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Chapter 1

Introduction

Those who are not shocked when they first come across
quantum theory cannot possibly have understood it.

— Niehls Bohr

I think I can safely say that nobody understands quan-
tum mechanics.

— Richard P. Feynman

Very interesting theory — it makes no sense at all.
— Groucho Marx

1.1 Foundations

Quantum Mechanics (QM) shaped up in the form we know it today during the first quarter
of the 20th century by the ingenuity of Heisenberg, Schrödinger, Dirac, von Neumann and
many others.

Last course you discussed in detail the historical developments leading to it: Planck’s
radiation law, the Bohr’s atom, the de Broglie’s matter waves, the photoelectric effect, etc.

That’s the way QM was built but it is not the path we will follow in this course. In
the same way as Einstein’s Theory of Relativity was formulated from a couple of basic
postulates, we will reformulate QM assuming a few postulates and then we will elaborate
on their logical consequences.

To prepare the ground, in this chapter we will motivate the subject with a simple
experiment that illustrates the essence of the quantum theory and will serve as a starting
point to introduce the formalism.

1.2 The Stern-Gerlach experiment

The Stern-Gerlach experiment (1921-1922) shows clearly a physical behaviour that Clas-
sical Mechanics cannot explain. We will describe it here and in the next chapter we will
give the postulates that provide a correct interpretation of the results.

1



2 Chapter 1: Introduction

The objective of the experiment was to measure the magnetic moment of a silver
atom. Suppose first a classical hydrogen atom: an electron orbiting a proton of opposite
charge with angular momentum ~L. The electron mass m is much smaller than the proton
mass. Then, the magnetic moment of the system is

~µ =
q

2m
~L (q = −e) (1.1)

Assume now you send hydrogen atoms at a speed v through a magnetic field ~B. The atom
has no net electric charge, Q = 0. Then its magnetic interaction, ~F = Q~v × ~B, should
apparently vanish. However, the relative motion of the proton and the electron creates a
non-vanishing magnetic interaction that can be described in terms of the magnetic moment
by the Hamiltonian

Hint = V = −~µ · ~B. (1.2)

So, to minimize the energy, the magnetic field tends to align the dipole ~µ with ~B.

In addition to the orbital angular momentum, electrons and protons happen to have
an intrinsic angular momentum or spin ~S, that is analogue to a rotation around an inner
axis.a The spin angular momentum also induces a magnetic dipole moment

~µ = g
q

2m
~S (1.3)

where g is the gyromagnetic ratio (g ≈ 2 for the electron). This ~µ couples to the magnetic
field as in (1.2).

A silver atom is made of 47 protons and 47 electrons, whose configuration is such that
the total spin and orbital angular momenta tend to cancel each other but actually coincides
with the spin of the 47th electron. This means, that the magnetic moment of the silver
atom is

~µ ∝ ~S (spin of the 47th electron). (1.4)

When silver atoms, heated in a furnace, escape through a small hole and travel across
an inhomogeneous magnetic field with a large gradient along the z direction (Fig. 1.1),

~B = (0, 0, B(z)), (1.5)

they will experience a force proportional to the vertical component of the magnetic moment
µz, that will deflect the beams,

~F = −∇V =

(
0, 0, µz

∂B

∂z

)
. (1.6)

aThe spin will be discussed in detail in chapter 4.

© www.ugr.es/local/jillana 2



1.2. The Stern-Gerlach experiment 3

Figure 1.1: Sketch of the Stern-Gerlach experiment (left) and its outcome (right).

(a)

(b)

(c)

Figure 1.2: Sequential Stern-Gerlach experiments.

Since the magnetic moment orientations are completely random, one would expect a con-
tinuum of deviations, as in the upper right corner of Fig. 1.1, with a larger concentration
in the central part. However, Stern and Gerlach observed that the original beam splits
into just two distinct components corresponding to the extremal values

Sz = ±~
2
, (1.7)

where the reduced Planck constant ~ is a fundamental unit of angular momentum,

~ ≡ h

2π
= 1.0546× 10−27 erg s = 6.5822× 10−16 eV s. (1.8)

If instead of orienting the magnetic field in the vertical direction (SGẑ) we do it along any
other direction, e.g. the x-axis (SGx̂), a similar result is observed, Sx = ±~/2. This means
that the spin angular momentum is quantized, namely it may take only discrete values.

In order to try to understand this result, let us perform several sequential Stern-Gerlach
experiments (Fig. 1.2). They consist of a chain of SGα̂ devices to measure the spin along
direction α̂ or filter one of the two spin components Sα = ±~/2 by blocking the other one:

(a) In this experiment nothing very surprising happens, apart from the fact that every
SG selects just two possible spin components (quantization). After we filter one of
them, say Sz = +~/2, by SGẑ, we measure that 100% of the atoms have Sz = +~/2.

3 © www.ugr.es/local/jillana



4 Chapter 1: Introduction

(b) Now we filter Sz = +~/2 and then measure the spin along a different direction Sx.
The outcome is 50% of the atoms have either Sx = ±~/2.

Does this mean that half of the atoms filtered after SGẑ have Sz = +~/2 and Sx =
+~/2, and the other half Sz = +~/2 and Sx = −~/2?

(c) Surprisingly, the answer to the question above is no: if after filtering Sx = +~/2 we
measure Sz we find Sz = +~/2 and Sz = −~/2 (again!) with equal frequency.

This illustrates that in Quantum Mechanics one cannot determine Sz and Sx simul-
taneously, since the selection made by SGx̂ destroys the previous information about Sz
obtained by SGẑ. Both observables are said to be incompatible.

Interestingly, there is a classical phenomenon that resembles the situation above, al-
though it does not involve particles but waves! If one sends unpolarized light through
two polaroid filters, the first selecting x-axis polarization and the second the (orthogonal)
y-axis polarization, no light will be detected afterwards. A fraction of light would pass
both filters if the polaroids are not othogonal.

