Enumeration of self-dual planar maps

Anna de Mier

Universitat Politècnica de Catalunya, Barcelona

Brief summary

1. Enumeration of self-dual planar maps

2. Enumeration of self-dual planar maps

3. Enumeration of self-dual planar maps

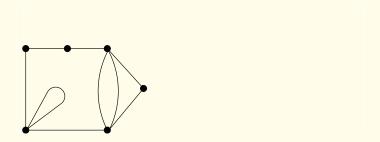
<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

That is, a planar map has vertices V and edges E joining vertices, in such a way that the result is connected.

<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

That is, a planar map has vertices V and edges E joining vertices, in such a way that the result is connected.



<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

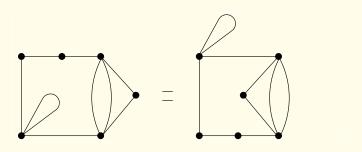
That is, a planar map has vertices V and edges E joining vertices, in such a way that the result is connected.



The connected components of $S^2 \setminus (V \cup E)$ are the faces of the map

<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

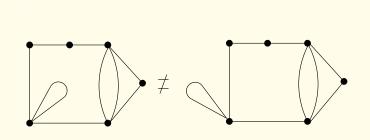
That is, a planar map has vertices V and edges E joining vertices, in such a way that the result is connected.



The connected components of $S^2 \setminus (V \cup E)$ are the faces of the map

<u>Def</u> A planar map is an embedding of a connected (finite) graph in the sphere S^2 without edge-crossings

That is, a planar map has vertices V and edges E joining vertices, in such a way that the result is connected.



The connected components of $S^2 \setminus (V \cup E)$ are the faces of the map

Thm (Steinitz)

3-connected maps have a unique embedding and "are" convex polyhedra

Thm (Steinitz)

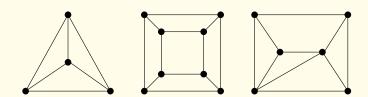
3-connected maps have a unique embedding and "are" convex polyhedra

<u>Def</u> A map (with at least 4 edges) is 3-connected if it has no loops or multiple edges and the deletion of up to two vertices keeps it a map

Thm (Steinitz)

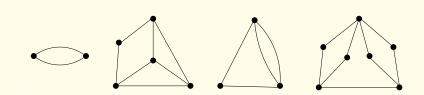
3-connected maps have a unique embedding and "are" convex polyhedra

<u>Def</u> A map (with at least 4 edges) is 3-connected if it has no loops or multiple edges and the deletion of up to two vertices keeps it a map



<u>Def</u> A map (with at least 2 edges) is 2-connected if it has no loops and the deletion of any vertex keeps it a map

<u>Def</u> A map (with at least 2 edges) is 2-connected if it has no loops and the deletion of any vertex keeps it a map



W. T. Tutte: A census of planar maps (1963)

W. T. Tutte: A census of planar maps (1963)

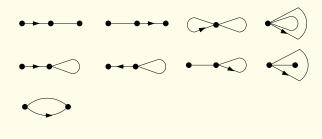
W. T. Tutte: A census of planar maps (1963)

<u>Def</u> A rooted map is a map together with a choice of an edge, and a vertex and a face incident to that edge

W. T. Tutte: A census of planar maps (1963)

<u>Def</u> A rooted map is a map together with a choice of an edge, and a vertex and a face incident to that edge

(When drawing on the plane, the root face is always the one to the right of the root edge)



Thm (Tutte 63)

The number of arbitrary rooted maps with n edges is

$$\frac{2\cdot 3^n}{(n+1)(n+2)}\binom{2n}{n}$$

Thm (Tutte 63)

The number of arbitrary rooted maps with n edges is

$$\frac{2\cdot 3^n}{(n+1)(n+2)}\binom{2n}{n}$$

The number of 2-connected rooted maps with n edges is

$$\frac{2}{n(3n-2)}\binom{3n-2}{2n-1}$$

Thm (Tutte 63)

