The Toda system on compact surfaces.

David Ruiz

Departamento de Análisis Matemático, Universidad de Granada.

Sevilla, 16-20 September, 2013.

Outline

- 1 The problem
- 2 Min-max theory
- 3 The scalar case
- 4 The Toda System
- 5 Final remarks

The Toda System

In this talk we study existence of solutions for the following version of the Toda system:

$$\begin{cases} -\Delta u_1 = 2\rho_1 (h_1 e^{u_1} - 1) - \rho_2 (h_2 e^{u_2} - 1) & \text{in } \Sigma, \\ -\Delta u_2 = 2\rho_2 (h_2 e^{u_2} - 1) - \rho_1 (h_1 e^{u_1} - 1) & \text{in } \Sigma, \end{cases}$$

where Δ is the Laplace-Beltrami operator, $\rho_i > 0$, $h_i(x) > 0$, and Σ is a compact surface with $\int_{\Sigma} 1 dV_g = 1$.

The Toda system arises in the study of the non-abelian Chern-Simons-Higgs model, when looking for non-topological solutions.

- G. Dunne, Self-dual Chern-Simons Theories, Lecture Notes in Physics, Springer-Verlag, 1995.
- Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer-Verlag, 2001.
- G. Tarantello, Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE 72, Birkhäuser 2007.

By integrating on Σ both equations, we get that $\int_{\Sigma} h_i e^{u_i} dV_g = 1$. Hence, our problem is equivalent to:

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) - \rho_2 \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) & \text{in } \Sigma, \\ -\Delta u_2 = 2\rho_2 \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} - 1 \right) - \rho_1 \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} - 1 \right) & \text{in } \Sigma. \end{cases}$$
 (1)

Problem (1) is the Euler-Lagrange equation of the functional:

$$J_{\rho}(u_1,u_2) = \int_{\Sigma} Q(u_1,u_2) dV_g + \sum_{i=1}^{2} \rho_i \left(\int_{\Sigma} u_i dV_g - \log \int_{\Sigma} h_i e^{u_i} dV_g \right).$$

Here $\rho = (\rho_1, \rho_2)$, and:

$$Q(u_1, u_2) = \frac{1}{3} \left(|\nabla u_1|^2 + |\nabla u_2|^2 + \nabla u_1 \cdot \nabla u_2 \right).$$

The problem

Moreover, the functions u_i belong to the Sobolev Space

$$H^1(\Sigma) = \{u: \Sigma \to \mathbb{R}: \ u, \ \nabla u \in L^2(\Sigma)\}, \ \|u\|^2 = \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2.$$

In dimension 2 we have the well-known Moser-Trudinger inequality:

$$\int_{\Sigma} e^{4\pi u^2} dx \leq C = C(\Sigma), \ \forall u \in H^1(\Sigma) \text{ with } \|\nabla u\|_{L^2} \leq 1, \ \int_{\Sigma} u = 0.$$

In particular, it implies that J_{ρ} is well-defined and C^{1} .

The problem

$$H^1(\Sigma) = \{u: \Sigma \to \mathbb{R}: \ u, \ \nabla u \in L^2(\Sigma)\}, \ \|u\|^2 = \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2.$$

In dimension 2 we have the well-known Moser-Trudinger inequality:

$$\int_{\Sigma} e^{4\pi u^2} dx \leq C = C(\Sigma), \ \forall u \in H^1(\Sigma) \text{ with } \|\nabla u\|_{L^2} \leq 1, \ \int_{\Sigma} u = 0.$$

In particular, it implies that J_{ρ} is well-defined and C^{1} .

The direct method of Calculus of Variations proposes to find solutions of our problem as minima of J_{ρ} . However, as we shall see, sometimes J_{ρ} is not bounded from below.

Here we will look for critical points of saddle-type by using min-max theory.

