Kisin's method

# Computation of Universal Deformation Rings

Pietro Ploner

Universita de Barcelona

Congreso de Jóvenes Investigadores, Sevilla, 16-20 septiembre



# Index

- 1 Deformation Theory
- 2 Local-to-global arguments

Local-to-global arguments

- 3 Kisin's method
- 4 R=T theorems

### p rational prime;

Local-to-global arguments



- p rational prime;
- k finite field of characteristic p;



- p rational prime;
- k finite field of characteristic p;
- Ar category of local artinian complete W(k)-algebras A with surjective homomorphism  $\pi_A:A\to k$  and maximal ideal  $m_A$ ;



- p rational prime;
- k finite field of characteristic p;
- Ar category of local artinian complete W(k)-algebras A with surjective homomorphism  $\pi_A: A \to k$  and maximal ideal  $m_A$ ;
- $\hat{Ar}$  category of local noetherian complete W(k)-algebras A with surjective homomorphism  $\pi_A:A\to k$  and maximal ideal  $m_A$ ;
- S finite set of primes of  $\mathbb{Q}$  including p and the infinite archimedian prime;
- $G_S$  the Galois group of the maximal extension of  $\mathbb{Q}$  unramified outside S;



- p rational prime;
- k finite field of characteristic p;
- Ar category of local artinian complete W(k)-algebras A with surjective homomorphism  $\pi_A: A \to k$  and maximal ideal  $m_A$ ;
- $\hat{Ar}$  category of local noetherian complete W(k)-algebras A with surjective homomorphism  $\pi_A:A\to k$  and maximal ideal  $m_A$ ;
- S finite set of primes of  $\mathbb{Q}$  including p and the infinite archimedian prime;
- $G_S$  the Galois group of the maximal extension of  $\mathbb{Q}$  unramified outside S;



- p rational prime;
- k finite field of characteristic p;
- Ar category of local artinian complete W(k)-algebras A with surjective homomorphism  $\pi_A:A\to k$  and maximal ideal  $m_A$ ;
- $\hat{Ar}$  category of local noetherian complete W(k)-algebras A with surjective homomorphism  $\pi_A:A\to k$  and maximal ideal  $m_A$ ;
- $\blacksquare$  S finite set of primes of  $\mathbb{Q}$  including p and the infinite archimedian prime;
- $\blacksquare$   $G_S$  the Galois group of the maximal extension of  $\mathbb Q$  unramified outside S:



# Deformations

Let  $\bar{\rho}: G_S \to GL_n(k)$  be a Galois representation and  $A \in Ar$ . A lift

$$GL_{n}(A)$$

$$\uparrow^{\rho_{A}} \qquad \downarrow^{\pi_{A}}$$

$$G_{S} \xrightarrow{\bar{\rho}} GL_{n}(k)$$

## Deformations

Let  $\bar{\rho}:G_S\to GL_n(k)$  be a Galois representation and  $A\in Ar$ . A lift of  $\bar{\rho}$  to A is a representation  $\rho_A:G_S\to GL_n(A)$  such that the diagram

$$GL_n(A)$$

$$\downarrow^{\rho_A} \qquad \downarrow^{\pi_A}$$

$$G_S \xrightarrow{\bar{\rho}} GL_n(k)$$

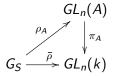
commutes

We say that two lifts  $\rho_1, \rho_2$  of  $\bar{\rho}$  to A are equivalent if there exists  $M \in Ker(\pi_A)$  such that  $M\rho_1(g)M^{-1} = \rho_2(g)$ .

Kisin's method

## **Deformations**

Let  $\bar{\rho}:G_S\to GL_n(k)$  be a Galois representation and  $A\in Ar$ . A lift of  $\bar{\rho}$  to A is a representation  $\rho_A:G_S\to GL_n(A)$  such that the diagram

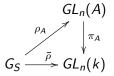


#### commutes.

We say that two lifts  $\rho_1, \rho_2$  of  $\bar{\rho}$  to A are equivalent if there exists  $M \in Ker(\pi_A)$  such that  $M\rho_1(g)M^{-1} = \rho_2(g)$ . A deformation of  $\bar{\rho}$  to A is an equivalence class of lifts.

## Deformations

Let  $\bar{\rho}: G_S \to GL_n(k)$  be a Galois representation and  $A \in Ar$ . A lift of  $\bar{\rho}$  to A is a representation  $\rho_A:G_S\to GL_n(A)$  such that the diagram



commutes.

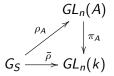
We say that two lifts  $\rho_1, \rho_2$  of  $\bar{\rho}$  to A are equivalent if there exists  $M \in Ker(\pi_A)$  such that  $M\rho_1(g)M^{-1} = \rho_2(g)$ .



Kisin's method

## Deformations

Let  $\bar{\rho}: G_S \to GL_n(k)$  be a Galois representation and  $A \in Ar$ . A lift of  $\bar{\rho}$  to A is a representation  $\rho_A:G_S\to GL_n(A)$  such that the diagram



commutes.

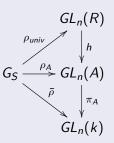
We say that two lifts  $\rho_1, \rho_2$  of  $\bar{\rho}$  to A are equivalent if there exists  $M \in Ker(\pi_A)$  such that  $M\rho_1(g)M^{-1} = \rho_2(g)$ . A deformation of  $\bar{\rho}$  to A is an equivalence class of lifts.