The number of arbitrary rooted maps with n edges is

$$\frac{2\cdot 3^n}{(n+1)(n+2)}\binom{2n}{n}$$

The number of 2-connected rooted maps with n edges is

$$\frac{2}{n(3n-2)}\binom{3n-2}{2n-1}$$

The generating function for 3-connected rooted maps is

$$z^6 + 4z^8 + 6z^9 + 24z^{10} + 66z^{11} + 214z^{12} + \cdots$$

Thm (Tutte 63)

The number of arbitrary rooted maps with n edges is

$$\frac{2\cdot 3^n}{(n+1)(n+2)}\binom{2n}{n}$$

The number of 2-connected rooted maps with n edges is

$$\frac{2}{n(3n-2)}\binom{3n-2}{2n-1}$$

The generating function for 3-connected rooted maps is

$$z^6 + 4z^8 + 6z^9 + 24z^{10} + 66z^{11} + 214z^{12} + \cdots$$

(The generating function of a sequence $a_0, a_1, a_2 \dots$ is the series

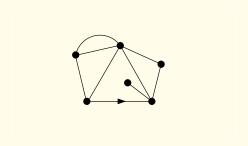
$$A(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

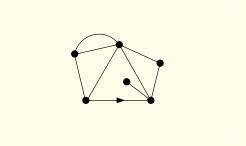
Topics in map enumeration

Enumeration of maps according to other restrictions/parameters

Enumeration of non-rooted maps

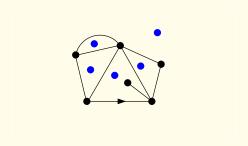
Relation with other combinatorial objects and bijective proofs





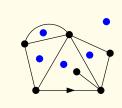
Def Given a map M, its dual M^* is constructed as follows:

- Place a new vertex on each face of M

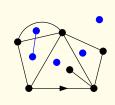


Def Given a map M, its dual M^* is constructed as follows:

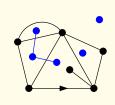
- Place a new vertex on each face of M



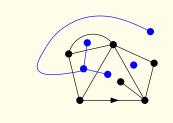
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



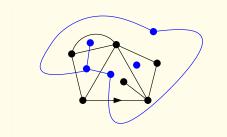
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



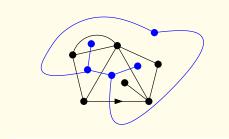
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



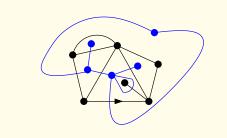
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



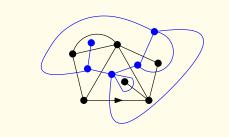
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



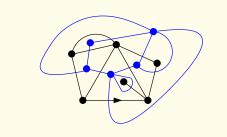
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



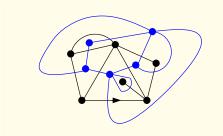
- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*

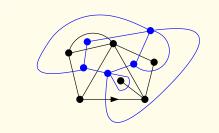


- Place a new vertex on each face of M
- For each edge *e* of *M*, join the vertices corresponding to the faces incident with *e*



- Place a new vertex on each face of M
- For each edge e of M, join the vertices corresponding to the faces incident with e
 (In this way, the faces of M* correspond to the vertices of M)

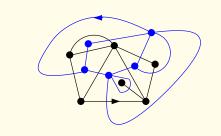
The dual of a rooted map



Def Given a map M, its dual M^* is constructed as follows:

- Place a new vertex on each face of M
- For each edge e of M, join the vertices corresponding to the faces incident with e
 (In this way, the faces of M* correspond to the vertices of M)
- Choose as root-edge of M* the edge incident to the root-face of M that leaves the root-vertex of M to its right

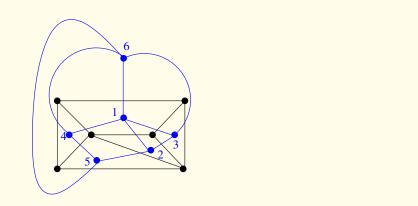
The dual of a rooted map



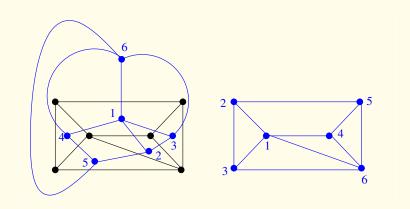
Def Given a map M, its dual M^* is constructed as follows:

