field of silent speech interfaces. A good introduction to this subject
can be found in [9]. In general, approaches for direct speech synthesis from sen-
sor data can be classified into two categories: model-based and data-driven ap-
proaches. Model-based approaches are those in which the sensor data provides
interpretable information about the position of the speech articulators. From
this information, the shape of the vocal tract can be recovered and speech can
be synthesised by using an articulatory synthesiser. For example, in [36,37] the
articulatory synthesiser is driven by Magnetic Resonance Imaging (MRI) and
X-ray images, respectively, while in [45,47] EMA data is used instead. In data-
driven approaches, on the other hand, the relationship between the sensor data
and the acoustics is learned from parallel datasets, as with our method. Various
techniques have been investigated in the past to model this relationship: Gaus-
sian Mixture Models (GMMs) [44,38], Hidden Markov Models (HMMs) [28,27],
neural networks [10,48], support vector regression [46], and a concatenative, unit-
selection approach [51]. In the next section, we will compare the performance
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of our MFA-based conversion technique with the well-known GMM-based tech-
nique proposed in [43,44].

5 Experimental Evaluation

In this section, we evaluate the performance of our silent speech system on a voice
reconstruction task for non-impaired speakers. Although our system is thought
to help laryngectomy patients to recover the voice, at this initial stage of the
development our priority is to assess performance for normal speakers and then,
once the system is robust, it can be tested with real patients. More details about
the evaluation framework are given in the following.

5.1 Vocabulary and Data Recording

We recorded two parallel databases with different phonetic coverage to evaluate
our system. The first one is based on the TIDigits speech database [34] and
consists of sequences of up to seven connected English digits. The vocabulary is
made up of eleven words: the digits from ‘one’ to ‘nine’ plus ‘zero’ and ‘oh’. The
second database consists of utterances selected at random from the CMU Arctic
corpus of phonetically balanced sentences [32]. Parallel data was then recorded
for the two databases by adult speakers with normal speaking ability. For the
TIDigits database, four male speakers (M1 to M4) and a female speaker (F1)
recorded 308 sentences (385 sentences for M2) comprising 7.2, 10.5, 8.0, 9.7 and
8.5 minutes of data, respectively. Speaker M1 also recorded a second dataset with
308 sentences (7.4 minutes of data) in a different recording session with the aim
of evaluating the recalibration procedure described in Section 3.3. The magnet
arrangement in the first recording session was documented and replicated in the
second session. Despite this, as will be discussed below, small variations in the
magnet positions and/or orientations unintentionally occurred. For the Arctic
database, parallel data was recorded for two male speakers: M1 (same as in the
TIDigit database) and M5. M1 recorded 420 utterances comprising 22 minutes
of data and M5 recorded 509 sentences comprising 26 minutes.

The audio and 9-channel PMA signals were recorded simultaneously at sam-
pling frequencies of 16 kHz and 100 Hz, respectively, using an AKG C1000S
condenser microphone and the PMA device shown in Figure 1. Background can-
cellation was later applied to the PMA signals to mitigate the effect of the Earth’s
magnetic field on the articulatory data [5]. Finally, all data were endpointed in
the audio domain using an energy-based algorithm to prevent modelling silence
parts, as the speech articulators may adopt any position during the silence parts.

5.2 Feature Extraction

The source xt and target yt parameter vectors are computed as follows in the
proposed system. The PMA signals are first segmented into overlapping frames
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using a 20 ms analysis window with 10 ms overlap. Next, to better model contex-
tual phonetic information, sequences of ω consecutive frames, with a single-frame
displacement, are concatenated and the Partial Least Squares (PLS) technique
[8] is applied to reduce the dimensionality of the resultant frames. In PLS, the
number of principal components retained are those explainng the 95% of the
variance in the target speech features. The audio signals are represented in this
work as 25 Mel-Frequency Cepstral Coefficients (MFCCs) [16] obtained at the
same frame rate as that for PMA. Neither F0 nor voicing information are ex-
tracted from the audio signals because of the limited ability of PMA to model this
aspect of speech articulation [20]. Rather, the audio signals are re-synthesised
without voicing as whispered speech. Finally, the PMA and speech parameter
vectors are converted to z-scores with zero mean and unit variance to improve
statistical training.