Suppose that the centralizer of the image of  $\bar{\rho}$  is given by the set of scalar matrices. Then there exists a ring  $R \in \hat{Ar}$  and a deformation  $\rho_{univ}: G_S \to GL_n(R)$  such that, for every ring  $A \in Ar$  and every deformation  $\rho_A: G_S \to GL_n(A)$ , there is a unique homomorphism  $h: R \to A$  that makes the following diagram commute:



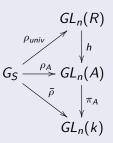
R is called the universal deformation ring associated to \$. < ₹ > ₹ 990

Suppose that the centralizer of the image of  $\bar{\rho}$  is given by the set of scalar matrices. Then there exists a ring  $R \in \hat{Ar}$  and a deformation  $\rho_{univ}: G_S \to GL_n(R)$  such that, for every ring  $A \in Ar$  and every deformation  $\rho_A: G_S \to GL_n(A)$ , there is a unique homomorphism  $h: R \to A$  that makes the following diagram commute:



R is called the universal deformation ring associated to る・ ママ

Suppose that the centralizer of the image of  $\bar{\rho}$  is given by the set of scalar matrices. Then there exists a ring  $R \in \hat{Ar}$  and a deformation  $\rho_{univ}: G_S \to GL_n(R)$  such that, for every ring  $A \in Ar$  and every deformation  $\rho_A: G_S \to GL_n(A)$ , there is a unique homomorphism  $h: R \to A$  that makes the following diagram commute:



R is called the universal deformation ring associated to  $\bar{\rho}$ .

# Let $V_{\bar{\rho}}$ be the k[G]-module associated to $\bar{\rho}$ .

#### Definition

Let  $A \in Ar$ . A deformation of  $V_{\overline{\rho}}$  to A is a pair  $(V_A, \iota_A)$ , where

- $lackbox{ }V_A$  is a free A[G]-module provided with a G-continous action;
- $\bullet \iota_A: V_A \otimes_A k \simeq V_{\bar{\rho}}.$

#### Definition

Let  $\beta$  be a k-basis of  $V_{\bar{\rho}}$ . A framed deformation of the pair  $(V_{\bar{\rho}}, \beta)$  to A is a triple  $(V_A, \iota_A, \beta_A)$ , where

- $\blacksquare$   $(V_A, \iota_A)$  is a deformation of  $V_{\bar{\rho}}$  to A;
- lacksquare  $eta_A$  is an A-basis of  $V_A$  which reduces to eta under  $\pi_A$ .



Let  $V_{\bar{\rho}}$  be the k[G]-module associated to  $\bar{\rho}$ .

#### Definition

Let  $A \in Ar$ . A deformation of  $V_{\bar{\rho}}$  to A is a pair  $(V_A, \iota_A)$ , where

- $V_A$  is a free A[G]-module provided with a G-continous action;
- $\bullet$   $\iota_A: V_A \otimes_A k \simeq V_{\bar{\rho}}.$

Let  $V_{\bar{\rho}}$  be the k[G]-module associated to  $\bar{\rho}$ .

#### Definition

Let  $A \in Ar$ . A deformation of  $V_{\bar{\rho}}$  to A is a pair  $(V_A, \iota_A)$ , where

- $V_A$  is a free A[G]-module provided with a G-continous action;
- $\bullet$   $\iota_A: V_A \otimes_A k \simeq V_{\bar{\rho}}.$

#### Definition

Let  $\beta$  be a k-basis of  $V_{\bar{\rho}}$ . A framed deformation of the pair  $(V_{\bar{\rho}}, \beta)$ to A is a triple  $(V_A, \iota_A, \beta_A)$ , where

- $(V_A, \iota_A)$  is a deformation of  $V_{\bar{\rho}}$  to A;
- $\blacksquare$   $\beta_A$  is an A-basis of  $V_A$  which reduces to  $\beta$  under  $\pi_A$ .

## Deformation functors

#### Definition

The deformation functor  $F_{\bar{\rho}}:Ar \to Sets$  attached to  $\bar{\rho}$  is defined as

$$F_{\bar{\rho}}(A) = \{ \text{deformations of } \bar{\rho} \text{ to } A \} \tag{1}$$

#### Definitior

The framed deformation functor  $F_{ar{
ho}}^\square:Ar o Sets$  attached to  $ar{
ho}$  is defined as

$$F_{\bar{\rho}}^{\square}(A) = \{ \text{framed deformations of } (V_{\bar{\rho}}, \beta) \text{ to } A \}$$
 (2)

## Deformation functors

#### Definition

The deformation functor  $F_{\bar{\rho}}: Ar \to Sets$  attached to  $\bar{\rho}$  is defined as

$$F_{\bar{\rho}}(A) = \{ \text{deformations of } \bar{\rho} \text{ to } A \} \tag{1}$$

#### Definition

The framed deformation functor  $F_{ar{
ho}}^{\square}:Ar o Sets$  attached to  $ar{
ho}$  is defined as

$$F_{\bar{\rho}}^{\square}(A) = \{ \text{framed deformations of } (V_{\bar{\rho}}, \beta) \text{ to } A \}$$
 (2)

## Deformation functors

#### Definition

The deformation functor  $F_{\bar{\rho}}: Ar \to Sets$  attached to  $\bar{\rho}$  is defined as

$$F_{\bar{\rho}}(A) = \{ \text{deformations of } \bar{\rho} \text{ to } A \} \tag{1}$$

#### Definition

The framed deformation functor  $F_{\bar{\rho}}^{\square}: Ar \to Sets$  attached to  $\bar{\rho}$  is defined as

$$F_{\bar{\rho}}^{\square}(A) = \{ \text{framed deformations of } (V_{\bar{\rho}}, \beta) \text{ to } A \}$$
 (2)

# Representability

$$F_{\overline{\rho}}^{\square}(A) = Hom_{W(k)}(R^{\square}, A); \tag{3}$$

# Representability

## Theorem (Mazur)

•  $F_{\bar{\rho}}^{\square}$  is pro-representable, that is, there exists  $R^{\square}=R_{\bar{\rho}}^{\square}\in\hat{Ar}$  such that

$$F_{\bar{\rho}}^{\square}(A) = Hom_{W(k)}(R^{\square}, A); \tag{3}$$

If  $\mathsf{End}_G(V_{ar
ho})=k$ , then  $F_{ar
ho}$  is pro-representable by a ring  $R=R_{ar
ho}\in\hat{Ar}$  .

