Atomic blocks for martingales

José Manuel Conde Alonso

Work in progress with Javier Parcet Instituto de Ciencias Matemáticas - Universidad Autónoma de Madrid Segundo Congreso de Jóvenes Investigadores de la RSME, September 16-20 2013

September 18, 2013

• Setting: (Ω, Σ, μ) probability space, $\{\Sigma_k\}_{k \in \mathbb{N}}$ filtration with associated conditional expectations $\{E_k\}_{k \in \mathbb{N}}$.

- Setting: (Ω, Σ, μ) probability space, $\{\Sigma_k\}_{k \in \mathbb{N}}$ filtration with associated conditional expectations $\{E_k\}_{k \in \mathbb{N}}$.
- Martingale H_1 space: subspace of L_1 with the norm

$$||f||_{\mathcal{H}_1} := \left\| \left(\sum_k |df_k|^2 \right)^{\frac{1}{2}} \right\|_1.$$

- Setting: (Ω, Σ, μ) probability space, $\{\Sigma_k\}_{k \in \mathbb{N}}$ filtration with associated conditional expectations $\{E_k\}_{k \in \mathbb{N}}$.
- Martingale H_1 space: subspace of L_1 with the norm

$$\|f\|_{\mathcal{H}_1} := \left\| \left(\sum_k |df_k|^2 \right)^{\frac{1}{2}} \right\|_1.$$

Martingale BMO space: subspace of L₂ with the norm

$$||f||_{\text{BMO}} = \sup_{k} ||E_{k}||f - E_{k-1}f|^{2}||_{\infty}^{\frac{1}{2}}$$

- Setting: (Ω, Σ, μ) probability space, $\{\Sigma_k\}_{k \in \mathbb{N}}$ filtration with associated conditional expectations $\{E_k\}_{k \in \mathbb{N}}$.
- Martingale H_1 space: subspace of L_1 with the norm

$$||f||_{\mathcal{H}_1} := \left\| \left(\sum_k |df_k|^2 \right)^{\frac{1}{2}} \right\|_1.$$

Martingale BMO space: subspace of L₂ with the norm

$$||f||_{\text{BMO}} = \sup_{k} ||E_{k}||f - E_{k-1}f|^{2}||_{\infty}^{\frac{1}{2}}$$

• $(H_1)^* = BMO$.

Atoms

- A function a is called a **classical p-atom** (1 if:
 - $\exists k : E_k(a) = 0, \operatorname{supp}(a) \subseteq A \in \Sigma_k.$ $\exists \|a\|_p \le \mu(A)^{-1/p'}.$

Atoms

- A function a is called a **classical p-atom** (1 if:

 - $\|a\|_p \leq \mu(A)^{-1/p'}$.
- $h_1^{\text{at}} = \{f = \sum_j \lambda_j a_j : a_j \text{ is an atom}\}$, equipped with the norm

$$\|f\|_{h_1^{\operatorname{at}}} = \inf_{f = \sum_j \lambda_j a_j} \sum_j |\lambda_j|.$$

Atoms

- A function *a* is called a **classical p-atom** (1 if:

 - $\|a\|_p \leq \mu(A)^{-1/p'}$.
- $h_1^{\text{at}} = \{f = \sum_i \lambda_j a_j : a_j \text{ is an atom}\}$, equipped with the norm

$$\|f\|_{h_1^{\operatorname{at}}} = \inf_{f = \sum_j \lambda_j a_j} \sum_j |\lambda_j|.$$

THEOREM

 $h_1 = h_1^{\text{at}}$, where h_1 is the subspace of L_1 of functions f such that

$$||f||_{h_1} := \left\| \left(\sum_k E_{k-1} |df_k|^2 \right)^{\frac{1}{2}} \right\|_1 < \infty$$

•
$$(h_1)^* = bmo^c$$
,

• $(h_1)^* = \mathsf{bmo}^c$, where

$$||f||_{\text{bmo}^c} = \sup_{k} ||E_k|f - E_k f|^2||_{\infty}^{\frac{1}{2}}$$

$$||f||_{\text{bmo}^c} = \sup_{k} ||E_k|f - E_k f|^2||_{\infty}^{\frac{1}{2}}$$

• In general $h_1 \subsetneq H_1$.

$$||f||_{\text{bmo}^c} = \sup_{k} ||E_k|f - E_k f|^2||_{\infty}^{\frac{1}{2}}$$

• In general $h_1 \subsetneq H_1$. In fact, we have

$$\|f\|_{\mathsf{BMO}} \sim \mathsf{max}\left\{\|f\|_{\mathsf{bmo}^c}, \|f\|_{\mathsf{bmo}^d}\right\}$$

where $||f||_{\mathsf{bmo}^d} = \sup_k ||df_k||_{\infty}$.

$$||f||_{\text{bmo}^c} = \sup_{k} ||E_k|f - E_k f|^2||_{\infty}^{\frac{1}{2}}$$

• In general $h_1 \subsetneq H_1$. In fact, we have

$$\|f\|_{\mathsf{BMO}} \sim \mathsf{max}\left\{\|f\|_{\mathsf{bmo}^c}, \|f\|_{\mathsf{bmo}^d}\right\}$$

where $||f||_{\mathsf{bmo}^d} = \mathsf{sup}_k \, ||df_k||_{\infty}$.