5.3 Objective Evaluation of Voice Reconstruction Accuracy

In this work we use objective quality measures to evaluate the performance of the
techniques under different conditions. As we have access to the original speech
signals recorded by the subjects, we can compare the speech signals predicted
from articulator movement with the original ones to evaluate reconstruction
accuracy. In particular, we use the well-known Mel-Cepstral Distortion (MCD)
measure [33] between the MFCCs extracted from the original audio signals, c,
and the ones predicted from PMA data, ĉ, with smaller values indicating better
results:

MCD[dB] =
10

ln 10

√√√√2

D∑
d=1

(cd − ĉd)
2
. (29)

Results reported in this work are obtained using a 10-fold cross-validation
scheme. Hence, the available data for each subject is randomly divided into ten
sets of same length and, in each round, 9 sets are used for training and the
remaining one for testing. The MCD results reported in the following sections
correspond to the average MCD result for the 10 rounds.

5.4 Results on the TIDigits Database

The left and middle panels in Fig. 2 show contour plots with the average MCD
results across the five subjects for the two conversion algorithms introduced in
Section 3.2: MMSE and fast MMSE (fMMSE). The results are presented as a
function of the number of mixture components in the MFA model (i.e. K in
(20)) and the length of the sliding window used to extract the PMA parameter
vectors. As can be seen, results greatly improve when more mixture components
and longer windows are used for modelling the PMA-to-acoustic mapping. Using
more mixtures means that this mapping, which is known to be highly non-linear
[1,39], is more finely represented. For example, the mapping is approximated
by a linear transformation when using 1-mixture models, while a piece-wise
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Fig. 2. Mel-cepstral distortion results on the TIDigits database. Left and middle:
Average MCD results across all the speakers for the MMSE and fMMSE conversion
systems as a function of the number of mixture components used in the MFA model
and the length of the PMA-frame window. Right : Relative degradation of the fMMSE
system with respect to the MMSE-based one.

linear approximation is employed for K > 1. For a PMA frame window of
ω = 200 ms, the relative MCD reduction when using K = 64 components, which
is the optimum number of mixtures as can be seen in the figure, with respect
to just using a single mixture is 30.33% for the MMSE system and 29.08%
for the fMMSE-based one. Increasing the length of the PMA frame window
is also beneficial for the mapping because it reduces its uncertainty by taking
into account more contextual information about the temporal evolution of the
PMA signal. In particular, for K = 64 mixtures, the relative reduction in MCD
achieved when using a window of ω = 200 ms instead of ω = 20 ms is 13.52%
and 17.28% for the MMSE and fMMSE systems, respectively.

The right panel in Fig. 2 shows the relative differences (expressed in percent)
between the MMSE method and its fast version fMMSE. As it can be seen, both
methods perform almost equally except when K > 1 or when short windows are
used. In those cases, the performance of the fMMSE method degrades because
the mapping uncertainty is higher when using short windows and, hence, it is
more difficult for the fMMSE method to choose the ‘correct’ mixture component
for performing the mapping. For example, for K = 128 and ω = 20 ms, the
fMMSE algorithm is 7.21% worse than MMSE. Conversely, the differences are
almost insignificant (≤ 2% of degradation) for K = 1 or when long windows are
used (e.g. ω = 200 ms). In terms of speech intelligibility, though not formally
evaluated in this work, informal listening show that speech generated by both
methods is intelligible and that the speaker’s voice is clearly identifiable 4.

The detailed MCD results obtained by the MMSE conversion system for each
of the five subjects in the TIDigits database are shown in Fig. 3. A 64-component
MFA model, which is the best model in Fig. 2, is chosen. As can be seen in Fig.

4 Several speech samples are available in the Demos section of http://www.hull.ac.
uk/speech/disarm

http://www.hull.ac.uk/speech/disarm
http://www.hull.ac.uk/speech/disarm
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Fig. 3. Mel-ceptral distortion results obtained by the MMSE conversion system for
each speaker in the TIDigits database.
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Fig. 4. Comparison between the proposed approach for articulatory-to-acoustic con-
version using MFAs and Toda’s et al. approach using GMMs [44]. For our proposal,
the conversion accuracy using different latent space dimensions (i.e. 5, 10, 15, 20, and
25) for vt in (5) is evaluated.