The light polarization is described by a vector ~ε, in the plane transverse to the direction
of propagation. This vector has a random orientation in the unpolarized case. A polaroid
filter selects one of the orientations ~εi. The amplitude A of the wave passing two sequential
filters is proportional to ~ε1 ·~ε2 and the intensity of the light is proportional to its modulus
squared, |A|2. We may assume that the two possible values of the silver atom spins,
Sz = ±~/2, are “represented” by orthonormal “vectors” or “states” |Sz±〉 and conjecture

~εx ; |Sz+〉 , ~εy ; |Sz−〉 . (1.9)

The “probability amplitudes” for the transitions in (a) are given by the scalar products:

A(|Sz+〉 → |Sz+〉) = 〈Sz + |Sz + 〉 = 1, (1.10)

A(|Sz+〉 → |Sz−〉) = 〈Sz + |Sz − 〉 = 0. (1.11)

And the probabilities are |A|2.

How could we represent the states |Sx±〉 for the spins Sx = ±~/2? They must corre-
spond to two orientations orthogonal to each other, but not orthogonal to Sz, that let half
of the atoms go through. This means that they must be linear combinations of |Sz±〉,

|Sx+〉 =
1√
2
|Sz+〉+

1√
2
|Sz−〉 , (1.12)

|Sx−〉 =
1√
2
|Sz+〉 −

1√
2
|Sz−〉 , (1.13)

like when a second polaroid is placed at 45◦. Then experiment (b) is justified by

A(|Sz+〉 → |Sx+〉) = 〈Sz + |Sx + 〉 =
1√
2
, (1.14)

A(|Sz+〉 → |Sx−〉) = 〈Sz + |Sx − 〉 =
1√
2
. (1.15)

It is important to notice that the amplitude A(|Sz+〉 → |Sz+〉) in (a) can be written
as the superposition of two amplitudes,

|Sz+〉 =
1√
2
|Sx+〉+

1√
2
|Sx−〉

© www.ugr.es/local/jillana 4



1.2. The Stern-Gerlach experiment 5

⇒ A(|Sz+〉 → |Sz+〉) =
1√
2
〈Sx + |Sz + 〉+

1√
2
〈Sx − |Sz + 〉 =

1

2
+

1

2
= 1. (1.16)

Notice that the probability is not the sum of probabilities going through states with well
defined Sx = ±~/2,

p(|Sz+〉 → |Sx+〉 → |Sz+〉) =
1

2
| 〈Sx + |Sz + 〉 |2 =

1

4
, (1.17)

p(|Sz+〉 → |Sx−〉 → |Sz+〉) =
1

2
| 〈Sx − |Sz + 〉 |2 =

1

4
, (1.18)

but that resulting from the coherent sum of amplitudes, which includes an interference term.
Experiment (c) determines (measures) the Sx component destroying the coherence.

And how about the states |Sy±〉 corresponding to spins Sy = ±~/2? By symmetry
arguments they should behave similarly with respect to |Sz±〉 and |Sx±〉 but this cannot
happen unless the coefficients of the linear combination are complex,

|Sy+〉 =
1√
2
|Sz+〉+

i√
2
|Sz−〉 , (1.19)

|Sy−〉 =
1√
2
|Sz+〉 −

i√
2
|Sz+〉 , (1.20)

in the same way as the right- and left-handed circular polarizations, ~εR,L, are a complex
combination of the linear polarizations, ~εx,y.

Therefore, it seems that atoms behave like waves, whose amplitudes can be added
and interfere. But “what” is interfering? Perhaps the atoms deflected in one direction
somehow interfere with those going in opposite direction? Another weird observation is
that the Stern-Gerlach experiment can be conducted sending silver atoms one by one,
with the same outcome! So we must conclude that every atom interferes with itself!

As a conclusion, we need a new theory (Quantum Mechanics) that incorporates the
properties found above (quantization, superposition, interference, incompatibility, uncer-
tainty, . . . ). The new theory will be based in a complex vector (Hilbert) space to describe
the physical system states, with observables represented by operators acting on them.

5 © www.ugr.es/local/jillana
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Chapter 2

Postulates of Quantum Mechanics

2.1 Brief review of Hilbert spaces

A Hilbert space H is a vector space supplied with an inner or scalar product that is
complete respect to the norm induced by the scalar product (see below the meaning of
these properties). It is a generalization of the very familiar Euclidean spaces, like R3, to
spaces with any finite or infinite number of dimensions.

The vectors in a vector space are elements that can be added and multiplied by a scalar.
In a Hilbert space, unlike Euclidean spaces, these scalars are complex numbers:

φ, ψ ∈ H, c1, c2 ∈ C⇒ c1φ+ c2ψ ∈ H (linear combination). (2.1)

We say that a set of vectors {φi} is linearly independent if
∑
i

ciφi = 0⇒ ci = 0 ∀i.

The scalar product of any φ, ψ ∈ H is a complex number (φ, ψ) ∈ C satisfying:

(i) (φ, ψ) = (ψ, φ)∗ (hermiticity).

(ii) (φ, c1ψ1 + c2ψ2) = c1(φ, ψ1) + c2(φ, ψ2) (linearity of the second entry).

From (i) and (ii) one gets:

(c1φ1 + c2φ2, ψ) = c∗1(φ1, ψ) + c∗2(φ2, ψ) (antilinearity of the first entry).

(iii) (φ, φ) ≥ 0 and φ = 0 when (φ, φ) = 0.

The scalar product induces a norma defined by

‖φ‖ =
√

(φ, φ), (2.2)

that generalizes the concept of length (modulus) of a vector and defines a metric (distance
between two vectors), given by

d(φ, ψ) = ‖φ− ψ‖. (2.3)

aThe properties of a norm are:

(i) ‖cφ‖ = |c|‖φ‖ (homogeneous).

(ii) ‖φ+ ψ‖ ≤ ‖φ‖+ ‖ψ‖ (triangle inequality).

(iii) ‖φ‖ ≥ 0 (positive definite).

The property (ii) follows from the Schwarz inequality: |(φ, ψ)|2 ≤ (φ, φ)(ψ,ψ).