The representing algebras R and  $R^{\square}$  are called the universal deformation ring and the universal framed deformation ring attached to  $\bar{\rho}$  respectively.

ullet  $F_{ar{o}}^{\square}$  is pro-representable, that is, there exists  $R^{\square}=R_{ar{o}}^{\square}\in\hat{Ar}$ such that

$$F_{\bar{\rho}}^{\square}(A) = Hom_{W(k)}(R^{\square}, A); \tag{3}$$

• If  $End_G(V_{\bar{\rho}})=k$ , then  $F_{\bar{\rho}}$  is pro-representable by a ring  $R = R_{\bar{o}} \in \hat{Ar}$ .

Local-to-global arguments

ullet  $F_{ar{o}}^{\square}$  is pro-representable, that is, there exists  $R^{\square}=R_{ar{o}}^{\square}\in\hat{Ar}$ such that

$$F_{\bar{\rho}}^{\square}(A) = Hom_{W(k)}(R^{\square}, A); \tag{3}$$

• If  $End_G(V_{\bar{\rho}})=k$ , then  $F_{\bar{\rho}}$  is pro-representable by a ring  $R = R_{\bar{o}} \in \hat{Ar}$ .

Local-to-global arguments

# Representability

## Theorem (Mazur)

ullet  $F_{ar{o}}^{\square}$  is pro-representable, that is, there exists  $R^{\square}=R_{ar{o}}^{\square}\in\hat{Ar}$ such that

Local-to-global arguments

$$F_{\bar{\rho}}^{\square}(A) = Hom_{W(k)}(R^{\square}, A); \tag{3}$$

• If  $End_G(V_{\bar{\rho}})=k$ , then  $F_{\bar{\rho}}$  is pro-representable by a ring  $R = R_{\bar{o}} \in \hat{Ar}$ .

The representing algebras R and  $R^{\square}$  are called the universal deformation ring and the universal framed deformation ring attached to  $\bar{\rho}$  respectively.

# First example

Let p=3 and  $S=\{3,7,\infty\}$  and consider the representation

$$\bar{\rho}: G \to GL_2(\mathbb{F}_3)$$
 (4)

Kisin's method

given by the 3-division points of the modular curve  $X_0(49)$ .

Then 
$$R_{ar
ho}\simeq \mathbb{Z}_3[[x_1,x_2,x_3,x_4]]/((1+x_4)^3-1)$$

# First example

Let p=3 and  $S=\{3,7,\infty\}$  and consider the representation

$$\bar{\rho}: G \to GL_2(\mathbb{F}_3)$$
 (4)

Kisin's method

given by the 3-division points of the modular curve  $X_0(49)$ . Then  $R_{\bar{o}} \simeq \mathbb{Z}_3[[x_1, x_2, x_3, x_4]]/((1+x_4)^3-1)$ .



## Question: How to compute R in general case?

In 1995 Faltings has described a method to compute a presentation of  $oldsymbol{R}$  of the form

$$W(k)[[X_1,\ldots,X_r]]/(f_1,\ldots,f_t).$$
 (5)

This presentation is very far from minimal.



Question: How to compute R in general case? In 1995 Faltings has described a method to compute a presentation of R of the form

$$W(k)[[X_1,\ldots,X_r]]/(f_1,\ldots,f_t).$$
 (5)

This presentation is very far from minimal.



Question: How to compute R in general case? In 1995 Faltings has described a method to compute a presentation of R of the form

$$W(k)[[X_1,\ldots,X_r]]/(f_1,\ldots,f_t).$$
 (5)

This presentation is very far from minimal.



Let  $\epsilon$  be an element such that  $\epsilon^2=0$ . Then we can define the following.

#### Definition

Let  $F_{ar{
ho}}$  be a deformation functor. The tangent space of  $F_{ar{
ho}}$  is the set

$$F_{\bar{\rho}}(k[\epsilon]).$$
 (6

It has a natural structure of k-vector space

#### Lemma

 $= F_{\overline{\rho}}(k[\epsilon]) \simeq H^1(G, Ad(\overline{\rho})) \simeq Ext^1_{k[G]}(V_{\overline{\rho}}, V_{\overline{\rho}}),$ 

Let  $\epsilon$  be an element such that  $\epsilon^2=0$ . Then we can define the following.

#### Definition

Let  $F_{\bar{\rho}}$  be a deformation functor. The tangent space of  $F_{\bar{\rho}}$  is the set

$$F_{\bar{\rho}}(k[\epsilon]).$$
 (6)

It has a natural structure of k-vector space.

#### Lemma

 $= F_{\overline{\rho}}(k[\epsilon]) \simeq H^1(G, Ad(\overline{\rho})) \simeq Ext^1_{k[G]}(V_{\overline{\rho}}, V_{\overline{\rho}});$   $= dimF^2(k[\epsilon]) = dimF_{\epsilon}(k[\epsilon]) + dimAd(\overline{\rho}) - dimH^0(G, K[\epsilon]) + dimAd(\overline{\rho}) = dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) = dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) = dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) = dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon]) = dimH^0(G, K[\epsilon]) + dimH^0(G, K[\epsilon])$ 

Let  $\epsilon$  be an element such that  $\epsilon^2 = 0$ . Then we can define the following.

#### Definition

Let  $F_{\bar{\rho}}$  be a deformation functor. The tangent space of  $F_{\bar{\rho}}$  is the set

$$F_{\bar{\rho}}(k[\epsilon]).$$
 (6)

It has a natural structure of k-vector space.

#### Lemma

- $F_{\bar{\rho}}(k[\epsilon]) \simeq H^1(G, Ad(\bar{\rho})) \simeq Ext^1_{k[G]}(V_{\bar{\rho}}, V_{\bar{\rho}});$

Pietro Ploner

Let  $\epsilon$  be an element such that  $\epsilon^2=0$ . Then we can define the following.