3, the best results are obtained for subjects M1 and M4 and the worst results
for M2 and F1. The differences in performance among speakers can be mainly
attributed to two factors: the user’s experience in using the PMA device and
how well the device fits her/his anatomy. In regard of user’s experience, it must
be pointed out that M1, M3 and M4 were proficient in the use of the PMA
device, while for M2 and F1 the data recording session was also the first time
they used the PMA device. With respect to the second reason, the current PMA
device prototype was specifically designed for M1, so it is reasonable to think
that articulatory data is more accurately captured for him than for the other
subjects.
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Fig. 5. Mel-cepstral distortion results on the Arctic database. Left and middle: Average
results across all subjects for the MMSE and fMMSE systems as a function of the
number of mixture components used in the MFA model and the length of the PMA-
frame window. Right : Relative degradation of the fMMSE system with respect to the
MMSE-based one.

Next, we compare our proposal with the well-known GMM-based conversion
technique proposed by Toda et al. in [44,43]. For a fairer comparison, both meth-
ods are evaluated using the MMSE-based mapping algorithm. Also, we evaluate
our proposal using different dimensions for the latent space variable vt in (5).
The dimensions are 5, 10, 15, 20, and 25, the latter being the dimensionality
of the speech feature vectors. Results are shown in Fig. 4 for both systems. It
can be seen that both methods perform almost equally except when the dimen-
sionality of the latent space in the our system is very small (i.e. 5 or 10). In
this case, the quality of synthetic speech is slightly degraded due to the inability
of properly capturing the correlations between the acoustic and PMA spaces
in such low-dimensional latent spaces. For dimensions greater than 15, both ap-
proaches report more or less the same results, with the benefit that our proposed
approach is more computationally efficient because of the savings of carrying out
the computations in the reduced-dimension space.

5.5 Results on the Arctic Database

Figure 5 shows the MCD results obtained by the MMSE and fMMSE systems
on the Arctic database (left and middle contour plots), as well as the relative
degradation of the fast MMSE algorithm w.r.t. the MMSE algorithm (right
contour plot). It can be seen that the results for the Arctic database are not
as good as the results for the TIDigit database in Figure 2. This is due to
greater phonetic variability of the Arctic sentences. In fact, the Arctic corpus
was designed for phonetic balance. This greater complexity results in a more
complex PMA-to-acoustic mapping in the case of the Arctic sentences. Apart
from that, another reason the MCD results are worse on the Arctic database is
the limitations of the current PMA device for modelling some areas of the vocal
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Fig. 6. Box plot of the distributions of the MCD results for different phone categories
on the Arctic database. Bottom and top edges of the boxes are the first (Q1) and third
(Q3) quartiles of the data. Red bands inside the boxes represents the median, while
the means are represented with small, red boxes. Whiskers extend up to 1.5 times the
interquartile range (i.e. Q3-Q1) and the outliers are plotted with black crosses. Phone
categories are those in the IPA chart [30]. Top: Results when considering the manner
of articulation of the phones. Bottom: Results for the place of articulation.

tract (e.g. sounds articulated at the back of the mouth) [20,21], as discussed
below. Since the Arctic sentences contain more phones articulated in those areas
than the digits vocabulary, this harms the overall reconstruction performance
achieved on the Arctic database. Regarding the two conversion algorithms, the
MMSE-based system outperforms its fast version (fMMSE) again. Nevertheless,
the differences between both systems are small, particularly when both high
number of mixtures and long windows are used for the mapping. The best overall
results are obtained using 256 mixtures in the MFA model and an analysis
window spaning 80 ms. This is configuration used in the rest of this section.

To investigate in detail the performance of our system, we conduct a second
analysis at the phone level in which the distortions are computed for each phone
and the resultant distributions are represented as a box plot. For the sake of
clarity, the MCD results of the phones sharing similar articulation properties are
grouped together rather than presenting the results for each individual phone.
Here, phones are grouped according to their manner and place of articulation.
For segmenting the speech signals into phones, we force-aligned their word-level
transcriptions using a cross-word, triphone-based speech recogniser adapted to
each subject. The phone-level transcriptions with timing information provided
by the forced-alignment procedure are then used to segment the original and
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Fig. 7. Top-left and bottom-left : Spectrograms of natural speech (top), and speech esti-
mated from PMA data (bottom) corresponding to the sentence “My name is Ferguson”
spoken by the subject M1. Top-right and right-left : Spectrograms of the sentence “It
was more like sugar” spoken by M5.

estimated speech signals. The results of this second analysis are shown in Figure
6. When considering the manner of articulation, we can see that the plosive,
affricate and approximant consonants tend to be synthesised less accurately than
other sound classes due to their more complex articulation and dynamics. When
considering the place of articulation, it can seen that sounds articulated at the
middle and back of the mouth (palatal, velar, and glottal consonants) are, on
average, less well reconstructed than other phones. This is due to the limitations
of the current PMA prototype for modelling those areas of the vocal tract [20,21].