7



8 Chapter 2: Postulates of Quantum Mechanics

A metric space M is complete if every Cauchy sequence in M converges in M . That is,
if {ψn} is a sequence with d(ψm, ψn)→ 0 when m,n→∞ then there exists a η ∈M such
that d(ψn, η)→ 0 when n→∞. Complete normed vector spaces are called Banach spaces.
A Hilbert space is a Banach space with the norm induced by the scalar product. One also
requires that Hilbert spaces associated to physical sytems must be separable. This means
that they have a countable orthonormal basis.

Let us now introduce linear functionals acting on a vector space V as functions F : V → C
mapping vectors φ to complex numbers F (φ) satisfying

F (aφ+ bψ) = aF (φ) + bF (ψ), φ, ψ ∈ V, a, b ∈ C. (2.4)

Defining the sum of functionals

(F +G)(φ) = F (φ) +G(φ), (2.5)

the set of linear functionals over V defines another vector space called dual space V ∗.
These elements of the dual space are also called covectors or one-forms. In a Hilbert space
H one can define linear functionals Fφ ∈ H∗ from any φ ∈ H by

Fφ(ψ) = (φ, ψ). (2.6)

Then the Riesz representation theorem applies stating that for each F ∈ H∗ there exists
just one vector φF ∈ H such that

F (ψ) = (φF , ψ) ∀ψ ∈ H. (2.7)

Therefore, there is a bijective mapping between V and V ∗ given by the scalar product (H
and H∗ are isomorphic; in particular, they have the same dimension). This suggests the
Dirac’s notation, extensively used in Quantum Mechanics (QM):

Vector ψ ∈ H → ket |ψ〉 ∈ H
Functional Fφ ∈ H∗ → bra 〈φ| ∈ H∗

Action of functional Fφ on ψ ∈ H → braket 〈φ|ψ〉 = (φ, ψ) (scalar product).

In other words, every ket |ψ〉 has a corresponding bra 〈ψ|, that is unique, and the scalar
product (φ, ψ) of two vectors (kets) |φ〉 and |ψ〉 is given by the braket 〈φ|ψ〉 = 〈ψ |φ〉∗.

From now on, until chapter 3, we will work in Hilbert spaces of finite dimension,
although many results can be applied to the case of infinite dimensions.

A basis is a set of linearly independent vectors {|φi〉} (i = 1, . . . , d = dimH) that
allows us to express any vector |α〉 ∈ H as a linear combination (summations extend from
i = 1 to d unless otherwise stated)

|α〉 =
∑
i

|φi〉αi =
(
|φ1〉 |φ2〉 . . .

)α1

α2
...

 , αi ∈ C or |α〉 .=

α1

α2
...

 (2.8)

where the αi are the components of |α〉 in the basis {|φi〉}. An orthonormal basis {|ei〉}
fulfills

〈ek |ei〉 = δki (orthonormality relation). (2.9)

© www.ugr.es/local/jillana 8



2.1. Brief review of Hilbert spaces 9

Given a basis {|φi〉} the Gram-Schmidt process provides an orthornormal basis {|ei〉}:

|e1〉 =
|φ1〉
‖ |φ1〉 ‖

, ‖ |φ1〉 ‖ =
√
〈φ1 |φ1〉, (2.10)

|ek+1〉 =

|φk+1〉 −
k∑
i=1

|ei〉 〈ei |φk+1〉

‖ |φk+1〉 −
k∑
i=1

|ei〉 〈ei |φk+1〉 ‖

. (2.11)

In an orthonormal basis the components of a vector are easy to obtain from the scalar
product or braket:

|α〉 =
∑
i

|ei〉αi ⇒ 〈ek |α〉 =
∑
i

〈ek |ei〉αi =
∑
i

δkiαi = αk (2.12)

⇒ |α〉 =
∑
i

|ei〉 〈ei |α〉 ⇒ I =
∑
i

|ei〉〈ei| (completeness or closure relation)

(2.13)

and the scalar product of two vectors reads:

〈α|β〉 =
∑
i

〈α|ei〉 〈ei |β〉 =
∑
i

〈ei |α〉∗ 〈ei |β〉 =
∑
i

α∗i βi. (2.14)

In fact, the isomorphism between H and H∗ is given by the adjoin or dagger relation:

H −→ H∗
{|ei〉} 7→ {〈ei|} (so called adjoint basis of H∗)
|α〉 7→ 〈α| = |α〉† =

∑
i

α∗i 〈ei| (by antilinearity of braket’s left entry).
(2.15)

An operator A transforms vectors |α〉 ∈ H to other vectors A |α〉 ∈ H. Linear
operators satisfy

A(a |α〉+ b |β〉) = aA |α〉+ bA |β〉 . (2.16)

Operators can be added and composed (multiplied),

(A+B) |α〉 = A |α〉+B |α〉 (2.17)

AB |α〉 = A(B |α〉) (2.18)

and the product of operators is associative,

A(BC) = (AB)C, (2.19)

but not necessarily commutative. To know how an operator acts on all the vectors in H it
is sufficient to know how it acts on a basis of H. Given an orthonormal basis {|ei〉},

A |ej〉 =
∑
i

|ei〉〈ei|A |ej〉 =
∑
i

|ei〉Aij ⇔ Aij = 〈ei|A |ej〉 (matrix element)

(2.20)

9 © www.ugr.es/local/jillana



10 Chapter 2: Postulates of Quantum Mechanics

one obtains |β〉 = A |α〉 from

A |α〉 = A
∑
j

|ej〉αj =
∑
ij

|ei〉Aijαj

= |β〉 =
∑
i

|ei〉βi (2.21)

⇒ βi =
∑
j

Aijαj . (2.22)

On the other hand, operators act on bras to the left:

Aij = 〈ei| (A |ej〉) = (〈ei|A) |ej〉 (2.23)

⇒ 〈ei|A =
∑
j

〈ei|A |ej〉〈ej | =
∑
j

Aij 〈ej | (2.24)

⇒ 〈α|A =
∑
i

α∗i 〈ei|A =
∑
ij

α∗iAij 〈ej |

= 〈β| =
∑
j

β∗j 〈ej | (2.25)