Min-max theory

Let us briefly remind Morse Theory. Given $f: \mathbb{R}^k \to \mathbb{R}$ be a C^2 function, and define the sub-level:

$$f^a = \{x \in \mathbb{R}^k : f(x) \le a\}.$$

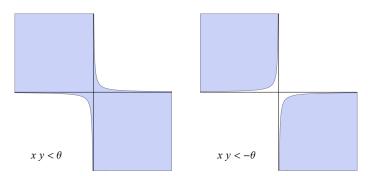
Then, if x_0 is a non-degenerate critical point of f and $f(x_0) = c$, then the sub-levels $f^{c+\theta}$, $f^{c-\theta}$ have different topology.

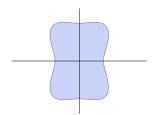
Min-max theory

Let us briefly remind Morse Theory. Given $f: \mathbb{R}^k \to \mathbb{R}$ be a C^2 function, and define the sub-level:

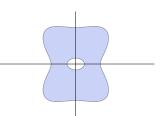
$$f^{a} = \{x \in \mathbb{R}^{k} : f(x) \leq a\}.$$

Then, if x_0 is a non-degenerate critical point of f and $f(x_0) = c$, then the sub-levels $f^{c+\theta}$, $f^{c-\theta}$ have different topology.

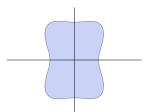




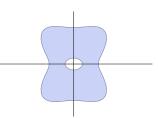
 $x^4 - x^2 + y^4 - 2y^2 < \theta$



$$x^4 - x^2 + y^4 - 2y^2 < -\theta$$



 $x^4 - x^2 + v^4 - 2v^2 < \theta$



 $x^4 - x^2 + v^4 - 2v^2 < -\theta$

The idea of min-max theory is to reverse the argument. Roughly speaking, if we find a change of topology of the energy sub-levels, this implies the existence of a critical point.

The min-max principle

Theorem

Let X be a Banach Space, $f: X \to \mathbb{R}$ a C^1 function. Take a < b, and $f^a \subset f^b$ the energy sub-levels. Then, either:

• fa is a strong deformaction retract of fb,

or

• there exists $u_n \in X$, $f'(u_n) \to 0$ and $f(u_n) \to c \in [a, b]$.

Such sequences are called Palais-Smale sequences. In some cases, one can pass to the limit and prove the existence of a critical point.

A. Bahri, A. Bahri, Critical Points at infinity in some variational problems, Pitman Research Notes in Math. Series 1989.

The scalar case

The scalar counterpart of (1) is a Liouville-type problem in the form:

$$-\Delta u = 2\rho \left(\frac{h(x)e^u}{\int_{\Sigma} h(x)e^u dV_g} - 1\right) \text{ in } \Sigma, \tag{2}$$

with $\rho \in \mathbb{R}$. This equation has been very much studied. In particular, it appears in the prescribed gaussian curvature problem: in this case, $\rho = 2\pi\chi(\Sigma)$.

The scalar case

The scalar counterpart of (1) is a Liouville-type problem in the form:

$$-\Delta u = 2\rho \left(\frac{h(x)e^u}{\int_{\Sigma} h(x)e^u dV_g} - 1\right) \text{ in } \Sigma, \tag{2}$$

with $\rho \in \mathbb{R}$. This equation has been very much studied. In particular, it appears in the prescribed gaussian curvature problem: in this case, $\rho = 2\pi\chi(\Sigma)$.

The Euler-Lagrange functional of (2) is:

$$I_{\rho}(u) = \frac{1}{2} \int_{\Sigma} |\nabla_g u|^2 dV_g + 2\rho \left(\int_{\Sigma} u dV_g - \log \int_{\Sigma} h(x) e^u dV_g \right)$$
 (3)

for any $u \in H^1(\Sigma)$. By the Moser-Trudinger inequality, I_ρ is bounded from below if and only if $\rho \leq 4\pi$, and is coercive if $\rho < 4\pi$.