- Place a new vertex on each face of M
- For each edge e of M, join the vertices corresponding to the faces incident with e
 (In this way, the faces of M* correspond to the vertices of M)
- Choose as root-edge of M* the edge incident to the root-face of M that leaves the root-vertex of M to its right

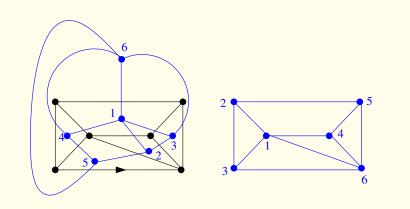
 $\underline{\mathbf{Def}}$ A rooted map is self-dual if M^* and M are the same map



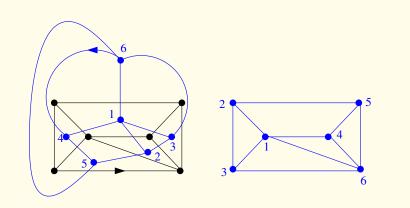
 $\underline{\mathsf{Def}}$ A rooted map is self-dual if M^* and M are the same map



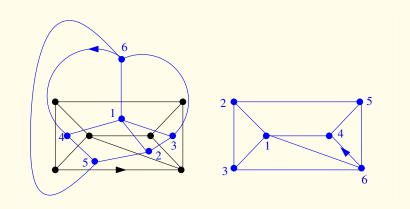
 $\underline{\mathsf{Def}}$ A rooted map is self-dual if M^* and M are the same map



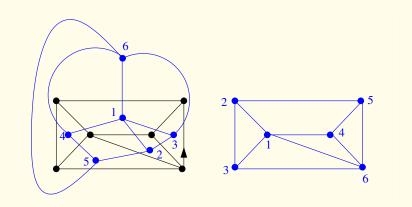
 $\underline{\mathbf{Def}}$ A rooted map is self-dual if M^* and M are the same map



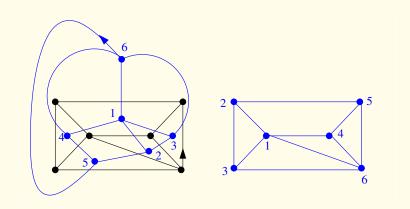
 $\underline{\mathsf{Def}}$ A rooted map is self-dual if M^* and M are the same map



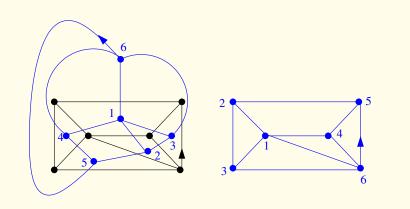
 $\underline{\mathbf{Def}}$ A rooted map is self-dual if M^* and M are the same map



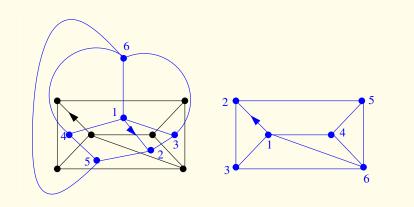
 $\underline{\mathsf{Def}}$ A rooted map is self-dual if M^* and M are the same map



 $\underline{\mathsf{Def}}$ A rooted map is self-dual if M^* and M are the same map



 $\underline{\mathbf{Def}}$ A rooted map is self-dual if M^* and M are the same map



The numbers of self-dual rooted maps

Thm (Kitaev, de Mier, Noy 14)

• The number of self-dual maps with 2n edges is

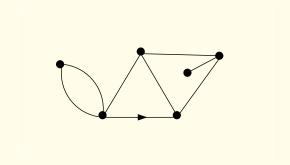
$$\frac{3^n}{n+1}\binom{2n}{n}$$

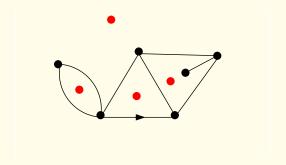
• The number of 2-connected self-dual maps with 2n edges is

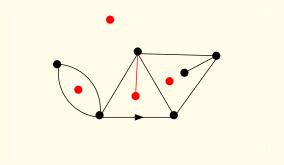
$$\frac{1}{n}\binom{3n-2}{n-1}$$

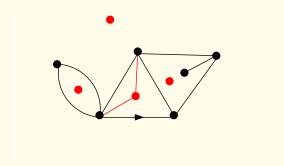
The generating function for 3-connected self-dual maps is

