2º Congreso de Jóvenes Investigadores-RSME

Averaged alternating reflections in geodesic spaces

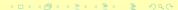
Aurora Fernández León

Grupo de Análisis funcional no lineal Universidad de Sevilla, Spain

A joint work with Adriana Nicolae

E-mail: aurorafl@us.es

September 17, 2013



Contents

- Preliminaries
 - The Convex Feasibility Problem
 - Geodesic spaces: Model spaces M_k^n and CAT(k) spaces
- The Averaged Alternating Reflection Method
 - Reflection mapping
 - Convergence results

Contents

- Preliminaries
 - The Convex Feasibility Problem
 - Geodesic spaces: Model spaces M_k^n and CAT(k) spaces
- The Averaged Alternating Reflection Method
 - Reflection mapping
 - Convergence results

Contents

- Preliminaries
 - The Convex Feasibility Problem
 - Geodesic spaces: Model spaces M_k^n and CAT(k) spaces
- 2 The Averaged Alternating Reflection Method
 - Reflection mapping
 - Convergence results

An overview to the problem

Convex Feasibility Problem:

- C_1, \ldots, C_N closed convex subsets of H, a Hilbert space.
- $C = \bigcap_{i=1}^{N} C_i \neq \emptyset$.

Find some point x in C.

► One frequently employed approach in solving the convex feasibility problem is algorithmic.

An overview to the problem

Convex Feasibility Problem:

- C_1, \ldots, C_N closed convex subsets of H, a Hilbert space.
- $C = \bigcap_{i=1}^{N} C_i \neq \emptyset$.

Find some point x in C.

► One frequently employed approach in solving the convex feasibility problem is algorithmic.

An overview to the problem

Convex Feasibility Problem:

- C_1, \ldots, C_N closed convex subsets of H, a Hilbert space.
- $C = \bigcap_{i=1}^{N} C_i \neq \emptyset$.

Find some point x in C.

► One frequently employed approach in solving the convex feasibility problem is algorithmic.

• Given $x_1 \in H$, $x_{2n} = P_A(x_{2n-1})$, $x_{2n+1} = P_B(x_{2n})$, $n \in \mathbb{N}$.

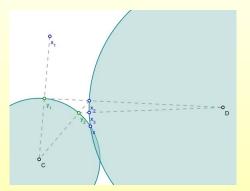


Figure: APM: Alternating Projection Method

It is known that

- ▶ A, B closed subspaces in $H \Rightarrow \{x_n\}$ converges in norm to a point in $A \cap B$.
- ▶ A, B closed convex sets in B with $A \cap B \neq \emptyset \Rightarrow \{x_n\}$ weakly converges to a point in $A \cap B$.
- APM: The weak convergence of the Alternating projection method was proved in CAT(0) spaces.

It is known that

- ▶ A, B closed subspaces in $H \Rightarrow \{x_n\}$ converges in norm to a point in $A \cap B$.
- ▶ A, B closed convex sets in B with $A \cap B \neq \emptyset \Rightarrow \{x_n\}$ weakly converges to a point in $A \cap B$.
- **APM**: The weak convergence of the Alternating projection method was proved in CAT(0) spaces.

It is known that

- ▶ A, B closed subspaces in $H \Rightarrow \{x_n\}$ converges in norm to a point in $A \cap B$.
- ▶ A, B closed convex sets in B with $A \cap B \neq \emptyset \Rightarrow \{x_n\}$ weakly converges to a point in $A \cap B$.
- **APM**: The weak convergence of the Alternating projection method was proved in CAT(0) spaces.

Another class of algorithms considered to solve the Convex feasibility problem bases on reflections instead of projections.

Reflection mapping

- ▶ the reflection of a point x with respect to A is the image of x by the reflection mapping $R_A = 2P_A I$.
 - $T: H \to H$ defined as $T = \frac{R_A R_B + I}{2}$ (NON-EXPANSIVE).
 - The averaged alternating reflection method, AAR, $x_0 \in H$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.
- $\{x_n\}$ weakly converges to a fixed point of the mapping T and the projection of this point onto the set B lies in $A \cap B$

Another class of algorithms considered to solve the Convex feasibility problem bases on reflections instead of projections.