⇒ β∗j =
∑
i

α∗iAij . (2.26)

Notice that the vector components are basis-dependent but the “sandwich” 〈α|A |β〉 and
the scalar product 〈α|β〉 are basis-independent:

〈α|A |β〉 =
∑
ij

〈α|ei〉 〈ei|A |ej〉 〈ej |β〉 =
∑
ij

α∗iAijβj . (2.27)

The scalar product of A |α〉 and |β〉 is not 〈α|A |β〉 but 〈α|A† |β〉, that defines the adjoint
operator A†. This is because the adjoint of A |α〉 is not 〈α|A but 〈α|A†:

Aij = 〈ei|A |ej〉 (2.28)

A∗ij = 〈ej |A† |ei〉 = A†ji (2.29)

⇒ A†ij = A∗ji or A† = AT∗. (2.30)

Given |φ〉, |ψ〉, a useful way to define a linear operator is |φ〉〈ψ| (outer product) that
acting on any |η〉 ∈ H gives a vector proportional to |φ〉:

(|φ〉〈ψ|) |η〉 = |φ〉 〈ψ |η〉 . (2.31)

It is easy to checkb that

(|φ〉〈ψ|)† = |ψ〉〈φ| . (2.32)

Taking a unit vector |e1〉 we obtain a projector,

P1 = |e1〉〈e1| , P 2
1 = P1 (idempotent), P †1 = P1 (self-adjoint), (2.33)

that projects any vector |α〉 ∈ H along the vector |e1〉,

P1 |α〉 = |e1〉 〈e1 |α〉 = |e1〉α1. (2.34)

b(|φ〉〈ψ|)† |η〉 = (〈η|φ〉 〈ψ|)† = |ψ〉 〈η|φ〉∗ = |ψ〉 〈φ|η〉 = (|ψ〉〈φ|) |η〉 , ∀ |η〉 .

© www.ugr.es/local/jillana 10



2.1. Brief review of Hilbert spaces 11

A sum of projectors

r∑
i=1

Pi, with Pi = |ei〉〈ei|, is also a projector into the subspace spanned

by the r unit vectors |ei〉i=1,...,r. If {|ei〉} is an orthonormal basis of H then the Pi are
orthogonal projectors,

P 2
i = Pi, PiPj = δijPj . (2.35)

We have already seen that in fact I =
d∑
i=1

|ei〉〈ei| since

|α〉 =

d∑
i

|ei〉 〈ei |α〉 , ∀ |α〉 ∈ H. (2.36)

Given a linear operator A, if there exist a ∈ C and |φ〉 ∈ H with |φ〉 6= 0 such that

A |φ〉 = a |φ〉 (2.37)

we say that every |φ〉 is an eigenvector of A with eigenvalue a. If |φ〉i=1,...,r are linearly
independent eigenvectors of A with the same eigenvalue a (degenerate eigenvalue) then ob-
viously any linear combination

∑
i ci |φ〉i is also an eigenvector. Therefore, the eigenvectors

of each eigenvalue form a vector subspace. And, of course, if A |φ〉 = a |φ〉 then

〈φ|A† = a∗ 〈φ| . (2.38)

An operator A is self-adjoint if A† = A, namely, if

〈φ|A |ψ〉 = 〈φ|A† |ψ〉 = 〈φ|A |ψ〉∗ , ∀φ, ψ ∈ H (2.39)

Actually, this is only true in finite dimension, since otherwise the domains of A and A†

may not coincide. In the latter case, we say that A is Hermitian, but not self-adjoint.
In general, if A is self-adjoint then all its eigenvalues are real,c and the eigenvectors
corresponding to different eigenvalues are orthogonal.d Furthermore, an important theorem
states that the orthonormal set of the eigenvectors of a self-adjoint operator on a
Hilbert space of finite dimension is a basis of H.

Consider H of finite dimension, a self-adjoint operator A and an orthonormal basis
{|φi〉} formed by the eigenvectors of A. And let ai be the corresponding eigenvalues. We
define the othogonal projectors to the subspace of eigenvalue a (perhaps degenerate) as

Pa =
∑
i

|φi〉〈φi| δaia. (2.40)

Then, one can write A as follows (spectral decomposition):

A =
∑
a

aPa =
∑
i

ai |φi〉〈φi| , (2.41)

a diagonal matrix in the basis of eigenvectors. This may be used to define a function f of
operators from the same function of complex numbers:

f(A) =
∑
i

f(ai) |φi〉〈φi| . (2.42)

cA |a〉 = a |a〉 ⇒ 〈a|A |a〉 = a 〈a|a〉 and 〈a|A† |a〉 = 〈a|A |a〉∗ = a∗ 〈a|a〉. So A = A† ⇒ a = a∗.
dA |a〉 = a |a〉, A |a′〉 = a′ |a′〉, a, a′ ∈ R. Take 〈a′|A |a〉 = a 〈a′|a〉 = a′ 〈a′|a〉 ⇒ (a − a′) 〈a′|a〉 = 0.

Hence, if a 6= a′ then 〈a′|a〉 = 0.

11 © www.ugr.es/local/jillana



12 Chapter 2: Postulates of Quantum Mechanics

Consider now A and B two self-adjoint commuting operators, [A,B] = AB−BA =
0, in finite dimension. Then there exists a complete set of simultaneous eigenvectors
of A and B, that is, A and B can be diagonalized simultaneously.