• Question: Is there an atomic description of H_1 ?

$$||f||_{\text{bmo}^c} = \sup_{k} ||E_k|f - E_k f|^2||_{\infty}^{\frac{1}{2}}$$

• In general $h_1 \subsetneq H_1$. In fact, we have

$$\|f\|_{\mathsf{BMO}} \sim \mathsf{max}\left\{\|f\|_{\mathsf{bmo}^c}, \|f\|_{\mathsf{bmo}^d}\right\}$$

where $||f||_{\mathsf{hmo}^d} = \mathsf{sup}_k ||df_k||_{\infty}$.

- Question: Is there an atomic description of H_1 ?
- Answer: No, if we only consider classical atoms.

ATOMIC BLOCKS

DEFINITION

Let b be Σ -measurable. It is called a **(p)-atomic block** if:

- $b = \sum_{i} \lambda_{j} a_{j}, \ \lambda_{j} \text{ scalar.}$
- **3** Each **subatom** a_i satisfies the following properties:
 - $\exists k_j \geq k : \mathsf{supp}(a_j) \subseteq A_j \subseteq B$, $A_j \in \Sigma_{k_j}$.

•

$$||a_j||_p \leq \frac{1}{\mu(A_j)^{1/p'}} \frac{1}{k_j - k + 1}.$$

Set also

$$|b|_{H^{\mathsf{atb}}_{1,p}} = \inf_{b = \sum \lambda_j \mathsf{a}_j} \sum_i |\lambda_j|.$$

We define

$$H_{1,p}^{\mathsf{atb}} = \left\{ f \in L_1(\Omega, \Sigma, \mu) : f = \sum_i b_i, \text{ each } b_i \text{ is a p-atomic block }
ight\}.$$

We define

$$H_{1,p}^{\mathsf{atb}} = \left\{ f \in L_1(\Omega, \Sigma, \mu) : f = \sum_i b_i, \text{ each } b_i \text{ is a p-atomic block }
ight\}.$$

equipped with the norm

$$\|f\|_{H^{\mathsf{atb}}_{1,p}} := \inf_{\substack{f = \sum_i b_i, \\ b_i = \sum_j \lambda_{ij} a_{ij}}} \sum_i |b_i|_{H^{\mathsf{atb}}_{1,p}} = \inf_{\substack{f = \sum_i b_i, \\ b_i = \sum_j \lambda_{ij} a_{ij}}} \sum_{i,j} |\lambda_{ij}|.$$

Main result

THEOREM (C., PARCET)

$$H_{1,p}^{\mathsf{atb}} = H_1$$

with equivalent norms.

SKETCH OF PROOF

By duality, we show

$$(H_{1,p}^{\mathsf{atb}})^* = \mathsf{BMO}.$$

SKETCH OF PROOF

By duality, we show

$$(H_{1,p}^{\mathsf{atb}})^* = \mathsf{BMO}.$$

First inclusion: BMO $\subseteq (H_{1,p}^{atb})^*$. Given f, define $L_f(b) := E(bf)$.

$$\left| \int bf d\mu \right| = \left| \int b(f - E_k f) d\mu \right|$$

Sketch of proof

By duality, we show

$$(H_{1,p}^{\mathsf{atb}})^* = \mathsf{BMO}.$$

First inclusion: BMO $\subseteq (H_{1,p}^{atb})^*$. Given f, define $L_f(b) := E(bf)$.