Reflection mapping

- ▶ the reflection of a point x with respect to A is the image of x by the reflection mapping $R_A = 2P_A I$.
- $T: H \to H$ defined as $T = \frac{R_A R_B + I}{2}$ (NON-EXPANSIVE).
- The averaged alternating reflection method, **AAR**, $x_0 \in H$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.
- ▶ $\{x_n\}$ weakly converges to a fixed point of the mapping T and the projection of this point onto the set B lies in $A \cap B$

Another class of algorithms considered to solve the Convex feasibility problem bases on reflections instead of projections.

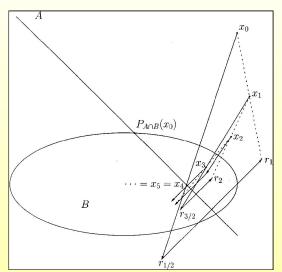
Reflection mapping

- ▶ the reflection of a point x with respect to A is the image of x by the reflection mapping $R_A = 2P_A I$.
- $T: H \to H$ defined as $T = \frac{R_A R_B + I}{2}$ (NON-EXPANSIVE).
- The averaged alternating reflection method, **AAR**, $x_0 \in H$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.
- ▶ $\{x_n\}$ weakly converges to a fixed point of the mapping T and the projection of this point onto the set B lies in $A \cap B$

Another class of algorithms considered to solve the Convex feasibility problem bases on reflections instead of projections.

Reflection mapping

- ▶ the reflection of a point x with respect to A is the image of x by the reflection mapping $R_A = 2P_A I$.
- $T: H \to H$ defined as $T = \frac{R_A R_B + I}{2}$ (NON-EXPANSIVE).
- The averaged alternating reflection method, **AAR**, $x_0 \in H$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.
- ▶ $\{x_n\}$ weakly converges to a fixed point of the mapping T and the projection of this point onto the set B lies in $A \cap B$.



10th International Conference on Fixed Point Theory and its Applications (Cluj-Napoca, 2012)

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

10th International Conference on Fixed Point Theory and its Applications (Cluj-Napoca, 2012)

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

10th International Conference on Fixed Point Theory and its Applications (Cluj-Napoca, 2012)

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

Let (X, d) be a metric space.

• X is said to be a *(uniquely) geodesic metric space* if $\forall x, y \in X \exists$ a (unique) geodesic that joins them, i.e, a map

$$c:[0,I]\subseteq\mathbb{R} o X:\ c(0)=x,\ c(I)=y$$
 and $d(c(t),c(t'))=|t-t'|\ orall\ t,t'\in[0,I].$

• In this setting, $c : \mathbb{R} \to X$ such that $d(c(t), c(t')) = |t - t'| \ \forall \ t, t' \in \mathbb{R}$ is called a geodesic line.

Example: Any Banach space is a geodesic metric space with usual segments as geodesic segments.

Let X be a uniquely geodesic metric space and [x, y] the unique geodesic segment between x and y.

• $A \subseteq X$ is said to be *convex* if $[x, y] \subset A$ for every $x, y \in A$

Let (X, d) be a metric space.

• X is said to be a *(uniquely) geodesic metric space* if $\forall x, y \in X \exists$ a (unique) geodesic that joins them, i.e, a map

$$c:[0,I]\subseteq\mathbb{R} o X:\ c(0)=x,\ c(I)=y$$
 and $d(c(t),c(t'))=|t-t'|\ orall\ t,t'\in[0,I].$

• In this setting, $c : \mathbb{R} \to X$ such that $d(c(t), c(t')) = |t - t'| \ \forall \ t, t' \in \mathbb{R}$ is called a geodesic line.

Example: Any Banach space is a geodesic metric space with usual segments as geodesic segments.

Let X be a uniquely geodesic metric space and [x, y] the unique geodesic segment between x and y.

• $A \subseteq X$ is said to be *convex* if $[x, y] \subset A$ for every $x, y \in A$.

Model spaces

- ► The Euclidean space (curvature 0)
- ► The Spherical space (curvature 1)
- ► The Hyperbolic space (curvature −1)

n-dimensional Sphere

The n-dimensional sphere \mathbb{S}^n is the set of points $\{x=(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\mid (x|x)=1\}$, where $(\cdot|\cdot)$ denote the Euclidean scalar product.

Definition of the Spherical metric

Let $d: \mathbb{S}^n \times \mathbb{S}^n \to \mathbb{R}$ be the function that assigns to each pair of points A and B in the sphere the unique real number $\operatorname{dist}(A,B) \in [0,\pi]$ such that $\operatorname{\mathbf{cos}}(\operatorname{\mathbf{d}}(\mathbf{A},\mathbf{B})) = (\mathbf{A}|\mathbf{B})$.