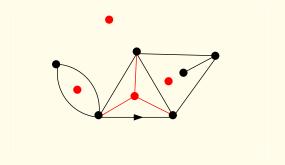
$$\frac{1-2z-2z^2-\sqrt{1-4z}}{2(z+2)}=z^3+2z^4+6z^5+18z^6+\cdots$$

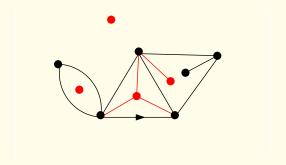


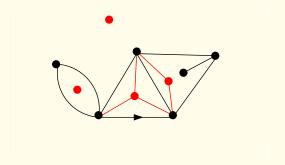


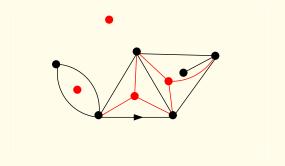


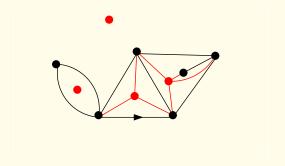


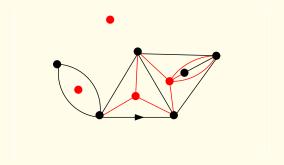


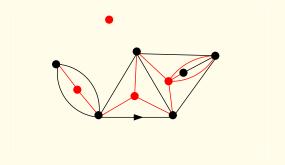


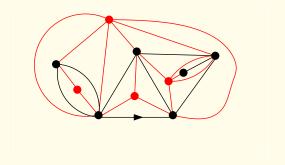


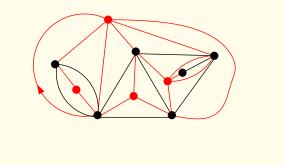


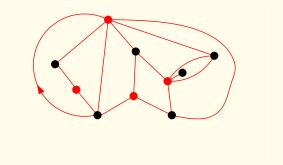




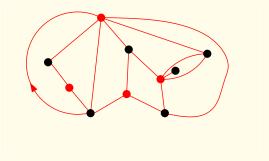






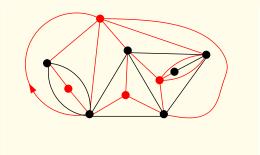


There is a well-known bijection between maps and loopless quadrangulations (i.e., maps where all faces have 4 sides)

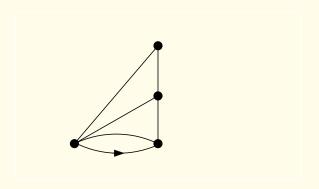


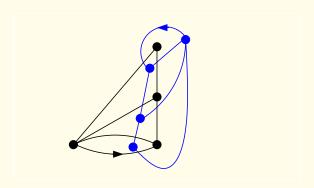
If the map has n edges, the quadrangulation has n faces

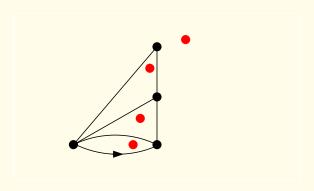
There is a well-known bijection between maps and loopless quadrangulations (i.e., maps where all faces have 4 sides)

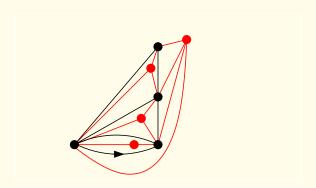


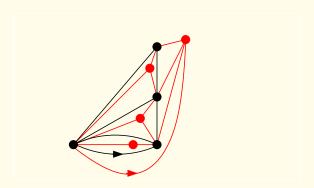
If the map has n edges, the quadrangulation has n faces Obs: the map is 2-connected if and only if the quadrangulation has no multiple edges