$$\left| \int bf d\mu \right| = \left| \int b(f - E_k f) d\mu \right|$$

$$\leq \sum_j |\lambda_j| \left| \int a_j (f - E_k f) d\mu \right|$$

$$=: \sum_j |\lambda_j| I_j.$$

$$|I_j| \leq ||a_j||_p \left(\int_{A_j} |f - E_k f|^{p'} d\mu\right)^{\frac{1}{p'}}$$

$$|I_j| \leq \|a_j\|_p \left(\int_{A_j} |f - E_k f|^{p'} d\mu \right)^{\frac{1}{p'}}$$

$$\leq \frac{1}{k_j - k + 1} \frac{1}{\mu(A_j)^{1/p'}} \left(\int_{A_j} |f - E_k f|^{p'} d\mu \right)^{\frac{1}{p'}}$$

$$\begin{split} I_{j} & \leq \|a_{j}\|_{p} \left(\int_{A_{j}} |f - E_{k}f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \frac{1}{k_{j} - k + 1} \frac{1}{\mu(A_{j})^{1/p'}} \left(\int_{A_{j}} |f - E_{k}f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \left(\int_{A_{j}} |f - E_{k_{j}}f|^{p'} d\mu \right)^{\frac{1}{p'}} + \frac{1}{k_{j} - k + 1} \sum_{l = k + 1}^{k_{j}} \|E_{l}f - E_{l - 1}f\|_{\infty} \end{split}$$

$$\begin{split} I_{j} & \leq \|a_{j}\|_{p} \left(\int_{A_{j}} |f - E_{k}f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \frac{1}{k_{j} - k + 1} \frac{1}{\mu(A_{j})^{1/p'}} \left(\int_{A_{j}} |f - E_{k}f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \left(\int_{A_{j}} |f - E_{k_{j}}f|^{p'} d\mu \right)^{\frac{1}{p'}} + \frac{1}{k_{j} - k + 1} \sum_{l = k + 1}^{k_{j}} \|E_{l}f - E_{l - 1}f\|_{\infty} \\ & \leq \left(\int_{A_{j}} E_{k_{j}} |f - E_{k_{j}}f|^{p'} d\mu \right)^{\frac{1}{p'}} + \frac{1}{k_{j} - k + 1} \sum_{l = k + 1}^{k_{j}} \|f\|_{\text{bmo}^{d}} \end{split}$$

$$\begin{split} I_{j} & \leq \|a_{j}\|_{p} \left(\int_{A_{j}} |f - E_{k} f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \frac{1}{k_{j} - k + 1} \frac{1}{\mu(A_{j})^{1/p'}} \left(\int_{A_{j}} |f - E_{k} f|^{p'} d\mu \right)^{\frac{1}{p'}} \\ & \leq \left(\int_{A_{j}} |f - E_{k_{j}} f|^{p'} d\mu \right)^{\frac{1}{p'}} + \frac{1}{k_{j} - k + 1} \sum_{l = k + 1}^{k_{j}} \|E_{l} f - E_{l - 1} f\|_{\infty} \\ & \leq \left(\int_{A_{j}} E_{k_{j}} |f - E_{k_{j}} f|^{p'} d\mu \right)^{\frac{1}{p'}} + \frac{1}{k_{j} - k + 1} \sum_{l = k + 1}^{k_{j}} \|f\|_{\text{bmo}^{d}} \\ & \lesssim \|f\|_{\text{bmo}^{c}} + \frac{k_{j} - k}{k_{j} - k + 1} \|f\|_{\text{bmo}^{d}} \\ & \leq 2\|f\|_{\text{BMO}}. \end{split}$$

SECOND INCLUSION: $(H_{1,p}^{\text{atb}})^* \subseteq BMO$

Need of an additional tool:

Definition

Let $\Sigma_1 \subset \Sigma_2$ be σ -algebras, and X a Σ_2 -measurable r.v. Y is a conditional median of X w.r.t Σ_1 if:

- Y is Σ_1 -measurable.
- $\forall A \in \Sigma_1$,

$$\mu(A \cap \{X > Y\}) \le \frac{1}{2}\mu(A) \ge \mu(A \cap \{X < Y\}).$$

SECOND INCLUSION: $(H_{1,p}^{atb})^* \subseteq BMO$

Need of an additional tool:

Definition

Let $\Sigma_1 \subset \Sigma_2$ be σ -algebras, and X a Σ_2 -measurable r.v. Y is a conditional median of X w.r.t Σ_1 if:

- Y is Σ_1 -measurable.
- $\forall A \in \Sigma_1$,

$$\mu(A \cap \{X > Y\}) \le \frac{1}{2}\mu(A) \ge \mu(A \cap \{X < Y\}).$$

Remark: Y is a conditional median of X iff

$$E(|X - Y|) = \inf_{G \ \Sigma_1 - \text{measurable}} E(|X - G|).$$

THEOREM (TOMKINS, '75)

Given a probability space (Ω, Σ, μ) and a r.v. X, there exists at least one conditional median Y of X w.r.t. any σ -algebra $\Sigma' \subset \Sigma$.

Given f, denote any conditional median of f w.r.t Σ_k by $\alpha_k f$.

THEOREM (TOMKINS, '75)

Given a probability space (Ω, Σ, μ) and a r.v. X, there exists at least one conditional median Y of X w.r.t. any σ -algebra $\Sigma' \subset \Sigma$.