If we make $\rho_n \to 4\pi$, the solution u_n could exhibit a blow-up behavior. In such case.

$$u_n \sim U_{\lambda,x}(y) = \log \left(\frac{4\lambda}{\left(1 + \lambda d(x,y)^2\right)^2} \right).$$

where $y \in \Sigma$, d(x, y) stands for the geodesic distance and λ is a large parameter. Those functions $U_{\lambda,x}$ are the unique entire solutions of the Liouville equation in \mathbb{R}^2 :

$$-\Delta U = 2e^U, \qquad \int_{\mathbb{R}^2} e^U \, dx < +\infty.$$

If we make $\rho_n \to 4\pi$, the solution u_n could exhibit a blow-up behavior. In such case,

$$u_n \sim U_{\lambda,x}(y) = \log \left(\frac{4\lambda}{\left(1 + \lambda d(x,y)^2\right)^2} \right).$$

where $y \in \Sigma$, d(x, y) stands for the geodesic distance and λ is a large parameter. Those functions $U_{\lambda,x}$ are the unique entire solutions of the Liouville equation in \mathbb{R}^2 :

$$-\Delta U = 2e^U, \qquad \int_{\mathbb{R}^2} e^U dx < +\infty.$$

It has been proved that blowing-up solutions have this behavior around a finite number of points. In particular, if u_n blows up, then $\rho_n \to 4\pi k$, $k \in \mathbb{N}$.

H. Brezis and F. Merle, 1991.

Y. Li and I. Shafrir, 1994.

Theorem

For any $\rho \notin 4\pi\mathbb{N}$ there exists a solution of (2).

Z. Djadli and A. Malchiodi, 2008.

The proof is based on the study of the sub-levels I_{ρ}^{-L} for L large. Assume that $\rho \in (4k\pi, 4(k+1)\pi)$. It can be proved that if $I_{\rho}(u_n) \to -\infty$, then

$$\frac{e^{u_n}}{\int_{\Sigma} e^{u_n} \, dV_g} \rightharpoonup \sum_{i=1}^k t_i \delta_{x_i}, \quad x_i \in \Sigma, \ t_i \geq 0, \sum_{i=1}^k t_i = 1.$$

This allows us to define a continuous map (for L >> 1):

$$\Psi: I_{\rho}^{-L} = \{u \in H^1(\Sigma): \ I_{\rho}(u) < -L\} \to \Sigma_k,$$

$$\Sigma_k = \left\{ \sum_{i=1}^k t_i \delta_{x_i}, \quad x_i \in \Sigma, \ t_i \ge 0, \sum_{i=1}^k t_i = 1 \right\}.$$

Here the weak topology of measures is considered.

This allows us to define a continuous map (for L >> 1):

$$\Psi: I_{\rho}^{-L} = \{u \in H^1(\Sigma): \ I_{\rho}(u) < -L\} \to \Sigma_k,$$

$$\Sigma_k = \left\{ \sum_{i=1}^k t_i \delta_{x_i}, \quad x_i \in \Sigma, \ t_i \ge 0, \sum_{i=1}^k t_i = 1 \right\}.$$

Here the weak topology of measures is considered. Moreover, one can define a reversed map $\Phi_{\lambda}: \Sigma_k \to H^1(\Sigma)$,

$$\sigma = \sum_{i=1}^k t_i \delta_{x_i} \mapsto \Phi_{\lambda}[\sigma](y) = \log \left(\sum_{i=1}^k t_i \frac{4\lambda}{(1+\lambda d(x_i,y)^2)^2} \right).$$

If λ is chosen large enough, $\Phi_{\lambda}[\sigma] \in I_{\rho}^{-L}$.

End of the proof

We have the composition:

$$\Sigma_k \xrightarrow{\Phi_{\lambda}} I_{\rho}^{-L} \xrightarrow{\Psi} \Sigma_k.$$

Moreover, as $\lambda \to +\infty$, $\Psi \circ \Phi_{\lambda}$ tends to the the identity map; so, λ can be used to define an homotopy between $\Psi \circ \Phi_{\lambda}$ and the identity map. In other words, I_{ρ}^{-L} covers Σ_{k} .

It can be shown that Σ_k is not contractible, hence $\Phi_{\lambda}(\Sigma_k)$ is not contractible in I_{ρ}^{-L} . But it is clearly contractible in I_{ρ}^{L} .