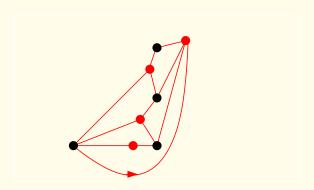


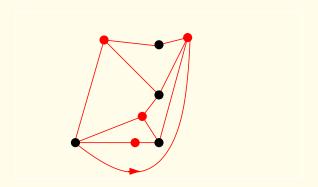


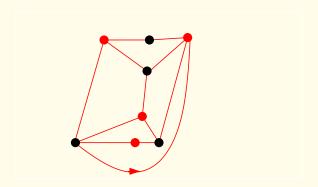




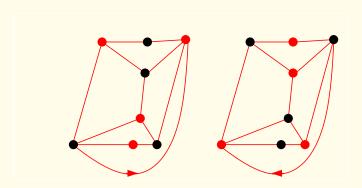


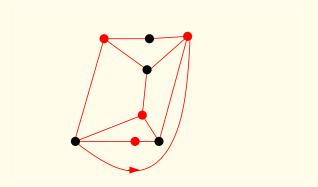


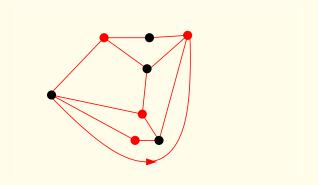


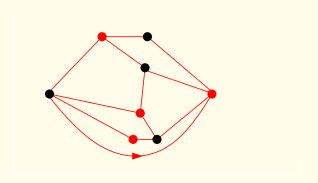


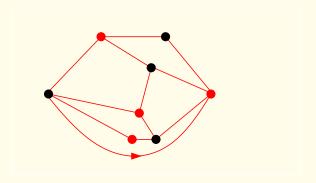
A map is self-dual if the associated quadrangulation remains the same after interchanging the colours of the vertices and reversing the root edge

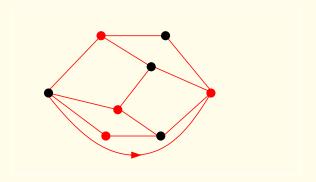


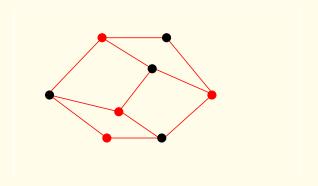


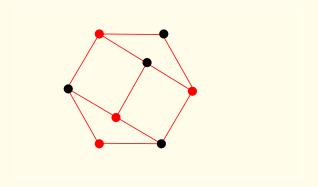


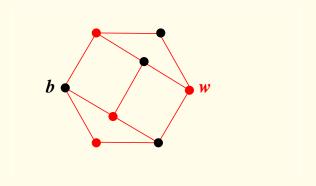




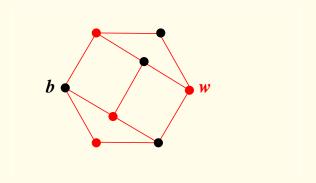








Deleting the root edge of the quadrangulation associated to a 2-connected self-dual map gives a quadrangulation of an hexagon invariant under a rotation of 180 degrees around the center (a *symmetric* quadrangulation)



So how many quadrangulations of an hexagon are symmetric and do not have the edge bw?

Thm (Brown 65) The number of symmetric quadrangulations of an hexagon with 2n-2 inner faces is

$$\frac{9(3n-4)!}{(n-2)!(2n-1)!}$$

Thm (Brown 65) The number of symmetric quadrangulations of an hexagon with 2n-2 inner faces is

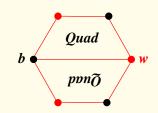
$$\frac{9(3n-4)!}{(n-2)!(2n-1)!}$$

From these we need to substract those having the edge bw.

Thm (Brown 65) The number of symmetric quadrangulations of an hexagon with 2n-2 inner faces is

$$\frac{9(3n-4)!}{(n-2)!(2n-1)!}$$

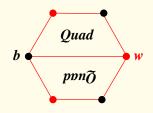
From these we need to substract those having the edge bw. Of which there are as many as quadrangulations with n faces:



Thm (Brown 65) The number of symmetric quadrangulations of an hexagon with 2n-2 inner faces is

$$\frac{9(3n-4)!}{(n-2)!(2n-1)!}$$

From these we need to substract those having the edge bw. Of which there are as many as quadrangulations with n faces:



From this the formula stated follows

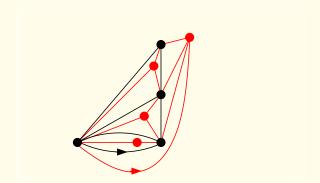
Which quadrangulations come from 3-connected maps?