#### Definition

Let  $F_{\bar{\rho}}$  be a deformation functor. The tangent space of  $F_{\bar{\rho}}$  is the set

$$F_{\bar{\rho}}(k[\epsilon]).$$
 (6)

It has a natural structure of k-vector space.

#### Lemma

- $F_{\bar{\rho}}(k[\epsilon]) \simeq H^1(G, Ad(\bar{\rho})) \simeq Ext^1_{k[G]}(V_{\bar{\rho}}, V_{\bar{\rho}});$
- $dim F_{\bar{\rho}}^{\square}(k[\epsilon]) = dim F_{\bar{\rho}}(k[\epsilon]) + dim Ad(\bar{\rho}) dim H^{0}(G, Ad(\bar{\rho})).$

## Deformation conditions

Let  $\mathfrak P$  be the category of pairs  $(A, V_A)$  with  $A \in Ar$  and  $V_A \in F_{\bar{\rho}}(A)$ . Let  $\mathfrak D$  be a full subcategory of  $\mathfrak P$  such that

- if  $(A, V_A) \rightarrow (B, V_B)$  is a morphism in  $\mathfrak P$  and  $(A, V_A) \in \mathfrak D$ , then  $(B, V_B) \in \mathfrak D$ .
- $(A \times_C B, V) \in \mathfrak{D} \iff (A, V_A), (B, V_B) \in \mathfrak{D}$
- if  $(A, V_A) \to (B, V_B)$  is a monomorphism in  $\mathfrak P$  and  $(B, V_B) \in \mathfrak D$ , then  $(A, V_A) \in \mathfrak D$ .

We say that  ${\mathfrak D}$  is a deformation condition for the functor  $F_{ar
ho}$ 



## Deformation conditions

Let  $\mathfrak{P}$  be the category of pairs  $(A, V_A)$  with  $A \in Ar$  and  $V_A \in F_{\bar{\rho}}(A)$ . Let  $\mathfrak{D}$  be a full subcategory of  $\mathfrak{P}$  such that

- if  $(A, V_A) \rightarrow (B, V_B)$  is a morphism in  $\mathfrak P$  and  $(A, V_A) \in \mathfrak D$ , then  $(B, V_B) \in \mathfrak D$ .
- $(A \times_C B, V) \in \mathfrak{D} \iff (A, V_A), (B, V_B) \in \mathfrak{D}.$
- if  $(A, V_A) \rightarrow (B, V_B)$  is a monomorphism in  $\mathfrak P$  and  $(B, V_B) \in \mathfrak D$ , then  $(A, V_A) \in \mathfrak D$ .

We say that  ${\mathfrak D}$  is a deformation condition for the functor  $F_{ar 
ho}$ 

Kisin's method

#### Deformation conditions

Let  $\mathfrak{P}$  be the category of pairs  $(A, V_A)$  with  $A \in Ar$  and  $V_A \in F_{\bar{\rho}}(A)$ . Let  $\mathfrak{D}$  be a full subcategory of  $\mathfrak{P}$  such that

- if  $(A, V_A) \rightarrow (B, V_B)$  is a morphism in  $\mathfrak P$  and  $(A, V_A) \in \mathfrak D$ , then  $(B, V_B) \in \mathfrak D$ .
- $(A \times_C B, V) \in \mathfrak{D} \iff (A, V_A), (B, V_B) \in \mathfrak{D}.$
- if  $(A, V_A) \to (B, V_B)$  is a monomorphism in  $\mathfrak P$  and  $(B, V_B) \in \mathfrak D$ , then  $(A, V_A) \in \mathfrak D$ .

We say that  ${\mathfrak D}$  is a deformation condition for the functor  $\mathcal{F}_{ar{
ho}}$ 



Kisin's method

#### Deformation conditions

Let  $\mathfrak{P}$  be the category of pairs  $(A, V_A)$  with  $A \in Ar$  and  $V_A \in F_{\bar{\rho}}(A)$ . Let  $\mathfrak{D}$  be a full subcategory of  $\mathfrak{P}$  such that

- if  $(A, V_A) \rightarrow (B, V_B)$  is a morphism in  $\mathfrak P$  and  $(A, V_A) \in \mathfrak D$ , then  $(B, V_B) \in \mathfrak D$ .
- $(A \times_C B, V) \in \mathfrak{D} \iff (A, V_A), (B, V_B) \in \mathfrak{D}.$
- if  $(A, V_A) \to (B, V_B)$  is a monomorphism in  $\mathfrak P$  and  $(B, V_B) \in \mathfrak D$ , then  $(A, V_A) \in \mathfrak D$ .

We say that  ${\mathfrak D}$  is a deformation condition for the functor  $\mathcal{F}_{ar{
ho}}$ 



#### Deformation conditions

Let  $\mathfrak{P}$  be the category of pairs  $(A, V_A)$  with  $A \in Ar$  and  $V_A \in F_{\bar{\rho}}(A)$ . Let  $\mathfrak{D}$  be a full subcategory of  $\mathfrak{P}$  such that

- if  $(A, V_A) \rightarrow (B, V_B)$  is a morphism in  $\mathfrak P$  and  $(A, V_A) \in \mathfrak D$ , then  $(B, V_B) \in \mathfrak D$ .
- $(A \times_C B, V) \in \mathfrak{D} \iff (A, V_A), (B, V_B) \in \mathfrak{D}.$
- if  $(A, V_A) \to (B, V_B)$  is a monomorphism in  $\mathfrak P$  and  $(B, V_B) \in \mathfrak D$ , then  $(A, V_A) \in \mathfrak D$ .

We say that  ${\mathfrak D}$  is a deformation condition for the functor  $F_{ar
ho}$ .