End of the proof

We have the composition:

$$\Sigma_k \xrightarrow{\Phi_{\lambda}} I_{\rho}^{-L} \xrightarrow{\Psi} \Sigma_k.$$

Moreover, as $\lambda \to +\infty$, $\Psi \circ \Phi_{\lambda}$ tends to the the identity map; so, λ can be used to define an homotopy between $\Psi \circ \Phi_{\lambda}$ and the identity map. In other words, I_a^{-L} covers Σ_k .

It can be shown that Σ_k is not contractible, hence $\Phi_{\lambda}(\Sigma_k)$ is not contractible in I_{ρ}^{-L} . But it is clearly contractible in I_{ρ}^{L} .

By the min-max principle, there exists a Palais-Smale sequence. Passing from this sequence to a true critical point is not trivial, but it is a technical issue that will be skipped in this talk.

The Toda System

It is known that if both $\rho_i \leq 4\pi$, then J_ρ is bounded from below. In particular, if $\rho_i < 4\pi$, J_ρ is coercive and achieves its minimum.

J. Jost and G. Wang, 2001.

If we make now $\rho_i \to 4\pi k$, $k \in \mathbb{N}$, the solution (u_1, u_2) could exhibit a blow-up behavior. Solutions may blow-up in different ways, but their energy at the blow-up point is quantized.

J. Jost, C.-S. Lin and G. Wang, 2006.

In particular, the set of solutions is compact for $\rho_i \notin 4\pi \mathbb{N}$.

Assume $\rho_1 \in (4k\pi, 4(k+1)\pi), \ \rho_2 \in (4l\pi, 4(l+1)\pi), \ k, l \in \mathbb{N}$. Reasoning as in the scalar case, if $J_{\rho}(u_{1,n}, u_{2,n}) \to -\infty$, then either

$$\frac{e^{u_{1,n}}}{\int_{\Sigma} e^{u_{1,n}} dV_g} \rightharpoonup \sum_{i=1}^k t_i \delta_{x_i}, \ x_i \in \Sigma,$$
or
$$\frac{e^{u_{2,n}}}{\int_{\Sigma} e^{u_{2,n}} dV_g} \rightharpoonup \sum_{i=1}^l t_i \delta_{y_i}, \ y_j \in \Sigma.$$

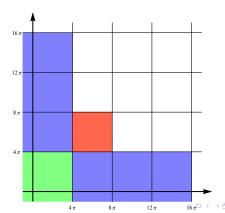
Hence, there are two problems:

- The alternative of the concentration phenomena.
- 2 The interaction between the concentration points.

Previous results

A. Malchiodi and D. R., 2013.

In the first, $\rho_i < 4\pi$, $\rho_j \in (4k\pi, 4(k+1)\pi)$. Here the sub-levels are described via the second component, as in the scalar case. In the second, $\rho_i \in (4\pi, 8\pi)$; both components may have one peak.



In this talk, we will deal with the alternative difficulty and avoid the interaction problem by using a topological argument.

Theorem

Assume $\rho_i \notin 4\pi\mathbb{N}$, and Σ a compact surface not homeomorphic to \mathbb{S}^2 or \mathbb{RP}^2 . Then J_{ρ} has a critical point.

L. Battaglia, A. Jevnikar, A. Malchiodi and D. R., preprint.

Dealing with the alternative: the topological join

Given any topological spaces A and B, we define the join $A \star B$ as:

$$A \star B = \{(1 - r)a + rb; r \in [0, 1], a \in A, b \in B\}.$$

Dealing with the alternative: the topological join

Given any topological spaces A and B, we define the join $A \star B$ as:

$$A \star B = \{(1 - r)a + rb; r \in [0, 1], a \in A, b \in B\}.$$

For $u \in J_o^{-L}$, define:

$$\mathbf{d}_1 = \mathbf{d} \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g}, \Sigma_k \right), \qquad \mathbf{d}_2 = \mathbf{d} \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g}, \Sigma_l \right).$$

Here **d** is the Kantorovich-Rubinstein distance. Moreover, we define $r = r(\mathbf{d}_1, \mathbf{d}_2)$, such that:

$$r = \begin{cases} 0 & \text{if } \mathbf{d}_1 << \mathbf{d}_2, \\ 1 & \text{if } \mathbf{d}_1 >> \mathbf{d}_2. \end{cases} \tag{4}$$

The parameter r measures which component is closer to its respective barycenter space.