Which quadrangulations come from 3-connected maps?

Mullin, Schellenberg 68:

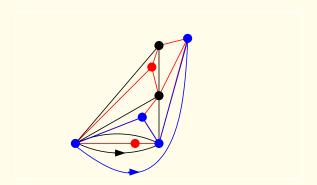
Which quadrangulations come from 3-connected maps?

Mullin, Schellenberg 68:



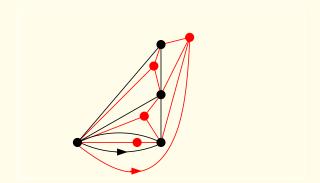
Which quadrangulations come from 3-connected maps?

Mullin, Schellenberg 68:



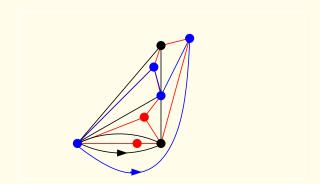
Which quadrangulations come from 3-connected maps?

Mullin, Schellenberg 68:



Which quadrangulations come from 3-connected maps?

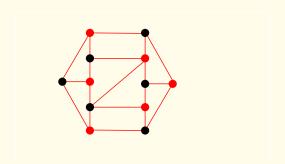
Mullin, Schellenberg 68:



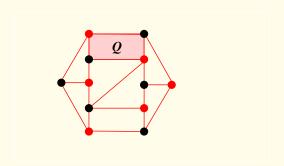
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation

Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation

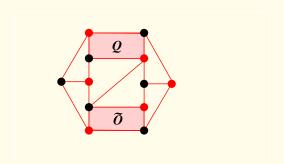
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



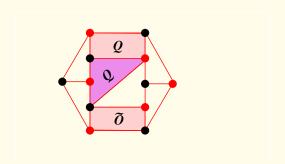
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



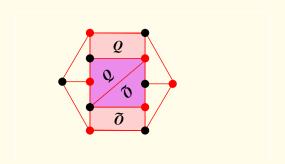
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



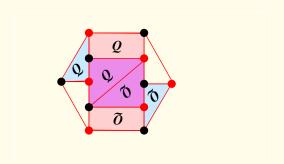
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



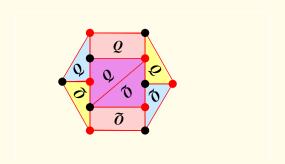
Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



Mullin, Schellenberg 65: any quadrangulation can be constructed from one without separating quadrangles by replacing each square by an arbitrary quadrangulation



So how many symmetric quadrangulations now?

- q(n): the number of quadrangulations with n interior faces
- $s_2(n)$: the number of quadrangulations of an hexagon that are symmetric and have 2n interior faces
- $s_3(n)$: the number of quadrangulations of an hexagon that are symmetric, have no separating quadrangles and have 2n interior faces

So how many symmetric quadrangulations now?

- q(n): the number of quadrangulations with n interior faces
- $s_2(n)$: the number of quadrangulations of an hexagon that are symmetric and have 2n interior faces
- $s_3(n)$: the number of quadrangulations of an hexagon that are symmetric, have no separating quadrangles and have 2n interior faces

Then:

$$s_2(n) = \sum_{i=1}^n s_3(i) \sum q(n_1) \cdots q(n_i)$$

(the second \sum over all solutions of $n_1 + \cdots + n_i = n$, $n_i \ge 1$)

Translating into generating functions

- Q(z): the GF for quadrangulations (i. e., maps) \checkmark
- $S_2(z)$: the GF for symmetric quadrangulations of an hexagon (i.e., self-dual 2-connected maps) \checkmark
- $S_3(z)$: the GF for symmetric quadrangulations of an hexagon without separating quadrangles

Translating into generating functions

- Q(z): the GF for quadrangulations (i. e., maps) \checkmark
- $S_2(z)$: the GF for symmetric quadrangulations of an hexagon (i.e., self-dual 2-connected maps) \checkmark
- $S_3(z)$: the GF for symmetric quadrangulations of an hexagon without separating quadrangles