Kisin's method

If  $\mathfrak D$  is a deformation condition, we can consider the subfunctor  $F_{\mathfrak{D}} \subseteq F_{\bar{o}}$ 

$$F_{\mathfrak{D}}(A) = \{ \text{deformations } V_A \text{ such that } (A, V_A) \in \mathfrak{D} \}$$
 (7)

If  $\mathfrak D$  is a deformation condition, we can consider the subfunctor  $F_{\mathfrak D}\subseteq F_{ar
ho}$ 

$$F_{\mathfrak{D}}(A) = \{ \text{deformations } V_A \text{ such that } (A, V_A) \in \mathfrak{D} \}$$
 (7)

#### Lemma

If  $F_{\bar{\rho}}$  is representable, then  $F_{\mathfrak{D}}$  is represented by a quotient  $R_{\mathfrak{D}}$  of R and the tangent space  $F_{\mathfrak{D}}(k[\epsilon])$  is a k-vector subspace of  $F_{\bar{\rho}}(k[\epsilon])$ .

Let  $\Sigma \subseteq S$ . For every prime  $\ell \in \Sigma$  we consider the following:

■ let  $G_{\ell}$  be the absolute Galois group of  $\mathbb{Q}_{\ell}$ .

Local-to-global arguments

Let  $\Sigma \subseteq S$ . For every prime  $\ell \in \Sigma$  we consider the following:

- let  $G_{\ell}$  be the absolute Galois group of  $\mathbb{Q}_{\ell}$ .
- let  $\bar{\rho}_{\ell} = \bar{\rho}|_{G_{\ell}}$  be the  $\ell$ -adic part of  $\bar{\rho}$ ;
- let  $\mathfrak{D}_{\ell}$  be a deformation condition attached to  $\bar{\rho}_{\ell}$ .

We consider the subcategory  $\mathfrak D$  of pairs  $(A,V_A)$  such that  $(A,V_A|_{G_\ell})\in \mathfrak D_\ell$  for every  $\ell\in \Sigma$ . Then  $\mathfrak D$  is a deformation condition and we call it a global Galois deformation condition

Let  $\Sigma \subseteq S$ . For every prime  $\ell \in \Sigma$  we consider the following:

■ let  $G_{\ell}$  be the absolute Galois group of  $\mathbb{Q}_{\ell}$ .

Local-to-global arguments

- let  $\bar{\rho}_{\ell} = \bar{\rho}|_{G_{\ell}}$  be the  $\ell$ -adic part of  $\bar{\rho}$ ;
- let  $\mathfrak{D}_{\ell}$  be a deformation condition attached to  $\bar{\rho}_{\ell}$ .

Let  $\Sigma \subseteq S$ . For every prime  $\ell \in \Sigma$  we consider the following:

■ let  $G_{\ell}$  be the absolute Galois group of  $\mathbb{Q}_{\ell}$ .

Local-to-global arguments

- let  $\bar{\rho}_{\ell} = \bar{\rho}|_{G_{\ell}}$  be the  $\ell$ -adic part of  $\bar{\rho}$ ;
- let  $\mathfrak{D}_{\ell}$  be a deformation condition attached to  $\bar{\rho}_{\ell}$ .

Let  $\Sigma \subseteq S$ . For every prime  $\ell \in \Sigma$  we consider the following:

■ let  $G_{\ell}$  be the absolute Galois group of  $\mathbb{Q}_{\ell}$ .

Local-to-global arguments

- let  $\bar{\rho}_{\ell} = \bar{\rho}|_{G_{\ell}}$  be the  $\ell$ -adic part of  $\bar{\rho}$ ;
- let  $\mathfrak{D}_{\ell}$  be a deformation condition attached to  $\bar{\rho}_{\ell}$ .

We consider the subcategory  $\mathfrak{D}$  of pairs  $(A, V_A)$  such that  $(A, V_A|_{G_\ell}) \in \mathfrak{D}_\ell$  for every  $\ell \in \Sigma$ . Then  $\mathfrak{D}$  is a deformation condition and we call it a global Galois deformation condition.

Let  $\ell \in \Sigma$  be a prime different from the residual characteristic p and suppose that

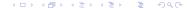
$$\bar{\rho}_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.$$
(8)

Kisin's method

Let  $ho_A$  be a deformation of ar
ho to A. We say that ho is minimally ramified at  $\ell$  if

$$\rho_{\ell}(l_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, \tag{9}$$

too



Let  $\ell \in \Sigma$  be a prime different from the residual characteristic pand suppose that

$$\bar{\rho}_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.$$
(8)

Kisin's method

$$\rho_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, \tag{9}$$



Let  $\ell \in \Sigma$  be a prime different from the residual characteristic p and suppose that

$$\bar{\rho}_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.$$
(8)

Let  $\rho_A$  be a deformation of  $\bar{\rho}$  to A. We say that  $\rho$  is minimally ramified at  $\ell$  if

$$\rho_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, \tag{9}$$

too



Let  $\ell \in \Sigma$  be a prime different from the residual characteristic p and suppose that

$$\bar{\rho}_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.$$
(8)

Let  $\rho_A$  be a deformation of  $\bar{\rho}$  to A. We say that  $\rho$  is minimally ramified at  $\ell$  if

$$\rho_{\ell}(I_{\ell}) \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, \tag{9}$$

too.



#### Lemma

Being minimally ramified is a deformation condition  $\mathfrak{D}$ . Moreover

$$F_{\mathfrak{D}}(k[\epsilon]) = H^{1}(G_{\mathbb{F}_{\ell}}, Ad(\bar{\rho})^{I_{\ell}}). \tag{10}$$



#### Flatness

Let  $\rho_\ell$  be a deformation of  $\bar{\rho}_\ell$ . We say that  $\rho_\ell$  is finite flat (or simply flat) if the representation module  $V_{\rho_\ell}$ , viewed as a finite abelian group with  $G_\ell$ -action, is the  $\mathbb{Q}_\ell$ -module of  $\bar{\mathbb{Q}}_\ell$ -points of a finite flat group scheme M over  $Spec(\mathbb{Z}_\ell)$ .

