Taller de Jóvenes Investigadores - RSME

From constant mean curvature surfaces to overdetermined elliptic problems

Pieralberto Sicbaldi

Université d'Aix-Marseille and Universidad de Granada

Granada

3 de octubre 2013

The problem:

To classify domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the over-determined elliptic system

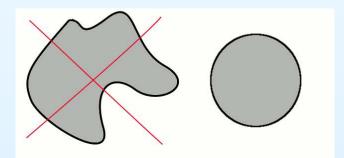
$$\left\{ \begin{array}{rclcr} \Delta\,u + f(u) & = & 0 & \text{in} & \Omega \\ \\ u & = & 0 & \text{on} & \partial\Omega \\ \\ \frac{\partial u}{\partial \nu} & = & \text{constant} & \text{on} & \partial\Omega \end{array} \right.$$

The problem:

To classify domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the over-determined elliptic system

$$\left\{ \begin{array}{rclcr} \Delta\,u + f(u) & = & 0 & \text{in} & \Omega \\ \\ u & = & 0 & \text{on} & \partial\Omega \\ \\ \frac{\partial u}{\partial \nu} & = & \text{constant} & \text{on} & \partial\Omega \end{array} \right.$$

Theorem (Serrin, 1971). If Ω is bounded it is a ball



The non compact case

The non compact case

The problem becomes : to classify unbounded domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the over-determined elliptic system

$$\left\{ \begin{array}{rclcr} \Delta\,u + f(u) & = & 0 & \text{in} & \Omega \\ \\ u & = & 0 & \text{on} & \partial\Omega \\ \\ \frac{\partial u}{\partial \nu} & = & \text{constant} & \text{on} & \partial\Omega \end{array} \right.$$

The non compact case

The problem becomes : to classify unbounded domains $\Omega \in \mathbb{R}^n$ that support a positive solution of the over-determined elliptic system

$$\left\{ \begin{array}{ccccc} \Delta\,u + f(u) & = & 0 & \text{in} & \Omega \\ & u & = & 0 & \text{on} & \partial\Omega \\ & & & \frac{\partial u}{\partial\nu} & = & \text{constant} & \text{on} & \partial\Omega \end{array} \right.$$

<u>Definition</u>: If such problem is solvable, Ω is a f-extremal domain

Constant mean curvature surfaces

The argument used by Serrin was a generalization of the method used by **Alexandroff** in 1962 to prove the following:

Constant mean curvature surfaces

The argument used by Serrin was a generalization of the method used by **Alexandroff** in 1962 to prove the following:

Theorem. In \mathbb{R}^n the only enbedded compact mean curvature hypersurfaces are the spheres.

Constant mean curvature surfaces

The argument used by Serrin was a generalization of the method used by **Alexandroff** in 1962 to prove the following:

Theorem. In \mathbb{R}^n the only enbedded compact mean curvature hypersurfaces are the spheres.

Recall: the mean curvature H(p) in a point p of a given hypersurface is the sum (or the mean) of the principal curvatures at p.

Conjecture of Berestycki, Caffarelli and Nirenberg

Communication on Pure and Applied Mathematics, (1997).

$$\begin{cases} \Delta u + f(u) &= 0 & \text{in} \quad \Omega \\ \\ u &> 0 & \text{in} \quad \Omega \\ \\ u &= 0 & \text{on} \quad \partial \Omega \end{cases} \qquad \begin{array}{|l|l|} \text{EXTRA HYPOTHESIS} \\ \\ \mathbb{R}^n \backslash \overline{\Omega} \text{ connected} \\ \\ u \text{ bounded} \\ \\ \frac{\partial u}{\partial \nu} &= \text{ constant} \quad \text{on} \quad \partial \Omega \,, \end{cases}$$

 Ω is a half space, or a ball, or a cylinder $\mathbb{R}^j \times B$ (where B is a ball) or the complement of one of these three exemples.

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special kind of functions f, with some special behaviours of the solution u at infinity

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special kind of functions f, with some special behaviours of the solution u at infinity

Berestycki-Caffarelli-Nirenberg (Comm. Pure & Appl. Math.)

Some rigidity results for epigraphs, for some very special kind of functions f, with some special assumptions of asymptotical flatness for the boundary of the domain.

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special kind of functions f, with some special behaviours of the solution u at infinity

Berestycki-Caffarelli-Nirenberg (Comm. Pure & Appl. Math.)