Then:

$$S_3(Q(z)) \approx S_2(z)$$

Translating into generating functions

- Q(z): the GF for quadrangulations (i. e., maps) \checkmark
- $S_2(z)$: the GF for symmetric quadrangulations of an hexagon (i.e., self-dual 2-connected maps) \checkmark
- $S_3(z)$: the GF for symmetric quadrangulations of an hexagon without separating quadrangles

Then:

$$S_3(Q(z)) \approx S_2(z)$$

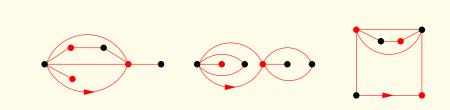
We invert Q(z) and obtain the claimed expression for $S_3(z)$

The arbitrary case

As the quadrangulation can have multiple edges, the root-face may not be a proper quadrangle

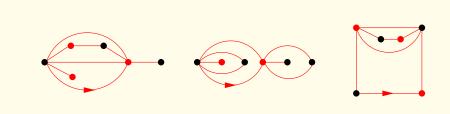
The arbitrary case

As the quadrangulation can have multiple edges, the root-face may not be a proper quadrangle



The arbitrary case

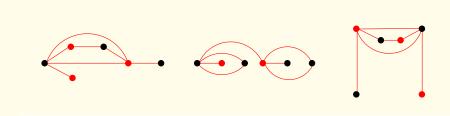
As the quadrangulation can have multiple edges, the root-face may not be a proper quadrangle



And deleting the root-edge may not result in a quadrangulation of a proper hexagon

The arbitrary case

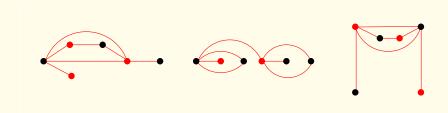
As the quadrangulation can have multiple edges, the root-face may not be a proper quadrangle



And deleting the root-edge may not result in a quadrangulation of a proper hexagon

The arbitrary case

As the quadrangulation can have multiple edges, the root-face may not be a proper quadrangle



And deleting the root-edge may not result in a quadrangulation of a proper hexagon

But we can deal with it, end up with another equation involving $S_2(z)$ and arrive to the stated formula

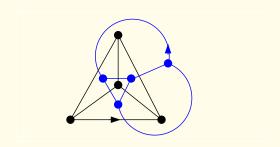
Given a self-dual graph, how many rootings make it a self-dual rooted map ?

Given a self-dual graph, how many rootings make it a self-dual rooted map?

All examples looked out so far, have either 1 or 2 such rootings

Given a self-dual graph, how many rootings make it a self-dual rooted map?

All examples looked out so far, have either 1 or 2 such rootings



Let $s_1(n)$ be the number of rooted self-dual maps on 2n edges

Let $s_1(n)$ be the number of rooted self-dual maps on 2n edges

Thm (Liskovets 81)

The number of (non-rooted) self-dual maps on 2n edges is

$$\begin{cases} \frac{1}{2}s_1(n) & \text{if } 2|n\\ \\ \frac{1}{2}s_1(n) + s_1(\frac{n-1}{2}) & \text{if } 2|n-1 \end{cases}$$

Let $s_1(n)$ be the number of rooted self-dual maps on 2n edges

Thm (Liskovets 81)

The number of (non-rooted) self-dual maps on 2n edges is

$$\begin{cases} \frac{1}{2}s_1(n) & \text{if } 2|n\\ \\ \frac{1}{2}s_1(n) + s_1(\frac{n-1}{2}) & \text{if } 2|n-1 \end{cases}$$

Q1: Does the same relationship hold for 2-connected and 3-connected self-dual maps?

Let $s_1(n)$ be the number of rooted self-dual maps on 2n edges

Thm (Liskovets 81)

The number of (non-rooted) self-dual maps on 2n edges is

$$\begin{cases} \frac{1}{2}s_1(n) & \text{if } 2|n\\ \\ \frac{1}{2}s_1(n) + s_1(\frac{n-1}{2}) & \text{if } 2|n-1 \end{cases}$$

Q1: Does the same relationship hold for 2-connected and 3-connected self-dual maps?

Q2: Is there a combinatorial explanation?

Muchas gracias