This new function, the Spherical distance, is a metric.

Spherical space

 (\mathbb{S}^n, d) is called Spherical space

n-dimensional Sphere

The n-dimensional sphere \mathbb{S}^n is the set of points $\{x=(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\mid (x|x)=1\}$, where $(\cdot|\cdot)$ denote the Euclidean scalar product.

Definition of the Spherical metric

Let $d: \mathbb{S}^n \times \mathbb{S}^n \to \mathbb{R}$ be the function that assigns to each pair of points A and B in the sphere the unique real number $\operatorname{dist}(A,B) \in [0,\pi]$ such that $\operatorname{\mathbf{cos}}(\operatorname{\mathbf{d}}(\mathbf{A},\mathbf{B})) = (\mathbf{A}|\mathbf{B})$.

This new function, the Spherical distance, is a metric.

Spherical space

 (\mathbb{S}^n, d) is called Spherical space.

Proposition

The Spherical space (\mathbb{S}^n, d) is a geodesic metric space.

Spherical segment

Let:

- $a \in [0, \pi]$
- A a point in (\mathbb{S}^n, d)
- u a unit vector such that (u|A) = 0
- A Spherical segment which join A and c(a) will be the image of the interval [0, a] by the geodesic c defined by $c(t) = (\cos t)A + (\sin t)u$.

Proposition

The Spherical space (\mathbb{S}^n, d) is a geodesic metric space.

Spherical segment

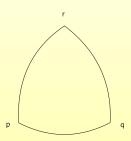
Let:

- $a \in [0, \pi]$
- A a point in (\mathbb{S}^n, d)
- u a unit vector such that (u|A) = 0
- A Spherical segment which join A and c(a) will be the image of the interval [0, a] by the geodesic c defined by $c(t) = (\cos t)A + (\sin t)u$.

Spherical triangle

Spherical triangle \triangle in \mathbb{S}^n :

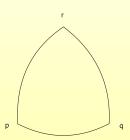
- Three different points p,q, and r in \mathbb{S}^n (vertices)
- Three Spherical segments joining them pairwise.



Spherical triangle

Spherical triangle \triangle in \mathbb{S}^n :

- Three different points p,q, and r in \mathbb{S}^n (vertices)
- Three Spherical segments joining them pairwise.



• $E^{n,1}$: vector space \mathbb{R}^{n+1} endowed with the symmetric bilinear form that associates to vector u and v the real number

$$\langle u|v\rangle = -u_{n+1}v_{n+1} + \sum_{i=1}^n u_i v_i.$$

The upper sheet of the real hyperboloid

The upper sheet of the real hyperboloid, denoted by \mathbb{H}^n , is the set of points

$$\{u = (u_1, \dots, u_{n+1}) \in E^{n,1} | \langle u | u \rangle = -1 \text{ and } u_{n+1} > 0\}$$

• $E^{n,1}$: vector space \mathbb{R}^{n+1} endowed with the symmetric bilinear form that associates to vector u and v the real number

$$\langle u|v\rangle = -u_{n+1}v_{n+1} + \sum_{i=1}^n u_iv_i.$$

The upper sheet of the real hyperboloid

The upper sheet of the real hyperboloid, denoted by \mathbb{H}^n , is the set of points

$$\{u = (u_1, \dots, u_{n+1}) \in E^{n,1} | \langle u | u \rangle = -1 \text{ and } u_{n+1} > 0 \}.$$

- Hyperbolic metric.
- unique non-negative number dist(A, B) ≥ 0 such that cosh d(A, B) = -⟨A|B⟩.
- d: hyperbolic distance.
- \blacktriangleright (\mathbb{H}^n , d) will be called the hyperbolic space.

Proposition

The Hyperbolic space (\mathbb{H}^n, d) is a geodesic metric space.

- $A \in (\mathbb{H}^n, d), u \in A^{\perp}$ a unit vector
- $c(t) = (\cosh t)A + (\sinh t)u$: hyperbolic geodesic.

- Hyperbolic metric.
- unique non-negative number dist(A, B) ≥ 0 such that cosh d(A, B) = -⟨A|B⟩.
- d : hyperbolic distance.
- \blacktriangleright (\mathbb{H}^n , d) will be called the hyperbolic space.

Proposition

The Hyperbolic space (\mathbb{H}^n, d) is a geodesic metric space.