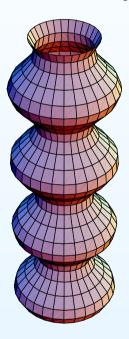
Some rigidity results for epigraphs, for some very special kind of functions f, with some special assumptions of asymptotical flatness for the boundary of the domain.

Farina-Valdinoci (Arch. Rat. Mech. & An.)

Some rigidity results for epigraphs in \mathbb{R}^2 for all functions f, and in \mathbb{R}^3 for some classes of functions f.

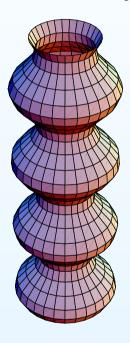
Coming back to constant mean curvature surfaces

In \mathbb{R}^n there are non compact surfaces with constant mean curvature! For exemple the Delaunay surfaces...



Coming back to constant mean curvature surfaces

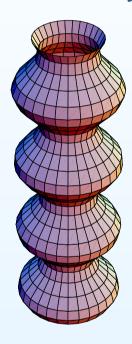
In \mathbb{R}^n there are non compact surfaces with constant mean curvature! For exemple the Delaunay surfaces...



It is a one parameter smooth family of constant mean curvature surfaces in \mathbb{R}^3 .

Coming back to constant mean curvature surfaces

In \mathbb{R}^n there are non compact surfaces with constant mean curvature! For exemple the Delaunay surfaces...



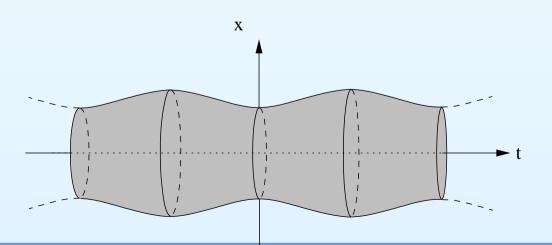
It is a one parameter smooth family of constant mean curvature surfaces in \mathbb{R}^3 .

They are periodic perturbations of a cylinder and are surfaces of revolution

A parallel result on overdetermined elliptic problems

Theorem (S. 2010 & Schlenk-S. 2011): For $n \geq 2$ there exists a smooth family of periodic perturbations Ω of the cylinder $B^{n-1} \times \mathbb{R}$ (B^{n-1} = unit ball), with boundary of revolution, where there exists a periodic and positive solution to

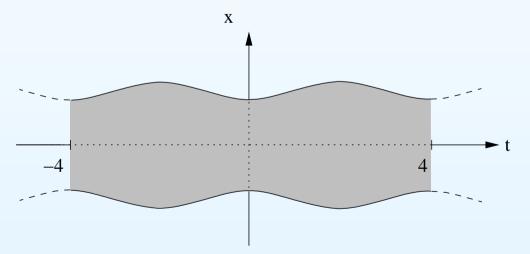
$$\left\{ \begin{array}{rclcl} \Delta u + \lambda \, u & = & 0 & & \text{in} & \Omega \\ & u & = & 0 & & \text{on} & \partial \Omega \\ & & & \frac{\partial u}{\partial \nu} & = & \text{constant} & \text{on} & \partial \Omega \end{array} \right.$$



Corollary. The conjecture is false for $n \geq 3$.

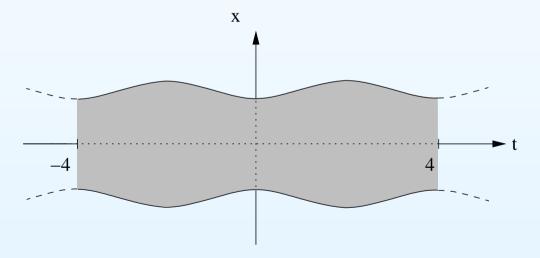
Corollary. The conjecture is false for $n \geq 3$.

The result is true also in dimension 2. <u>But this is not</u> a counterexemple to the conjecture.



Corollary. The conjecture is false for $n \geq 3$.

The result is true also in dimension 2. <u>But this is not</u> a counterexemple to the conjecture.



The complement of such domain is not connected.

The conjecture in dimension 2

The conjecture in dimension 2

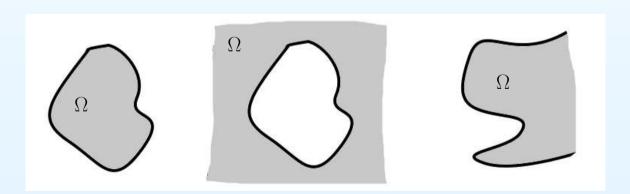
Theorem (Ros-S. 2013)

The conjecture of Berestycki-Caffarelli-Nirenberg in dimension 2 is true for all function f such that $f(t) \ge \lambda t$ for a $\lambda > 0$.