#### Lemma

Being flat is a deformation condition and we have  $F_{\mathfrak{D}}(k[\epsilon]) \simeq \operatorname{Ext}^1_{\operatorname{Spec}(\mathbb{Z}_{\epsilon})}(M,M).$ 



#### **Flatness**

Let  $\rho_\ell$  be a deformation of  $\bar{\rho}_\ell$ . We say that  $\rho_\ell$  is finite flat (or simply flat) if the representation module  $V_{\rho_\ell}$ , viewed as a finite abelian group with  $G_\ell$ -action, is the  $\mathbb{Q}_\ell$ -module of  $\bar{\mathbb{Q}}_\ell$ -points of a finite flat group scheme M over  $Spec(\mathbb{Z}_\ell)$ .

#### Lemm<u>a</u>

Being flat is a deformation condition and we have  $F_{\mathfrak{D}}(k[\epsilon]) \simeq \operatorname{Ext}^1_{\operatorname{Spec}(\mathbb{Z}_\ell)}(M,M)$ .

# Minimality

#### Definition

A Galois deformation condition  $\mathfrak{D} = \{\mathfrak{D}_\ell\}$  is called minimal if

- $\Sigma = S$ ;
- $\blacksquare \mathfrak{D}_p$  is the flatness condition
- $\mathfrak{D}_\ell$  is the minimally ramified condition for every finite prime  $\ell \in \Sigma \ \ell \neq p.$

# Minimality

#### Definition

A Galois deformation condition  $\mathfrak{D} = \{\mathfrak{D}_\ell\}$  is called minimal if

- $\Sigma = S$ ;
- $\blacksquare \mathfrak{D}_p$  is the flatness condition;
- $\mathfrak{D}_\ell$  is the minimally ramified condition for every finite prime  $\ell \in \Sigma \ \ell \neq p.$

Kisin's method

# Minimality

#### Definition

A Galois deformation condition  $\mathfrak{D} = {\mathfrak{D}_{\ell}}$  is called minimal if

- $\Sigma = S$ ;
- $\blacksquare \mathfrak{D}_p$  is the flatness condition;
- $\mathfrak{D}_{\ell}$  is the minimally ramified condition for every finite prime  $\ell \in \Sigma$   $\ell \neq p$ .

#### Kisin's theorem

Suppose that  $F_{\bar{\rho}}$  and all of the local functors  $F_{\bar{\rho}\ell}$  are representable. Set

$$R_{loc} = \hat{\otimes}_{\ell \in \Sigma} R_{\ell}. \tag{11}$$

$$\theta_i: H^i(G, Ad(\bar{\rho})) \to \prod_{\ell \in \Sigma} H^i(G_\ell, Ad(\bar{\rho}))$$
 (12)

#### Kisin's theorem

Suppose that  $F_{ar{
ho}}$  and all of the local functors  $F_{ar{
ho}_\ell}$  are representable. Set

$$R_{loc} = \hat{\otimes}_{\ell \in \Sigma} R_{\ell}. \tag{11}$$

Moreover let

$$\theta_i: H^i(G, Ad(\bar{\rho})) \to \prod_{\ell \in \Sigma} H^i(G_\ell, Ad(\bar{\rho}))$$
 (12)

be the restriction map. Set



#### Kisin's theorem

Suppose that  $F_{ar{
ho}}$  and all of the local functors  $F_{ar{
ho}_\ell}$  are representable. Set

$$R_{loc} = \hat{\otimes}_{\ell \in \Sigma} R_{\ell}. \tag{11}$$

Moreover let

$$\theta_i: H^i(G, Ad(\bar{\rho})) \to \prod_{\ell \in \Sigma} H^i(G_\ell, Ad(\bar{\rho}))$$
 (12)

be the restriction map. Set

- $ightharpoonup r_i = dim Ker(\theta_i);$
- $t_i = dim \ coker(\theta_i)$

Suppose that  $F_{ar{
ho}}$  and all of the local functors  $F_{ar{
ho}_\ell}$  are representable. Set

$$R_{loc} = \hat{\otimes}_{\ell \in \Sigma} R_{\ell}. \tag{11}$$

Moreover let

$$\theta_i: H^i(G, Ad(\bar{\rho})) \to \prod_{\ell \in \Sigma} H^i(G_\ell, Ad(\bar{\rho}))$$
 (12)

be the restriction map. Set

- $ightharpoonup r_i = dim Ker(\theta_i);$
- $\bullet$   $t_i = dim \ coker(\theta_i)$ .



#### Theorem (Mish)

There exist  $f_1, ..., f_{t_1+r_2} \in R_{loc}[[x_1, ..., x_{r_1}]]$  such that

$$R = R_{loc}[[x_1, \dots, x_{r_1}]]/(f_1, \dots, f_{r_2+t_1}).$$
 (13)

In particular  $dim_{Kr}R \geq r_1 - r_2 - t_1$ 

The theorem only gives a lower bound. Some of the  $f_i$  can be trivial.

#### Theorem (Kisin)

There exist  $f_1, ..., f_{t_1+r_2} \in R_{loc}[[x_1, ..., x_{r_1}]]$  such that

Local-to-global arguments

$$R = R_{loc}[[x_1, \dots, x_{r_1}]]/(f_1, \dots, f_{r_2+t_1}).$$
(13)

In particular dim<sub>Kr</sub> $R > r_1 - r_2 - t_1$ 

#### Theorem (Kisin)

There exist  $f_1, ..., f_{t_1+r_2} \in R_{loc}[[x_1, ..., x_{r_1}]]$  such that

$$R = R_{loc}[[x_1, \dots, x_{r_1}]]/(f_1, \dots, f_{r_2+t_1}).$$
(13)

In particular  $dim_{Kr}R \geq r_1 - r_2 - t_1$ 

The theorem only gives a lower bound. Some of the  $f_i$  can be trivial.