Given f, denote any conditional median of f w.r.t Σ_k by $\alpha_k f$.

Definition

$$\|f\|_{\circ} := \max \left\{ \sup_{k} \|E_k|f - \alpha_k f|^{p'}\|_{\infty}^{\frac{1}{p'}}, \sup_{k} \|\alpha_k f - \alpha_{k-1} f\|_{\infty} \right\}$$

The norm $\|\cdot\|_{\circ}$ does not depend on the election of conditional median.

It is easy to check:

$$||f||_{\mathsf{BMO}} \lesssim ||f||_{\circ}.$$

It is easy to check:

$$||f||_{\mathsf{BMO}} \lesssim ||f||_{\circ}.$$

Now use properties of α_k to estimate

$$||f||_{\circ} \lesssim ||L_f||_{H_{1,\rho}^{\mathrm{atb}}}.$$

MOTIVATION (TOO LATE!)

It is classical that

$$H_1(\mathbb{R}^n, dx) = \sum_{j=1}^{n+1} H_1^j(\mathbb{R}^n, dx).$$

MOTIVATION (TOO LATE!)

It is classical that

$$H_1(\mathbb{R}^n, dx) = \sum_{j=1}^{n+1} H_1^j(\mathbb{R}^n, dx).$$

This is dual to

$$\mathsf{BMO}(\mathbb{R}^n, dx) = \bigcap_{j=1}^{n+1} \mathsf{BMO}^j(\mathbb{R}^n, dx).$$

(Garnett-Jones, Mei...).

• Yes, if μ is doubling.

• Yes, if μ is doubling. Reason: H_1^j can be interpreted as a martingale space and it coincides with H_1^j .

- Yes, if μ is doubling. Reason: H_1^j can be interpreted as a martingale space and it coincides with H_1^j .
- No, in general.

If μ is of polynomial growth (i.e. $\mu(B(x,R)) \leq C_{\mu}R^{k}$, $k \leq n$), then one can define adapted spaces of BMO and H_{1} type (Tolsa):

If μ is of polynomial growth (i.e. $\mu(B(x,R)) \leq C_{\mu}R^{k}$, $k \leq n$), then one can define adapted spaces of BMO and H_{1} type (Tolsa): $f \in \mathsf{RBMO}(\mathbb{R}^{n}, \mu)$ if

$$\|f\|_{\mathsf{RBMO}} = \mathsf{max}(\|f\|_{\mathsf{RBMO}^c}, \|f\|_{\mathsf{RBMO}^d}) < \infty,$$

If μ is of polynomial growth (i.e. $\mu(B(x,R)) \leq C_{\mu}R^{k}$, $k \leq n$), then one can define adapted spaces of BMO and H_{1} type (Tolsa): $f \in \mathsf{RBMO}(\mathbb{R}^{n}, \mu)$ if

$$||f||_{\mathsf{RBMO}} = \mathsf{max}(||f||_{\mathsf{RBMO}^c}, ||f||_{\mathsf{RBMO}^d}) < \infty,$$

where

$$\|f\|_{\mathsf{RBMO}^c} = \sup_{Q \text{ doubling cube}} \left(\oint_Q \left| f - \oint_Q f d\mu \right|^2 d\mu \right)^{\frac{1}{2}},$$

$$\|f\|_{\mathsf{RBMO}^d} = \sup_{Q \subset R \text{ and } Q, R \text{ doubling}} \left| \oint_Q f d\mu - \oint_R f d\mu \right|$$

Predual of RBMO: space of atomic blocks in \mathbb{R}^n .

Predual of RBMO: space of atomic blocks in \mathbb{R}^n . We can interpret RBMO^d and RBMO^c as the intersection of martingale spaces:

Predual of RBMO: space of atomic blocks in \mathbb{R}^n . We can interpret RBMO^d and RBMO^c as the intersection of martingale spaces:

LEMMA (C., PARCET)

$$\mathsf{RBMO}(\mathbb{R}^n, \mu) = \bigcap_{i=1}^{n+1} \mathsf{RBMO}^j(\mathbb{R}^n, \mu).$$

(with RBMO^j appropriately defined)

Predual of RBMO: space of atomic blocks in \mathbb{R}^n . We can interpret RBMO^d and RBMO^c as the intersection of martingale spaces:

LEMMA (C., PARCET)

$$\mathsf{RBMO}(\mathbb{R}^n, \mu) = \bigcap_{i=1}^{n+1} \mathsf{RBMO}^j(\mathbb{R}^n, \mu).$$

(with RBMO^j appropriately defined)
<u>Remark:</u> The result is true for measures which are not of polynomial growth.

Thank you!