The proof of the theorem (1)

Step 1. If $\mathbb{R}^2 \setminus \overline{\Omega}$ is connected then there are only three possibilities for Ω :

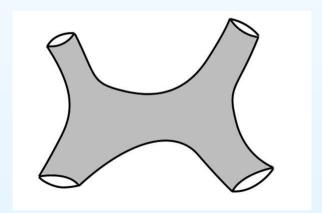
- 1. Ω is bounded (Done by Serrin!)
- 2. Ω is an exterior domain (Easy case, EDP techniques)
- 3. $\partial\Omega$ is an open curve that separated \mathbb{R}^2 in two connected components, and Ω is one of such components (Hard case)



Meeks, 1989, J. Diff. Geom.

Definition. A surface has finite topology if

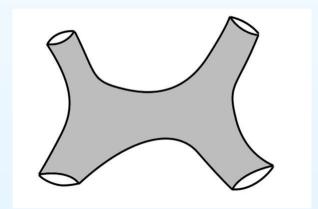
- 1. it is a compact surface
- 2. outside of a big ball, the surface is done of a finite number of noncompact components diffeomorphic to $S^{n-1} \times \mathbb{R}_+$, called ends.



Meeks, 1989, J. Diff. Geom.

Definition. A surface has finite topology if

- 1. it is a compact surface
- 2. outside of a big ball, the surface is done of a finite number of noncompact components diffeomorphic to $S^{n-1} \times \mathbb{R}_+$, called ends.

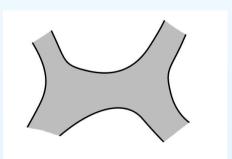


Theorem. Let S be a properly embedded finite topology nonzero CMC surface in \mathbb{R}^3 . Then S cannot have only one end.

The proof of the theorem

Definition. We say that a domain has finite topology if

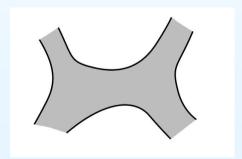
- 1. it is bounded domain, or
- 2. it is the complement of a compact domain, or
- 3. outside of a big ball, the domain is done of a finite number of noncompact components diffeomorphic to $B^{n-1} \times \mathbb{R}_+$, called ends



The proof of the theorem

Definition. We say that a domain has finite topology if

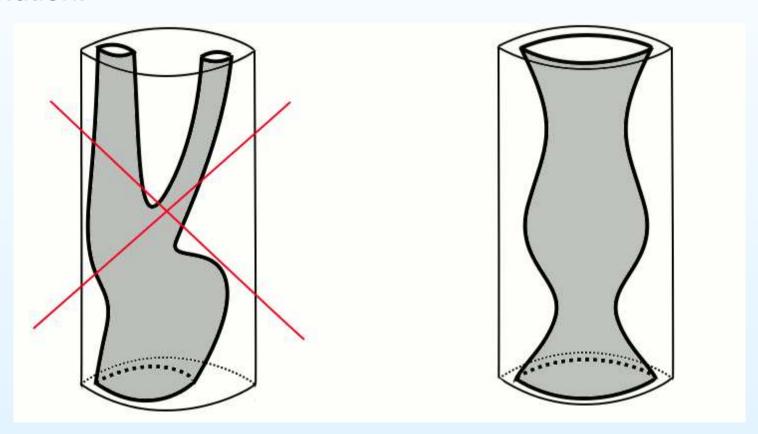
- 1. it is bounded domain, or
- 2. it is the complement of a compact domain, or
- 3. outside of a big ball, the domain is done of a finite number of noncompact components diffeomorphic to $B^{n-1} \times \mathbb{R}_+$, called ends



Proposition (Ros-S.). If $f(t) \ge \lambda t$ for some $\lambda > 0$ and Ω is an f-extremal domain, then Ω cannot have only one end.

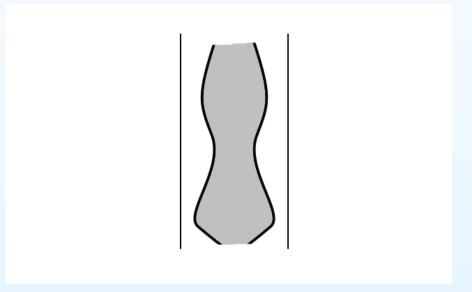
Theorem: Korevaar, Kusner & Solomon, 1989

Let S be a properly embedded finite topology nonzero CMC surface in \mathbb{R}^3 contained in a cylinder. Then S is surface of revolution.