If A,B,C, . . . are self-adjoint operators commuting with each other, then the set of
their simultaneous eigenvectors |ai, bj , ck, . . . 〉,

A |ai, bj , ck, . . . 〉 = ai |ai, bj , ck, . . . 〉 , (2.43)

B |ai, bj , ck, . . . 〉 = bj |ai, bj , ck, . . . 〉 , (2.44)

C |ai, bj , ck, . . . 〉 = ck |ai, bj , ck, . . . 〉 , etc. (2.45)

may be degenerate. But if the subspace of eigenvectors for all possible sets of eigenvalues
has dimension one (it is not degenerate) then A,B,C, . . . is a complete set of commut-
ing (self-adjoint) operators (CSCO). As a consequence, any operator F commuting
with all the members of a CSCO is a function of these operators and

F |ai, bj , ck, . . . 〉 = fijk... |ai, bj , ck, . . . 〉 , fijk... = f(ai, bj , ck, . . . ). (2.46)

Given two orthonormal bases {|ei〉} and {|ẽi〉}, we may write

|ẽj〉 =
∑
i

|ei〉 〈ei |ẽj〉 (2.47)

and define the change of basis operator from {|ei〉} to {|ẽi〉} as

U =
∑
i

|ẽi〉〈ei| ⇒ U |ej〉 = |ẽj〉 . (2.48)

The operator U is unitary, UU † = U †U = I. Notice that the basis elements and the
vector components transform in an opposite way:

|ẽj〉 =
∑
i

|ei〉 〈ei |ẽj〉 ⇒ |ẽj〉 =
∑
i

|ei〉Uij , Uij = 〈ei |ẽj〉 = 〈ei|U |ej〉 (2.49)

while for any |α〉 ∈ H,

|α〉 =
∑
i

|ei〉 〈ei |α〉 =
∑
i

|ei〉αi

=
∑
i

|ẽi〉 〈ẽi |α〉 =
∑
i

|ẽi〉 α̃i , (2.50)

〈ẽi |α〉 =
∑
j

〈ẽi |ej〉 〈ej |α〉 ⇒ α̃i =
∑
j

U †ijαj , U †ij = U∗ji = 〈ẽi |ej〉 (2.51)

and in fact U is unitary:

δik = 〈ei |ek〉 =
∑
j

〈ei |ẽj〉 〈ẽj |ek〉 =
∑
j

UijU
∗
kj =

∑
j

UijU
†
jk. (2.52)

On the other hand, the matrix elements of a linear operator A transform as:

Ãij = 〈ẽi|A |ẽj〉 = 〈ei|U †AU |ej〉 =
∑
kl

〈ei|U † |ek〉〈ek|A |el〉〈el|U |ej〉

=
∑
kl

U †ikAklUlj . (2.53)

© www.ugr.es/local/jillana 12



2.2. Pure states 13

If A is a linear operator and {|ei〉} is an orthonormal basis then the trace of A is

Tr(A) =
∑
i

〈ei|A |ei〉 (sum of the diagonal elements). (2.54)

Notice that the trace is independent of the basis and satisfies the properties:

(i) Tr(AB) = Tr(BA).

(ii) Tr(U †AU) = Tr(A) if U is unitary.

(iii) Tr(|ei〉〈ej |) = δij .

(iv) Tr(|φ〉〈ψ|) = 〈ψ |φ〉.

2.2 Pure states

In the previous chapter, with the help of the Stern-Gerlach experiment, we have shown the
failure of Classical Mechanics and the need to introduce a new theory able to describe all
physical phenomena.

It is important to realize that whatever information we have about a physical system
is obtained through experimentation. It is useful to divide the experiment in two phases:

• Preparation: the experimentalist (or nature) submits the system to some conditions
that define its state. For example, the silver atoms in the SGẑ are prepared to have
well defined z-component of the magnetic moment after crossing an inhomogeneous
magnetic field applied along that direction. By filtering those deflected upward or
downward we can select a particular value of the spin.e

• Measurement: the experimentalist (or nature) interacts with the preparation to
determine the value of a particular observable (any physical variable that, in prin-
ciple, can be measured). For example, one can measure the observables Sz or Sx of
the atoms previously prepared.

A specific preparation does not necessarily determine the outcome of a subsequent mea-
surement but the probabilities of the various possible outcomes. Actually the preparation
is independent of the specific measurement that may follow it.

A state is the specification of the set of probabilities (or probability distributions) for
the measurements of the various observables. The concept of state in QM is very subtle
and even controversial. Since it has always been the goal of physics to give an objective
realistic description of the world, we are tempted to interpret the state as an element of
reality describing the attributes of an individual system. However such assumptions lead
to contradictions and must be abandoned. The quantum state description may be taken
to refer to a collection of similarly prepared systems.

For the moment we will consider pure states, which are those that give maximal (though
probabilistic) information about the outcome of the measurements. We will see later, in
§2.5, that in general the system is in a mixed state, specified by a statistical distribution of
pure states. For instance, the ensemble of silver atoms coming directly from the furnace,

eSee §2.10 for the impossibility of cloning quantum states, as if they were keys we want to duplicate.
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14 Chapter 2: Postulates of Quantum Mechanics

before going through any SG device; or a partially polarized (or unpolarized) electron
beam.

To construct the physical theory it is necessary to introduce a few basic postulates.

2.2.1 Postulate I

In QM a physical system is associated to a separable, complex Hilbert space and a
pure state of the system at a time t is described by a unit raya represented by a vector
(ket) |α〉 or |α(t)〉 of the Hilbert space.

aA unit ray is a unit vector with arbitrary phase.

Then the superposition principle is guaranteed: if |φ〉 and |ψ〉 are states of the system
then |η〉 = α |φ〉 + β |ψ〉, with arbitrary α, β ∈ C, is also a possible state. But not every
vector is a pure state (see section §2.9 on superselection rules and chapter 6 on identical
particles).

The Hilbert space of the system may have just two dimensions, like in the Stern-Gerlach
experiment. Then we may choose an arbitrary basis of two states to represent any other
state. For instance, {|Sz+〉 , |Sz−〉}, {|Sx+〉 , |Sx−〉} and {|Sy+〉 , |Sy+〉} are three bases,
and the state |Sx+〉 in the first basis is given by

|Sx−〉 =
1√
2
|Sz+〉 −

1√
2
|Sz−〉 . (2.55)

A particularly interesting two-dimensional quantum mechanical system is the qubit, the
quantum computer unit of information. In contrast to the classical bit that can be in just
two states 0 or 1, one can prepare a qubit in any arbitrary superposition of |0〉 and |1〉.

2.3 Observables

2.3.1 Postulate II

Every observable of a physical system is represented by a self-adjoint linear operator
acting on the associated Hilbert space, whose eigenvalues are the only possible values
of the observable.