In this way, one can define a map:

$$\tilde{\Psi}: J_{\rho}^{-L} \to \Sigma_k \star \Sigma_l,$$

$$u = (u_1, u_2) \mapsto (1 - r)\psi_k(u_1) + r\psi_l(u_2).$$

Here ψ_k , ψ_l are the continuous maps onto Σ_k , Σ_l . Those are defined only when \mathbf{d}_1 , \mathbf{d}_2 are small, respectively.

Observe that if \mathbf{d}_1 is not small, ψ_k is not well-defined but then r=1. Analogously, if \mathbf{d}_2 is not small then r=0; so the map is well defined.

$$\tilde{\Psi}: J_{\rho}^{-L} \to \Sigma_k \star \Sigma_l,$$

$$u = (u_1, u_2) \mapsto (1 - r)\psi_k(u_1) + r\psi_l(u_2).$$

Here ψ_k , ψ_l are the continuous maps onto Σ_k , Σ_l . Those are defined only when \mathbf{d}_1 , \mathbf{d}_2 are small, respectively.

Observe that if \mathbf{d}_1 is not small, ψ_k is not well-defined but then r=1. Analogously, if \mathbf{d}_2 is not small then r=0; so the map is well defined.

However, $\Sigma_k \star \Sigma_l$ does not seem to be a right space for describing the low sub-levels of the energy. The problem is that we cannot define test functions when the concentration points coincide.

Avoiding the interaction problem

Lemma

There exist two closed curves γ_i in Σ with $\gamma_1 \cap \gamma_2 = \emptyset$ and two continuous retractions $\Pi_i : \Sigma \to \gamma_i$.

Observe that this lemma is not true for $\Sigma = \mathbb{S}^2$ or \mathbb{RP}^2 .

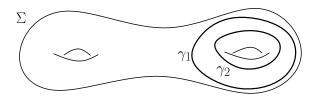


Figura: The curves γ_i

We now define the map:

$$\Psi: J_{\rho}^{-L} \to (\gamma_1)_k \star (\gamma_2)_I,$$

$$\Psi(u_1, u_2) = (1 - r)(\Pi_1)_* \psi_k \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_a}\right) + r(\Pi_2)_* \psi_I \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_a}\right),$$

where $(\Pi_i)_*$ stands for the push-forward of the map Π_i .

$$\Psi: J_{\rho}^{-L} o (\gamma_1)_k \star (\gamma_2)_I,$$

$$\Psi(u_1, u_2) = (1-r)(\Pi_1)_* \psi_k \left(\frac{h_1 e^{u_1}}{\int_{\Sigma} h_1 e^{u_1} dV_g} \right) + r(\Pi_2)_* \psi_l \left(\frac{h_2 e^{u_2}}{\int_{\Sigma} h_2 e^{u_2} dV_g} \right),$$

where $(\Pi_i)_*$ stands for the push-forward of the map Π_i .

Observe that $\gamma_i \sim \mathbb{S}^1$; then, it has been proved that $(\mathbb{S}^1)_k \sim \mathbb{S}^{2k-1}$, and hence $(\gamma_1)_k \star (\gamma_2)_l \sim \mathbb{S}^{2k+2l-1}$.

The reversed map

Let $\zeta = (1 - r)\sigma_2 + r\sigma_1 \in (\gamma_1)_k * (\gamma_2)_l$, where:

$$\sigma_1 := \sum_{i=1}^k t_i \delta_{x_i} \in (\gamma_1)_k$$
 and $\sigma_2 := \sum_{j=1}^l s_j \delta_{y_j} \in (\gamma_2)_l$.