An other result

Theorem (Ros-S. 2013). Let Ω be an f-extremal domain of \mathbb{R}^2 with bounded curvature. If Ω is contained in a half-plane, then Ω is either a ball or a half-plane or there exists a positive function $\varphi: \mathbb{R} \longrightarrow]0, \infty[$ such that Ω is $\{|y| < \varphi(x)\}.$

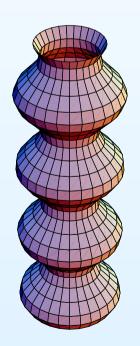


Corollary. Proof of the conjecture of Berestycki-Caffarelli-Nirenberg in the half-plane under the assumption of bounded curvature.

Generalization to $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$ (Morabito-S.)

Existence of Delaunay type domains with a positive solution of

$$\begin{cases} \Delta u + \lambda \, u &= 0 & \text{in} \quad \Omega \\ u &= 0 & \text{on} \quad \partial \Omega \\ \frac{\partial u}{\partial \nu} &= \text{constant} \quad \text{on} \quad \partial \Omega \end{cases}$$



Basic conjecture:

a class of CMC

domains in \mathbb{R}^n that support a positive solution to the problem

hypersurfaces in
$$\mathbb{R}^{n+1}$$
 (which?)
$$\begin{cases} \Delta u + f(u) &= 0 & \text{in } \Omega \\ u &= 0 & \text{on } \partial \Omega \\ \frac{\partial u}{\partial \nu} &= \text{const on } \partial \Omega \end{cases}$$

for $f(t) = \lambda t$ (and maybe others?)

1. Existence of "THE" family of Delaunay type domains for overdetermined problems, from the cylinder to the sphere (as limit).

- 1. Existence of "THE" family of Delaunay type domains for overdetermined problems, from the cylinder to the sphere (as limit).
- 2. Rigidity of the ends of overdetermined domains: all the ends have the aymptotic of such Delaunay domains.

Open problems and conjectures (Ros-S.)

- 1. Existence of "THE" family of Delaunay type domains for overdetermined problems, from the cylinder to the sphere (as limit).
- 2. Rigidity of the ends of overdetermined domains: all the ends have the aymptotic of such Delaunay domains.
- 3. Gluing method: existence of highly nontrivial overdetermined domains with such kind of ends.

Open problems and conjectures (Ros-S.)

- 1. Existence of "THE" family of Delaunay type domains for overdetermined problems, from the cylinder to the sphere (as limit).
- 2. Rigidity of the ends of overdetermined domains: all the ends have the aymptotic of such Delaunay domains.
- 3. Gluing method: existence of highly nontrivial overdetermined domains with such kind of ends.
- 4. Correspondence between some kind of minimal surfaces and harmonic overdetermined problems.

Classification of harmonic overdetermined solutions

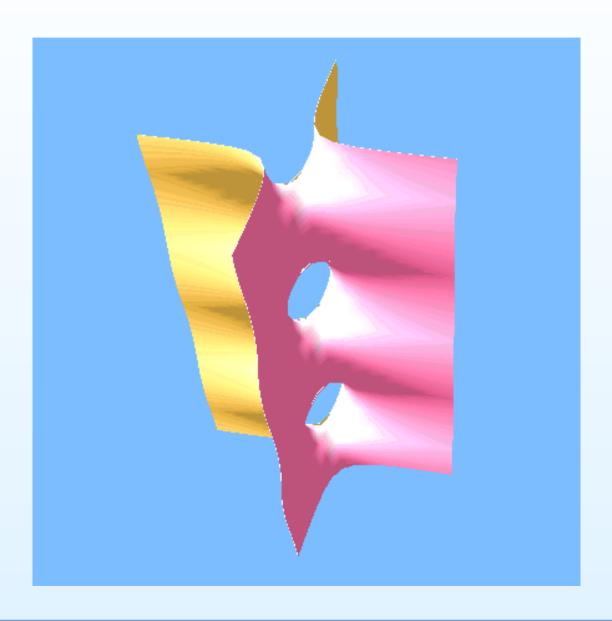
Theorem (Traizet 2013).