This justifies several issues:

• The number of eigenvalues of an operator acting on a space of finite dimension is
denumerable. Hence, the values of the corresponding observable are quantized.

• A self-adjoint operator has real eigenvalues. The values of physical observables are
always real numbers.

• A linear operator respects the superposition principle.

• It is not possible to measure simultaneously two observables represented by non-
commuting operators because they cannot be diagonalized in the same basis, they
are incompatible.

© www.ugr.es/local/jillana 14



2.4. Measurements 15

For instance, the spin of the silver atom in the z-axis or in the x-axis are observables
represented by the self-adjoint operators Sz and Sx, respectively. Both of them have
eigenvalues ±~/2. Using their spectral decomposition:

Sz =
~
2
|Sz + 〉〈Sz + | − ~

2
|Sz − 〉〈Sz − |

.
=

~
2

(
1 0
0 −1

)
≡ ~

2
σ3, (2.56)

Sx =
~
2
|Sx + 〉〈Sx + | − ~

2
|Sx − 〉〈Sx − |

.
=

~
2

(
0 1
1 0

)
≡ ~

2
σ1. (2.57)

The matrix form of the operators has been given in the basis {|Sz+〉 , |Sz−〉}, where

|Sz+〉
.
=

(
1
0

)
, |Sz−〉

.
=

(
0
1

)
, (2.58)

|Sx+〉 .= 1√
2

(
1
1

)
, |Sx−〉

.
=

1√
2

(
1
−1

)
. (2.59)

Notice that we have chosen an arbitrary phase for each of these states. The observables
Sx and Sz are incompatible because [Sx, Sz] 6= 0.

2.4 Measurements

2.4.1 Postulate III

If a physical system is in a pure state described by the normalized vector |ψ〉, the
probability of obtaining an eigenvalue a of an observable represented by the operator
A is

pa = 〈ψ|PA,a |ψ〉

where PA,a is the projector into the subspace of eigenvalue a.

If a is a non-degenerate eigenvalue of A and |a〉 is the corresponding normalized eigen-
vector then

PA,a = |a〉〈a| ⇒ pa = | 〈a|ψ〉 |2. (2.60)

In general, let {|ai〉} be an orthonormal basis of the subspace of eigenvalue a. Then

PA,a =
∑
i

|ai〉〈ai| ⇒ pa =
∑
i

| 〈ai |ψ〉 |2. (2.61)

Notice that:

• If the state of the system was already in the subspace of eigenvalue a,

|ψ〉 ∈ Ha ⇒ pa = 〈ψ|PA,a |ψ〉 = 〈ψ |ψ〉 = 1. (2.62)

If |ψ〉 ∈ H⊥a (orthogonal subspace) then pa = 〈ψ|PA,a |ψ〉 = 0. The probability is
pa ∈ (0, 1) otherwise.

• The sum of probabilities to obtain any possible value is one, as it should be, since
the eigenvectors form a complete set,

I =
∑
a

PA,a ⇒
∑
a

pa =
∑
a

〈ψ|PA,a |ψ〉 = 〈ψ |ψ〉 = 1. (2.63)

And what is the state after the measurement?

15 © www.ugr.es/local/jillana



16 Chapter 2: Postulates of Quantum Mechanics

2.4.2 Postulate IV

If a physical system is in a pure state described by the normalized vector |ψ〉 and one
measures A obtaining a, the system is left in the state

∣∣ψ′〉 =
PA,a |ψ〉
‖PA,a |ψ〉 ‖

.

In other words, after the measurement, the state of the system is projected into a
particular state of the subspace with eigenvalue a. It is often said that the state |ψ〉
collapses to the eigenstate |ψ′〉 of A. But one can also view it in a different way: There
is no measurement without interaction with the measuring instrument (another system).
Hence, we must always consider our system as a part of a composite system. As we will
see in section §2.6, the states of the Hilbert space of this composite system are vectors
of the tensor product of the Hilbert spaces of its subsystems. Some of these states are
entangled, i.e. they cannot be written as the product of a vector of each space, they are a
non separable combination. For instance,

1√
2
|↑〉 |+〉+

1√
2
|↓〉 |−〉 . (2.64)

Now, assume that the interaction entangles the measuring instrument with the system we
wish to study.f Let us take that, after crossing SGẑ, |↑〉 |+〉 is the state for the atoms
deviated upward with Sz = +~/2 and the opposite for |↓〉 |−〉. The entangled state (2.64)
is none of them but a superposition.g The fact is we do not really know whether the
atom is in state |+〉 or |−〉, since we just measure that it leaves the SG as |↑〉 or |↓〉 after
experiencing countless (uncontrolled) interactions with the magnetic field. This partial
knowledge causes the decoherence. Thus interaction allows for the creation of superpositions
(entangled states), and at the same time breaks the coherence of its subsystems.

Let’s apply these postulates to our sequence of Stern-Gerlach experiments (Fig. 1.1):

(a) |ψ〉 = |Sz+〉

pSz ,+ = | 〈Sz + |Sz + 〉 |2 = 1, ⇒
∣∣ψ′〉 = |Sz+〉 ; (2.65)

pSz ,− = | 〈Sz + |Sz − 〉 |2 = 0 (|Sz−〉 never happens). (2.66)

(b) |ψ〉 = |Sz+〉

pSx,+ = | 〈Sz + |Sx + 〉 |2 =
1

2
,

∣∣ψ′〉 = |Sx+〉 ; (2.67)

pSx,− = | 〈Sz + |Sx − 〉 |2 =
1

2
,

∣∣ψ′〉 = |Sx−〉 . (2.68)

(c) |ψ〉 = |Sx+〉 (after filtering one half of the atoms in (b))

pSz ,+ = | 〈Sx + |Sz + 〉 |2 =
1

2
,

∣∣ψ′〉 = |Sz+〉 ; (2.69)

pSz ,− = | 〈Sx + |Sz − 〉 |2 =
1

2
,

∣∣ψ′〉 = |Sz−〉 . (2.70)

fWhy? How? This view is not a solution of but another way to formulate the measurement problem.
gIf you replace the states |↑〉, |↓〉 by unbroken or broken poisson flask and |+〉, |−〉 by cat alive or dead,

this describes the famous Schrödinger’s cat states.
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2.4. Measurements 17

2.4.3 Expectation value and uncertainty relations

Consider a macroscopic object, like a bar, whose length L we want to measure. The
procedure consists of taking several measurements and then averaging. Suppose that,
within the precision of the ruler, we obtain L1 (n1 times), L2 (n2 times), etc. If the total
number of measurements is n then the mean value of the bar length is

〈L〉 =
∑
i

Li
ni
n

(2.71)

where ni/n is the relative frequency of every result. We expect that 〈L〉 approaches the
actual value of L for large n.