Given $\lambda > 0$ large enough, we define:

$$\Phi_{\lambda}: (\gamma_1)_k * (\gamma_2)_I \to H^1(\Sigma) \times H^1(\Sigma), \ \Phi_{\lambda}(\zeta) = \varphi_{\lambda,\zeta},$$

with components given by:

$$\varphi_{\lambda,\zeta} = \begin{pmatrix} \log \sum_{i=1}^k t_i \left(\frac{1}{1 + \lambda_{1,r}^2 d(x,x_i)^2} \right)^2 - \frac{1}{2} \log \sum_{j=1}^l s_j \left(\frac{1}{1 + \lambda_{2,r}^2 d(x,y_j)^2} \right)^2 \\ - \frac{1}{2} \log \sum_{i=1}^k t_i \left(\frac{1}{1 + \lambda_{1,r}^2 d(x,x_i)^2} \right)^2 + \log \sum_{j=1}^l s_j \left(\frac{1}{1 + \lambda_{2,r}^2 d(x,y_j)^2} \right)^2 \end{pmatrix}.$$

Here

$$\lambda_{1,r} = (1-r)\lambda; \qquad \lambda_{2,r} = r\lambda.$$

Proposition

 Φ_{λ} is well defined and for any L > 0 there exists $\lambda > 0$ so that

$$\Phi_{\lambda}((\gamma_1)_k * (\gamma_2)_l) \subset J_{\rho}^{-L}.$$

Moreover, the composition

$$(\gamma_1)_k * (\gamma_2)_I \xrightarrow{\Phi_{\lambda}} J_{\rho}^{-L} \xrightarrow{\Psi} (\gamma_1)_k * (\gamma_2)_I$$

is homotopically equivalent to the identity map on $(\gamma_1)_k * (\gamma_2)_l$ for large λ .

Some applications in geometry

In the prescribed gaussian curvature problem, $\rho=2\pi\chi(\Sigma)$. Therefore, the cases $\rho>4\pi$ do not appear there. However, those arguments apply to some intrinsically geometric problems:

Some applications in geometry

In the prescribed gaussian curvature problem, $\rho=2\pi\chi(\Sigma)$. Therefore, the cases $\rho>4\pi$ do not appear there. However, those arguments apply to some intrinsically geometric problems:

- a) The prescribed Q-curvature problem. Here Σ is a 4-dimensional manifold, Δ is replaced by the Paneitz operator P, and K is substituted with the Q-curvature. If Σ is not locally conformally flat, ρ is not quantized, and can take high values.
- S. Y. Chang and P. Yang, 1995.
- Z. Djadli and A. Malchiodi, 2008.

- b) The prescribed gaussian curvature problem with conical points. Here ρ can take values so that the corresponding Euler-Lagrange functional is not bounded from below.
- M. Troyanov, 1991.
- A. Malchiodi and D. R., 2011.
- A. Malchiodi and A. Carlotto, 2012.
- A. Carlotto, preprint.

Solutions of some PDE's are critical points of the corresponding Euler-Lagrange functional.

Solutions of some PDE's are critical points of the corresponding Euler-Lagrange functional.

In some cases it is unbounded from below, so the direct method of Calculus of Variations does not work. Min-max methods can be used to look for critical points of saddle type.

Solutions of some PDE's are critical points of the corresponding Euler-Lagrange functional.

In some cases it is unbounded from below, so the direct method of Calculus of Variations does not work. Min-max methods can be used to look for critical points of saddle type.

The problems considered here exhibit some concentration phenomena for blowing-up solutions. Moreover, also low sub-levels of the energy functional concentrate around some points.

Solutions of some PDE's are critical points of the corresponding Euler-Lagrange functional.

In some cases it is unbounded from below, so the direct method of Calculus of Variations does not work. Min-max methods can be used to look for critical points of saddle type.

The problems considered here exhibit some concentration phenomena for blowing-up solutions. Moreover, also low sub-levels of the energy functional concentrate around some points.

Because of that, the topology of the energy sub-levels are affected by the topology of the surface Σ . If the sub-level is not contractible, there may exist a critical point.

Thank you for your attention!