 $\blacksquare$  it works for every  $\bar{\rho}$ ;

Local-to-global arguments

 $\blacksquare$  r is an optimal value.

Bad points



#### Good points:

- it works for every  $\bar{\rho}$ ;
- r is an optimal value.

Local-to-global arguments



- $\blacksquare$  it works for every  $\bar{\rho}$ ;
- r is an optimal value.

Bad points

 $\mathbf{z}$  is NOT an optimal value

no indication on how to compute the

Local-to-global arguments

#### Good points:

- $\blacksquare$  it works for every  $\bar{\rho}$ ;
- r is an optimal value.

#### Bad points:

- t is NOT an optimal value;
- $\blacksquare$  no indication on how to compute the  $f_i$



#### Good points:

- $\blacksquare$  it works for every  $\bar{\rho}$ ;
- r is an optimal value.

#### Bad points:

- t is NOT an optimal value;
- $\blacksquare$  no indication on how to compute the  $f_i$ ;

## R = T theorems

Suppose that  $\bar{\rho}$  is modular, that is, it comes from the reduction mod p of a p-adic modular form f. Let  $\mathfrak{D}$  be a deformation condition for  $\bar{\rho}$ .

Let  $\mathbb{S}_{\mathfrak{D}}$  be the subspace of cusp forms g such that the p-adic representation associated is a deformation of  $\bar{\rho}$  of type  $\mathfrak{D}$ . Let  $\mathbb{T}_{\mathfrak{D}}$  be the p-adic completion of the Hecke algebra associated to  $\mathbb{S}_{\mathfrak{D}}$ .

#### Theorem (Taylor-Wiles)

If  $\mathfrak D$  is a minimal condition, then the functorial map

$$R_{\mathfrak{D}} \to \mathbb{T}_{\mathfrak{D}}$$
 (14)

is an isomorphism. Moreover  $R_{\mathfrak{D}}$  is a local complete intersection ring.

# R = T theorems

Suppose that  $\bar{\rho}$  is modular, that is, it comes from the reduction mod p of a p-adic modular form f. Let  $\mathfrak{D}$  be a deformation condition for  $\bar{\rho}$ .

Let  $\mathbb{S}_{\mathfrak{D}}$  be the subspace of cusp forms g such that the p-adic representation associated is a deformation of  $\bar{\rho}$  of type  $\mathfrak{D}$ . Let  $\mathbb{T}_{\mathfrak{D}}$ be the p-adic completion of the Hecke algebra associated to  $\mathbb{S}_{\mathfrak{D}}$ .

$$R_{\mathfrak{D}} \to \mathbb{T}_{\mathfrak{D}}$$
 (14)

4 D > 4 A > 4 B >

# R = T theorems

Suppose that  $\bar{\rho}$  is modular, that is, it comes from the reduction mod p of a p-adic modular form f. Let  $\mathfrak{D}$  be a deformation condition for  $\bar{\rho}$ .

Let  $\mathbb{S}_{\mathfrak{D}}$  be the subspace of cusp forms g such that the p-adic representation associated is a deformation of  $\bar{\rho}$  of type  $\mathfrak{D}$ . Let  $\mathbb{T}_{\mathfrak{D}}$ be the p-adic completion of the Hecke algebra associated to  $\mathbb{S}_{\mathfrak{D}}$ .

#### Theorem (Taylor-Wiles)

If  $\mathfrak{D}$  is a minimal condition, then the functorial map

$$R_{\mathfrak{D}} \to \mathbb{T}_{\mathfrak{D}}$$
 (14)

is an isomorphism. Moreover  $R_{\mathfrak{D}}$  is a local complete intersection ring.

#### Let E be the elliptic curve given by Weierstrass equation

$$Y^2 + XY = X^3 - X^2 - X - 3 \tag{15}$$

This is curve 142 C 1 in J. Cremona's Tables. It has conductor 142 We take p=3 and  $S=\Sigma=\{3,71\}$ . Let

$$\bar{\rho}: G \to GL_2(\mathbb{F}_3)$$
 (16)

be the representation attached to the 3-division points of  $oldsymbol{\it{E}}$ 

$$Y^2 + XY = X^3 - X^2 - X - 3 \tag{15}$$

Kisin's method

This is curve 142 C 1 in J. Cremona's Tables. It has conductor 142.

$$\bar{\rho}: G \to GL_2(\mathbb{F}_3)$$
 (16)

Let E be the elliptic curve given by Weierstrass equation

$$Y^2 + XY = X^3 - X^2 - X - 3 \tag{15}$$

This is curve 142 C 1 in J. Cremona's Tables. It has conductor 142. We take p=3 and  $S=\Sigma=\{3,71\}$ . Let

$$\bar{\rho}: G \to GL_2(\mathbb{F}_3)$$
 (16)

be the representation attached to the 3-division points of E.



- $\bullet$   $\bar{\rho}$  is flat at 3;
- $ar{
  ho}$  is minimally ramified at 71
- lacksquare  $ar{
  ho}$  has fixed determinant equal to the cyclotomic character  $\chi$ .

Let  $\mathfrak D$  be the resulting deformation condition

We apply Taylor-Wiles' theorem to ar
ho. Then we need to compute generators for the Hecke ring  $\mathbb{T}_{\mathfrak{D}}.$ 



- $\blacksquare \bar{\rho}$  is flat at 3;
- $\bar{\rho}$  is minimally ramified at 71;

Local-to-global arguments

- $\blacksquare \bar{\rho}$  is flat at 3;
- $\bar{\rho}$  is minimally ramified at 71;

Local-to-global arguments

 $\bar{\rho}$  has fixed determinant equal to the cyclotomic character  $\chi$ .

- $\bar{\rho}$  is flat at 3;
- $\bar{\rho}$  is minimally ramified at 71;

Local-to-global arguments

 $ar{\rho}$  has fixed determinant equal to the cyclotomic character  $\chi$ .