If you want to measure an observable A in a pure quantum state |ψ〉 of a physical
system you must prepare many replicas of the system in the same state and then measure
A. According to the postulates, the result of every measurement is an eigenvalue ai of A
and the mean value of all measurements,

〈A〉ψ =
∑
a

apa =
∑
a

a 〈ψ|PA,a |ψ〉 = 〈ψ|
∑
a

aPA,a |ψ〉 = 〈ψ|A |ψ〉 . (2.72)

This is called the expectation value of the observable A in the pure state |ψ〉.

We can also define the uncertainty of A in the state |ψ〉 as the dispersion (mean square
displacement) of the different measurements around the expectation value,

∆ψA =
[
〈ψ| (A− 〈A〉ψ)2 |ψ〉

] 1
2

=
[
〈A2〉ψ + 〈A〉2ψ − 2〈A〉2ψ

] 1
2

=
[
〈A2〉ψ − 〈A〉2ψ

] 1
2 . (2.73)

The uncertainty of an observable in a pure state is zero if it is an eigenvector of the
observable. This is because

A |ψ〉 = a |ψ〉 ⇒ A2 |ψ〉 = a2 |ψ〉 ⇒ ∆ψA =
[
〈A2〉ψ − 〈A〉2ψ

] 1
2 = 0. (2.74)

It is easy to show [exercise] that for a pure state |ψ〉 the product of the uncertainties
of two observables A and B is

∆ψA∆ψB ≥
1

2
|〈ψ| [A,B] |ψ〉| . (2.75)

These uncertainty relations are a generalization of the position-momentum uncertainty
relations we will find later (3.71). They have important consequences: if two observables
do not commute, [A,B] 6= 0, it is impossible to measure simultaneously both of them with
full precission in any state. That’s why we say they are incompatible.

2.4.4 Complete Set of Compatible Observables

When two observables A and B are compatible their corresponding self-adjoint operators
commute, [A,B] = 0. Then there exists a basis of eigenvectors {|aibi〉} of A and B that is
common to A and B simultaneously,

A |ai, bi〉 = ai |ai, bi〉 , (2.76)
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18 Chapter 2: Postulates of Quantum Mechanics

B |ai, bi〉 = bi |ai, bi〉 . (2.77)

Two (or more) compatible observables define a complete set (CSCO) if any pair of eigen-
vectors in the common basis differs at least in one eigenvalue. Then the eigenvalues label
unambiguously (up to a complex phase) the vectors of the basis, i.e. the states of the
system that can be measured simultaneously by all the observables in the CSCO.

A characterization of a CSCO is:

(i) They are compatible (commute).

(ii) The basis of common eigenvectors is unique (up to phases).

(iii) The set is minimal. Then the description of the system is not redundant. This
condition was not assumed above but it is often imposed.

– Example 1:

A
.
=

1
1
−1

 , B
.
=

1
0

0

 ⇒ basis {|1, 1〉 , |1, 0〉 , |−1, 0〉} (2.78)

A and B are a CSCO. The eigenvalues of one of them break the degeneracy of the other.

– Example 2:

C
.
=

1
0
−1

 , D
.
=

1
2

2

 ⇒ basis {|1, 1〉 , |0, 2〉 , |−1, 2〉} (2.79)

C and D are not a CSCO because it is not minimal (C is enough to label the basis states).

2.5 Density matrix

The formalism developed so far applies to pure states. We have seen that the quantum
mechanical predictions are probabilistic, they are understood as the results of the mea-
surements over a collection of identically prepared physical systems, all described by the
same vector of a Hilbert space |α〉.

We will now consider the most general case, a statistical ensemble of N pure states
{|αi〉} with frequencies 0 ≤ wi ≤ 1 (there are Ni = wiN in each pure state) and∑

i

wi = 1. (2.80)

The |αi〉 do not need to be orthogonal and N is arbitrary (nothing to do with the dimension
of the Hilbert space). A system chosen randomly from this statistical ensemble is said to
be in a mixed state.

The mixed state is described by a density matrix,

ρ =
∑
i

wi |αi〉〈αi| (2.81)

© www.ugr.es/local/jillana 18



2.5. Density matrix 19

that gives the expectation value (average) of an observable A measured over the statistical
ensemble. In fact,

〈A〉ρ =

∑
iNi〈A〉αi
N

=
∑
i

wi 〈αi|A |αi〉

=
∑
a

∑
a′

∑
i

wi
〈
αi
∣∣a′〉 〈a′∣∣A |a〉 〈a|αi〉

=
∑
a

∑
a′

∑
i

wi 〈a|αi〉
〈
αi
∣∣a′〉 〈a′∣∣A |a〉

=
∑
a

∑
a′

ρaa′Aa′a = Tr(ρA) (2.82)

where |a〉 and |a′〉 are eigenvectors of A, that satisfy
∑
a

|a〉〈a| =
∑
a′

∣∣a′〉〈a′∣∣ = I. Notice

that a complex phase of |αi〉 in (2.81) is, of course, irrelevant. The density matrix has the
following properties:

(i) ρ = ρ† (self-adjoint).