- $A \in (\mathbb{H}^n, d), u \in A^{\perp}$ a unit vector
- $c(t) = (\cosh t)A + (\sinh t)u$: hyperbolic geodesic

- Hyperbolic metric.
- unique non-negative number dist(A, B) ≥ 0 such that cosh d(A, B) = -⟨A|B⟩.
- d : hyperbolic distance.
- \blacktriangleright (\mathbb{H}^n , d) will be called the hyperbolic space.

Proposition

The Hyperbolic space (\mathbb{H}^n, d) is a geodesic metric space.

- $A \in (\mathbb{H}^n, d), u \in A^{\perp}$ a unit vector
- $c(t) = (\cosh t)A + (\sinh t)u$: hyperbolic geodesic.

Hyperbolic triangle

Hyperbolic triangle \triangle in \mathbb{H}^n :

- Three different points p,q, and r in \mathbb{H}^n (vertices)
- Three Hyperbolic segments joining them pairwise.

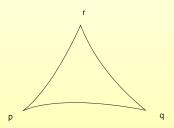


Figure: Hyperbolic triangle

Hyperbolic triangle

Hyperbolic triangle \triangle in \mathbb{H}^n :

- Three different points p,q, and r in \mathbb{H}^n (vertices)
- Three Hyperbolic segments joining them pairwise.

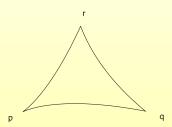


Figure: Hyperbolic triangle

The model spaces M_k^n

Let *k* be a real number.

Model spaces M_{ν}^{n}

- (1) If k = 0, M_0^n is the Euclidean space \mathbb{E}^n :
- (2) If k > 0, M_k^n is obtained from the Spherical space \mathbb{S}^n by multiplying the distance function by $1/\sqrt{k}$;
- (3) If k < 0, M_k^n is obtained from the Hyperbolic space \mathbb{S}^n by multiplying the distance function by $1/\sqrt{-k}$.
 - \bullet $\mathbb{E}^n = M_0^n$,
 - $\mathbb{S}^n = M_1^n$
 - $\mathbb{H}^n = M^n_{\perp}$.

The model spaces M_k^n

Let *k* be a real number.

Model spaces M_k^n

- (1) If k = 0, M_0^n is the Euclidean space \mathbb{E}^n ;
- (2) If k > 0, M_k^n is obtained from the Spherical space \mathbb{S}^n by multiplying the distance function by $1/\sqrt{k}$;
- (3) If k < 0, M_k^n is obtained from the Hyperbolic space \mathbb{S}^n by multiplying the distance function by $1/\sqrt{-k}$.
 - $\mathbb{E}^n = M_0^n$,
 - $\mathbb{S}^n = M_1^n$,
 - $\mathbb{H}^n = M^n_{\perp}$.

CAT(k) spaces Conjecture

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in M which perimeter is less than $2D_k$, where D_k denotes the diameter of M_k^n : $D_k = \pi/\sqrt{k}$ if k > 0, $D_k = \infty$ if $k \le 0$.
- $\overline{\triangle} \subseteq M_k^2$ a comparison triangle for \triangle .
- ightharpoonup ightharpoonup satisfy the **CAT**(k) inequality if

$$x, y \in \triangle \\ \bar{x}, \bar{y} \in \overline{\triangle}$$

$$d(x,y) \leq d(\bar{x},\bar{y})$$

CAT(k) spaces ◆Conjecture

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in M which perimeter is less than $2D_k$, where D_k denotes the diameter of M_k^n : $D_k = \pi/\sqrt{k}$ if k > 0, $D_k = \infty$ if $k \le 0$.
- $\overline{\triangle} \subseteq M_k^2$ a comparison triangle for \triangle .
- ightharpoonup ightharpoonup satisfy the **CAT**(k) inequality if

$$x, y \in \triangle$$

 $\bar{x}, \bar{y} \in \overline{\triangle}$

$$d(x,y) \leq d(\bar{x},\bar{y})$$

CAT(k) spaces · Conjecture:

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in M which perimeter is less than $2D_k$, where D_k denotes the diameter of M_k^n : $D_k = \pi/\sqrt{k}$ if k > 0, $D_k = \infty$ if $k \le 0$.
- $\overline{\triangle} \subseteq M_k^2$ a comparison triangle for \triangle .
- ▶ △ satisfy the CAT(k) inequality if:

$$x, y \in \triangle \ \bar{x}, \bar{y} \in \triangle$$

$$d(x, y) \leq d(\bar{x}, \bar{y}).$$

CAT(k) spaces · Conjecture:

- (M, d) metric space.
- k real number.
- \triangle geodesic triangle in M which perimeter is less than $2D_k$, where D_k denotes the diameter of M_k^n : $D_k = \pi/\sqrt{k}$ if k > 0, $D_k = \infty$ if $k \le 0$.
- $\overline{\triangle} \subseteq M_k^2$ a comparison triangle for \triangle .
- ▶ △ satisfy the CAT(k) inequality if:

$$x, y \in \triangle \ \bar{x}, \bar{y} \in \triangle$$

$$d(x, y) \leq d(\bar{x}, \bar{y}).$$

CAT(k) spaces

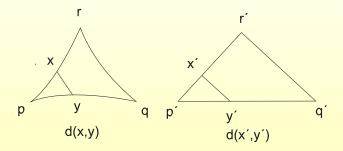


Figure: CAT(k) inequality

CAT(k) spaces

CAT(k) space

- ▶ M is a CAT(k) space for $k \le 0$ if:
 - M is a geodesic space.
 - All its geodesic triangles satisfy the CAT(k) inequality.
- ▶ M is a CAT(k) space for k > 0 if:
 - M is D_k-geodesic.
 - All geodesic triangles in M of perimeter less than 2D_k satisfy the CAT(k) inequality.

Contents

- Preliminaries
 - The Convex Feasibility Problem
 - Geodesic spaces: Model spaces M_k^n and CAT(k) spaces
- The Averaged Alternating Reflection Method
 - Reflection mapping
 - Convergence results

- The metric projection onto C is well-defined and single-valued.
- (X, d) uniq. geodesic with the geodesic extension prop.
- The reflection of $x \in X$ w.r.t C can be any z in a geodesic line $\gamma \supset [x, P_C x]$ for which $P_C x = \frac{x+z}{2}$.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: $R_C x$).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
- A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces ...).

- The metric projection onto C is well-defined and single-valued.
- (X, d) uniq. geodesic with the geodesic extension prop
- The reflection of x ∈ X w.r.t C can be any z in a geodesic line γ ⊃ [x, P_Cx] for which P_Cx = x+z/2.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: $R_C x$).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
- A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces.

- The metric projection onto C is well-defined and single-valued.
- \bullet (X, d) uniq. geodesic with the geodesic extension prop.
- The reflection of $x \in X$ w.r.t C can be any z in a geodesic line $\gamma \supset [x, P_C x]$ for which $P_C x = \frac{x+z}{2}$.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: R_Cx).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
 - A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces (**)).

- The metric projection onto C is well-defined and single-valued.
- \bullet (X, d) uniq. geodesic with the geodesic extension prop.
- The reflection of $x \in X$ w.r.t C can be any z in a geodesic line $\gamma \supset [x, P_C x]$ for which $P_C x = \frac{x+z}{2}$.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: $R_C x$).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
- A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces (**)).

- The metric projection onto C is well-defined and single-valued.
- \bullet (X, d) uniq. geodesic with the geodesic extension prop.
- The reflection of $x \in X$ w.r.t C can be any z in a geodesic line $\gamma \supset [x, P_C x]$ for which $P_C x = \frac{x+z}{2}$.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: R_Cx).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
- A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces (**).

- The metric projection onto C is well-defined and single-valued.
- \bullet (X, d) uniq. geodesic with the geodesic extension prop.
- The reflection of $x \in X$ w.r.t C can be any z in a geodesic line $\gamma \supset [x, P_C x]$ for which $P_C x = \frac{x+z}{2}$.
- If X has no bifurcating geodesics, then geodesics can be extended in a unique way (z unique: R_Cx).
- Another problem consists in guaranteeing certain properties of T (Hilbert: P_C and R_C are nonexpansive and consequently T is firmly nonexpansive).
- A concept of weak convergence in geodesic spaces (we got weak convergence in Hilbert spaces ...).

Let (X, d) be a geodesic metric space and $A, B, C \subseteq X$.

- x ∈ X
- ▶ **Reflection of** x: $R_C x$ is the point in the geodesic line containing the segment $[x, P_C x]$ that satisfies

$$P_C x = \frac{x + R_C x}{2}$$

- A and B nonempty closed convex subsets of X.
- $T: X \to X$ defined as $T = \frac{R_A R_B + I}{2}$.
- The averaged alternating reflection method, AAR, $x_0 \in X$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

Let (X, d) be a geodesic metric space and $A, B, C \subseteq X$.