domains in \mathbb{R}^2 that support a positive solution to the problem

$$\left\{ \begin{array}{lll} \Delta u &=& 0 & \text{ in } & \Omega \\ u &=& 0 & \text{ on } & \partial \Omega \\ \frac{\partial u}{\partial \nu} &=& \text{ constant } & \text{ on } & \partial \Omega \end{array} \right.$$

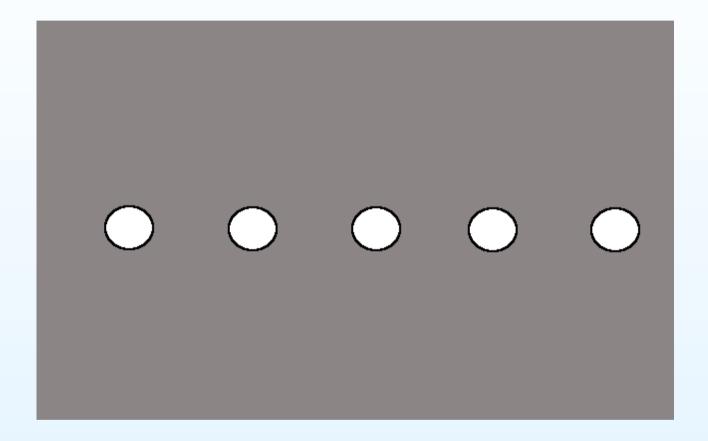
with the hypothesis that $\partial\Omega$ has a finite number of components, at least in the quotient if Ω is periodic

The Scherk simply periodic minimal surface

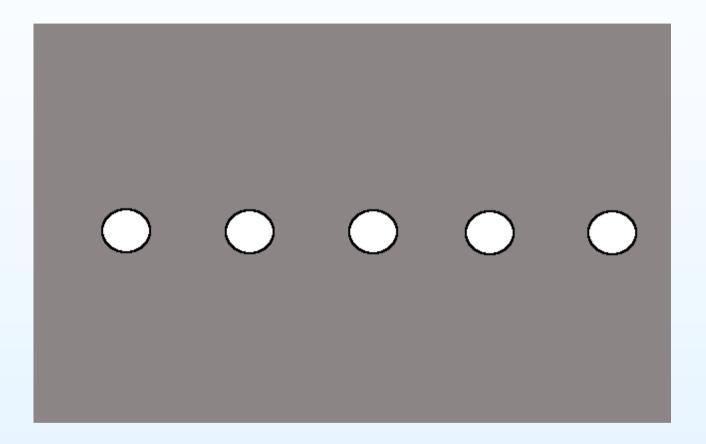


The Scherk type domain

The Scherk type domain



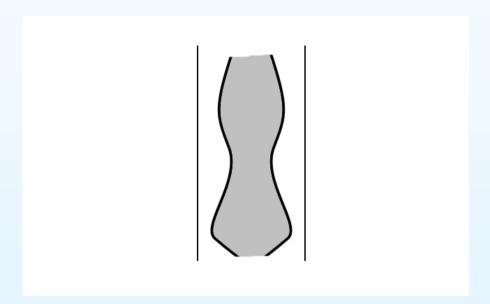
The Scherk type domain



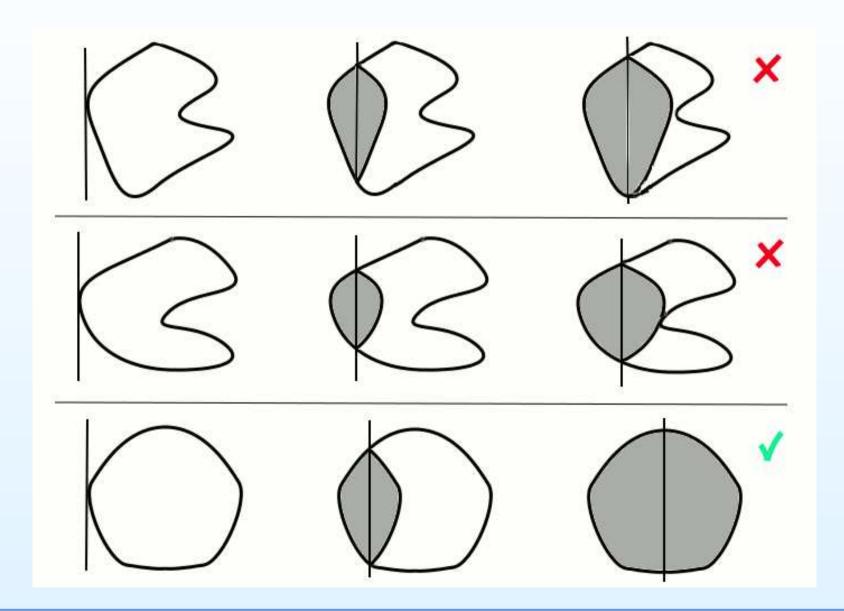
Such domain was found by the physicians Baker, Saffman and Sheffield in 1979 as a solution to an equilibrium problem in hydrodynamics of vortices!