- $\bullet$   $\bar{\rho}$  is flat at 3;
- ullet  $\bar{\rho}$  is minimally ramified at 71;
- ullet  $ar{
  ho}$  has fixed determinant equal to the cyclotomic character  $\chi$ .

# Let $\mathfrak D$ be the resulting deformation condition.

We apply Taylor-Wiles' theorem to  $\bar{\rho}$ . Then we need to compute generators for the Hecke ring  $\mathbb{T}_{\mathfrak{D}}$ .



- lacksquare  $\bar{\rho}$  is flat at 3;
- $ar{
  ho}$  is minimally ramified at 71;
- $ar{
  ho}$  has fixed determinant equal to the cyclotomic character  $\chi$ .

Let  $\mathfrak D$  be the resulting deformation condition.

We apply Taylor-Wiles' theorem to  $\bar{\rho}$ . Then we need to compute generators for the Hecke ring  $\mathbb{T}_{\mathfrak{D}}$ .

## Theorem (Agashe-Stein)

The ring  $\mathbb{T}$  of Hecke operators on cusp forms of weight k and level N is generated as an abelian group by the operators  $T_n$  with

$$n \le \frac{kN}{12} \prod_{p|N} (1 + \frac{1}{p}).$$
 (17)

Then we only need to compute the vectors  $T_n = (a_n(f))_f$  with  $n \le 12$  and f running over the normalised 3-adic eigenforms with Fourier coefficients equal to the ones of  $\bar{\rho}$ .

## Theorem (Agashe-Stein)

The ring  $\mathbb{T}$  of Hecke operators on cusp forms of weight k and level N is generated as an abelian group by the operators  $T_n$  with

$$n \le \frac{kN}{12} \prod_{\rho \mid N} (1 + \frac{1}{\rho}). \tag{17}$$

Then we only need to compute the vectors  $T_n = (a_n(f))_f$  with  $n \le 12$  and f running over the normalised 3-adic eigenforms with Fourier coefficients equal to the ones of  $\bar{\rho}$ .

| n  | $a_n(f_{71})$  | $a_n(g_{71})$    |
|----|----------------|------------------|
| 1  | 1              | 1                |
| 2  | и              | $3 - u - u^2$    |
| 3  | $3 - u^2$      | $-3 + u + u^2$   |
| 4  | $-2 + u^2$     | 1+u              |
| 5  | -1 - u         | $5-2u-u^2$       |
| 6  | 3 — 2 <i>u</i> | -3 - u           |
| 7  | $-6+2u+2u^2$   | $-6 + 2u + 2u^2$ |
| 8  | -3 + u         | _ <i>u</i>       |
| 9  | $6 - 3u - u^2$ | и                |
| 10 | $-u - u^{2}$   | $6 + u - u^2$    |
| 11 | $6-2u-2u^2$    | 2 <i>u</i>       |
| 12 | -6 + 3u        | $-6 + 3u - 2u^2$ |

where u is the unique root of the polynomial  $X^3 - 5X + 3$  in  $\mathbb{Z}_3[X]$ .



Using the approximation  $u \equiv 60 \pmod{81}$ , we see that  $T_{\mathfrak{D}}$  is generated as a  $\mathbb{Z}_3$ -module by 1=(1,1) and x=(0,9). Then we can conclude

Using the approximation  $u \equiv 60 \pmod{81}$ , we see that  $T_{\mathfrak{D}}$  is generated as a  $\mathbb{Z}_3$ -module by 1=(1,1) and x=(0,9). Then we can conclude

#### Theorem (Lario-Schoof)

 $F_{\mathfrak{D}}$  is representable and  $R_{\mathfrak{D}} \simeq \mathbb{Z}_3[[X]]/(X^2-9X)$ .



# A non-minimal example

Consider the previous example but taking  $S = \{2, 3, 71\}$ .

Theorem (Lario-Schoof)

Then  $R_{\mathfrak{D}}\simeq \mathbb{Z}_3[[X,Y]]/(f_1,f_2)$ , where

 $m f_1 = 29412Y - 9804Y^2 - 91158XY - 91158XY$ 

11018X - Y = 18X(X - 19X - 1

Consider the previous example but taking  $S = \{2, 3, 71\}$ .

Theorem (Lario-Schoof)

Then  $R_{\mathfrak{D}} \simeq \mathbb{Z}_3[[X,Y]]/(f_1,f_2)$ , where

Kisin's method

# A non-minimal example

Consider the previous example but taking  $S = \{2, 3, 71\}$ .

## Theorem (Lario-Schoof)

Then  $R_{\mathfrak{D}} \simeq \mathbb{Z}_3[[X,Y]]/(f_1,f_2)$ , where

- $f_1 = 29412Y 9804Y^2 91158XY 1641XY^2 + 11618X^2Y 787(X^3 15X^2 + 54X);$
- $f_2 = 8514Y 477Y^2 8204XY + 1741XY^2 + 2369X^2Y 787X^3$

Kisin's method

# A non-minimal example

Consider the previous example but taking  $S = \{2, 3, 71\}$ .

#### Theorem (Lario-Schoof)

Then  $R_{\mathfrak{D}} \simeq \mathbb{Z}_3[[X,Y]]/(f_1,f_2)$ , where

- $f_1 = 29412Y 9804Y^2 91158XY 1641XY^2 +$  $11618X^2Y - 787(X^3 - 15X^2 + 54X)$ :
- $f_2 = 8514Y 477Y^2 8204XY + 1741XY^2 + 2369X^2Y 787X^3$

# Conclusion

#### R = T theorems:

- provide an explicit method to compute universal deformation rings;

Local-to-global arguments



## Conclusion

#### R = T theorems:

- provide an explicit method to compute universal deformation rings;
- work ONLY in a particular setting.

Local-to-global arguments