- *x* ∈ *X*
- ▶ **Reflection of** x: $R_C x$ is the point in the geodesic line containing the segment $[x, P_C x]$ that satisfies

$$P_C x = \frac{x + R_C x}{2}$$

- A and B nonempty closed convex subsets of X.
- $T: X \to X$ defined as $T = \frac{R_A R_B + I}{2}$.
- The averaged alternating reflection method, **AAR**, $x_0 \in X$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

Let (X, d) be a geodesic metric space and $A, B, C \subseteq X$.

- *x* ∈ *X*
- ▶ **Reflection of** x: $R_C x$ is the point in the geodesic line containing the segment $[x, P_C x]$ that satisfies

$$P_C x = \frac{x + R_C x}{2}$$

- A and B nonempty closed convex subsets of X.
- $T: X \to X$ defined as $T = \frac{R_A R_B + I}{2}$.
- The averaged alternating reflection method, **AAR**, $x_0 \in X$ and $x_n = T^n x_0$ for every $n \in \mathbb{N}$.

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive.

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive.

- C a closed convex subset of M_kⁿ.
- $x, y \in M_k^n$ such that $d(x, C), d(y, C) < D_k/2$.
- ► Then

$$d(R_C x, R_C y) \leq d(x, y)$$
.

- C a closed convex subset of M_kⁿ.
- $x, y \in M_k^n$ such that $d(x, C), d(y, C) < D_k/2$.
- ► Then

$$d(R_C x, R_C y) \leq d(x, y)$$
.

- C a closed convex subset of M_kⁿ.
- $x, y \in M_k^n$ such that $d(x, C), d(y, C) < D_k/2$.
- ► Then

$$d(R_C x, R_C y) \leq d(x, y)$$
.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, *Pure and Applied Mathematics, Marcel Dekker*, Inc. New York and Basel, 1984.

► Example 22.1: the reflection mapping in the (complex) Hilbert ball is not nonexpansive.

- C a closed convex subset of M_kⁿ.
- $x, y \in M_k^n$ such that $d(x, C), d(y, C) < D_k/2$.
- ► Then

$$d(R_C x, R_C y) \leq d(x, y)$$
.

Encouraging Problems

Conjecture 1 Reflections in spaces of constant curvature are nonexpansive ✓

Conjecture 2 Reflections in CAT(0) spaces are nonexpansive \mathcal{X}

P.L Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.*, 16, (1979) 964-979.

P.L Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.*, 16, (1979) 964-979.

Theorem

- A and B two nonempty closed convex subsets of a Hilbert space H.
- $A \cap B \neq \emptyset$.
- $x_0 \in H$ and x_n the sequence starting at x_0 generated by the AAR method.
- ▶ $\{x_n\}_{n\geq 1}$ weakly converges to some fixed point of the mapping T and $P_Bx \in A \cap B$.
- ▶ The "shadow" sequence $\{P_Bx_n\}_{n\geq 1}$ is **bounded** and each of its **weak cluster points** belongs to $A \cap B$.

P.L Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.*, 16, (1979) 964-979.

Theorem

- A and B two nonempty closed convex subsets of M_kⁿ for k < 0.
- $A \cap B \neq \emptyset$.
- $x_0 \in M_k^2$ and x_n the sequence starting at x_0 generated by the AAR method.
- ▶ $\{x_n\}_{n\geq 1}$ **converges** to some fixed point of the mapping T and $P_Bx \in A \cap B$.
- ▶ The "shadow" sequence $\{P_Bx_n\}_{n\geq 1}$ is **convergent** and its limit belongs to $A\cap B$.

▶ Important fact: $T = \frac{R_A R_B + I}{2}$ is nonexpansive since a CAT(0) space is Busemann convex.

▶ Important fact: $T = \frac{R_A R_B + I}{2}$ is nonexpansive since a CAT(0) space is Busemann convex.

Theorem

- A, B and C nonempty closed convex subsets of Mⁿ_k for k > 0.
- $A, B \subseteq C$, $diam(C) < D_k/2$ and $R_B(C), R_A(C) \subseteq C$.
- $x_0 \in M_k^2$ and x_n the sequence starting at x_0 generated by the AAR method.
- ▶ Any convergent subsequence $\{x_{n_k}\}$ of $\{x_n\}$ converges to some fixed point of the mapping T and $P_Bx \in A \cap B \neq \emptyset$.
- ▶ The "shadow" sequence $\{P_Bx_n\}_{n\geq 1}$ is **bounded** and each of its **cluster points** belongs to $A \cap B$.

Gracias por su atención