We give the idea of the proof of:

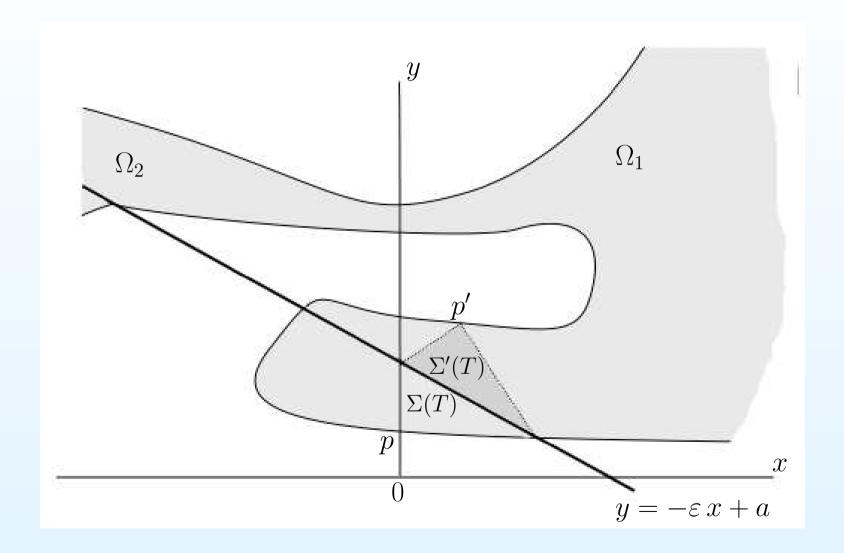
Theorem (Ros-S. 2013). Let Ω be an f-extremal domain of \mathbb{R}^2 with bounded curvature. If Ω is contained in a half-plane, then Ω is either a ball or a half-plane or there exists a positive function $\varphi: \mathbb{R} \longrightarrow]0, \infty[$ such that Ω is the symmetric domain $\{|y| < \varphi(x)\}.$



Step 1: The moving plane argument

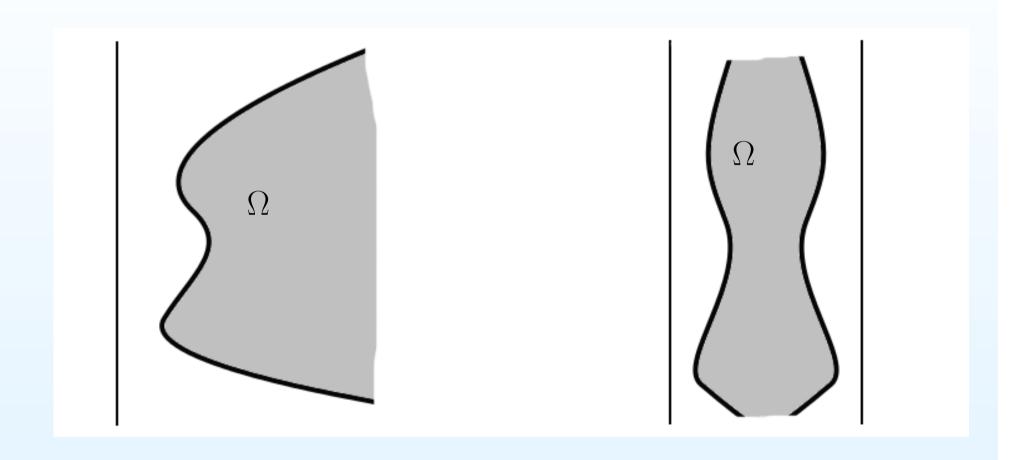


Step 2: The tilted moving plane argument



Step 3: The implication of the moving plane argument

Step 3: The implication of the moving plane argument



Step 4: From classic PDE's theory

Step 4: From classic PDE's theory

Bounded curvature of $\partial\Omega$ implies that ∇u is bounded.

Step 4: From classic PDE's theory

Bounded curvature of $\partial\Omega$ implies that ∇u is bounded.