Finally, in Figure 7, a comparison between the spectrograms computed from
natural speech and from the speech synthesised by our system is presented for the
two subjects in the Arctic database. As can be seen, our system is able to predict
with high level of accuracy the speech formants and, in general, the spectral
envelope of the signals. Spectral detail, however, is lost due to over-smoothing
when training the MFA models [52] and the limited information provided by
PMA about the articulation process. It also can be seen that the estimated
signals are synthesised with no voicing. This is also due to the limited ability of
the current PMA prototype for capturing the movement of the vocal folds.
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Fig. 8. Cross-session synthesis results: MCD results obtained when synthesising PMA
data from Session 2 in the TIDigits database using a MFA model trained on the Session
1 dataset.

5.6 Cross-session synthesis results

So far it has been assumed that there is no mismatch between the data used
for training and that used for testing. However, as already discussed in Section
3.3, this is not always true. Variations in the positions of the magnets pre-
and post- implantation as well as variations in the relative position of magnets
with respect to the head-frame used to hold the magnetic sensors (see Figure
1), will inevitably lead to mismatches that will degrade the quality of speech
synthesised from sensor data. In this section, we evaluate the performance of
the direct synthesis technique in one scenario which introduces such mismatch:
speech is synthesised from PMA data recorded by the speaker M1 in his second
recording session (Session 2) using a MFA model trained on parallel data from
his first session (Session 1).

Figure 8 shows the MCD results obtained for the above experiment when
a 64-component MFA model and a PMA-frame window of 200 ms are used. In
the figure, Ideal refers to the ideal case in which there is no mismatch between
training and testing (i.e. parallel data from Session 2 is used for training and
testing within the cross-validation scheme), the NoAdapt system directly convert
the sensor data from Session 2 using the model trained on data from Session
1 with no compensation, and the remaining results are for the compensation
technique proposed in Section 3.3: LIN models the mismatch function as a linear
transformation, while MLP uses a multilayer perceptron with 10, 15, 20 and 25
sigmoid units in the hidden layer.

In the figure, the best results are obtained in the Ideal case where there is
no mismatch between training and testing. Even though magnet placement was
documented to avoid misplacement between sessions, we see from the NoAdapt
results that even small changes between sessions are catastrophic in terms of the
synthesised speech quality. This is greatly alleviated, however, by the proposed
compensation technique. In this case, the results are only slightly worse than



Voice restoration after laryngectomy from sensed articulator movement 19

the result obtained in the ideal case. Regarding the different approaches for
mismatch compensation, it can be seen that the best results are obtained using
a MLP with 25 hidden units due to the greater modelling flexibility allowed by
this model. Nevertheless, a simple linear transformation (LIN) also achieves very
similar results to MLP-25 with the benefit of LIN being more computationally
efficient.

6 Conclusions

In this chapter we have described a system for synthesising speech from motion
data captured from the lips and tongue using magnetic sensing. Preliminary eval-
uation of the system via objective performance metrics show that the proposed
system is able to generate speech of sufficient quality for some vocabularies.
However, problems still remain to scale up the system to work consistently for
phonetically rich vocabularies. It has also been reported that one of the current
limitations of our sensing technique, that is, the differences between the articu-
latory data captured in different sessions, can be greatly reduced by applying a
pre-processing technique to the sensor data before the conversion. This brings us
closer to being able to apply our voice reconstruction system in a realistic treat-
ment scenario. These results encourage us in pursuing our goal of developing a
system that will ultimately allow laryngectomy patients to recover their voice. In
order to reach this point, a number of questions will need to addressed in future
research such as improving the performance for phonetically rich vocabularies,
ways of predicting the prosodic information from PMA data, and extending the
technique to impaired subjects.
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