(ii) Tr(ρ) = 1, since

Tr(ρ) =
∑
i

wi
∑
a

〈a|αi〉 〈αi |a〉 =
∑
i

wi
∑
a

〈αi |a〉 〈a|αi〉 =
∑
i

wi 〈αi |αi〉

=
∑
i

wi = 1. (2.83)

(iii) Tr(ρ2) ≤ 1, since

Tr(ρ2) =
∑
i

∑
j

∑
a

wiwj 〈a|αi〉 〈αi |αj〉 〈αj |a〉

=
∑
i

∑
j

∑
a

wiwj 〈αi |αj〉 〈αj |a〉 〈a|αi〉

=
∑
i

∑
j

wiwj 〈αi |αj〉 〈αj |αi〉

=
∑
i

∑
j

wiwj | 〈αi |αj〉 |2

≤
∑
i

∑
j

wiwj =
(∑

i

wi
)2

= 1. (2.84)

The equality occurs when wi = 0 ∀i 6= j and wj = 1 (pure state) ⇒ ρ = |αj〉〈αj |.

(iv) 〈ψ| ρ |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H, since

〈ψ| ρ |ψ〉 =
∑
i

wi| 〈αi |ψ〉 |2 ≥ 0. (2.85)

On the other hand, the probability to obtain a non-degenerate value a of the observable
A in a random element of the ensemble described by ρ is

pa =
∑
i

wi 〈αi |a〉 〈a|αi〉 =
∑
i

wi 〈a|αi〉 〈αi |a〉 = 〈a| ρ |a〉 (2.86)
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20 Chapter 2: Postulates of Quantum Mechanics

since wi is the probability to choose |αi〉 and 〈αi |a〉 〈a|αi〉 is the probability to obtain a if
we have chosen |αi〉. Using PA,a = |a〉〈a| we can write this result as

pa =
∑
i

wi 〈αi|PA,a |αi〉 =
∑
i

wi 〈αi|P 2
A,a |αi〉

=
∑
a′

∑
i

wi 〈αi|PA,a
∣∣a′〉〈a′∣∣PA,a |αi〉

=
∑
a′

∑
i

wi
〈
a′
∣∣PA,a |αi〉〈αi|PA,a ∣∣a′〉

= Tr(PA,a ρPA,a)

= Tr(ρPA,a) (2.87)

This expression is also valid if a is degenerate, with a basis of eigenvectors {|a(j)〉},

PA,a =
∑
j

|a(j)〉〈a(j)| (2.88)

pa =
∑
i

wi
∑
j

〈αi|PA,a |αi〉 =
∑
j

〈a(j)| ρ |a(j)〉 = Tr(ρPA,a). (2.89)

If we measure A to all the elements of the ensemble and select those with eigenvalue
a, what is the density matrix of the resulting ensemble? According to postulate IV, if we
pick up |αi〉 and obtain a, the state collapses into |α′i〉, which is an eigenstate of A given
by

|αi〉 −→
∣∣α′i〉 =

PA,a |αi〉
‖PA,a |αi〉 ‖

(2.90)

And according to postulate III, the probability to obtain a in the state |αi〉 is

pa,i = 〈αi|PA,a |αi〉 = ‖PA,a |αi〉 ‖2. (2.91)

(When we measure A on some |αi〉, this probability may be zero, of course).

Then, after the measurement on the ensemble (mixed state) described by ρ we get:

ρ =
∑
i

wi |αi〉〈αi|;
∑
i

wi
∣∣α′i〉〈α′i∣∣ pa,i =

∑
i

wi
PA,a |αi〉〈αi|PA,a
‖PA,a |αi〉 ‖2

pa,i = PA,a ρPA,a

(2.92)

that must be normalized to get a proper density matrix of unit trace:

ρ −→ ρA,a =
PA,a ρPA,a
Tr(ρPA,a)

(2.93)

since Tr(PA,a ρPA,a) = Tr(ρPA,a). Therefore:

– If the initial ρ described a mixed state then the resulting ρA,a describes another mixed
state.

– If the initial ρ described a pure state |α〉, and the probability to obtain a on |α〉 is
not zero, then the resulting ρA,a describes the pure state |α′〉 where it will collapse:

ρ = |α〉〈α| −→ ρA,a =
∣∣α′〉〈α′∣∣ , ∣∣α′〉 =

PA,a |α〉
‖PA,a |α〉 ‖

. (2.94)
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2.5. Density matrix 21

Putting together the results (2.81), (2.89) and (2.93) we get a generalized version of
the postulates:

Postulate I’
In QM a physical system is associated to a complex Hilbert space and any state of the
system is described by a linear operator ρ, called density matrix, that satisfies

ρ = ρ†, Tr(ρ) = 1, 〈ψ| ρ |ψ〉 ≥ 0, ∀ψ ∈ H.

Postulate II’ (same as Postulate II)
Every observable of a physical system is represented by a self-adjoint linear operator
acting on the associated Hilbert space, whose eigenvalues are the only possible values
of the observable.

Postulate III’
If a physical system is in state described by the density matrix ρ, the probability of
obtaining an eigenvalue a of an observable A is

pa = Tr(ρPA,a).

Postulate IV’
If a physical system is in a mixed state described by the density matrix ρ and one
filters the eigenvalue a of an observable A, the system is left in a mixed state described
by the density matrix

ρA,a =
PA,a ρPA,a
Tr(ρPA,a)

.

Pure states are special cases of mixed states. A state is pure if its density matrix has the
form ρ = |ψ〉〈ψ| for some |ψ〉 ∈ H. A pure state is characterized by ρ2 = ρ (⇒ Tr(ρ2) = 1).
Otherwise, it is a not a pure state.

If the state is not pure, it is specified by the set of coefficients in (2.81) where more
than one wi is different from zero. Then the decomposition is not unique. For example,
the following density matrices are the same For example, the following density matrices
are the same (same 〈ψ| ρ |ψ〉 , ∀ |ψ〉) but they are made of a mixture of but they are made
of a mixture of different pure states:

ρ = a |u〉〈u|+ (1− a) |v〉〈v| , 0 < a < 1, {|u〉 , |v〉} orthonormal, (2.95)

ρ =
1

2
|x〉〈x|+ 1

2
|y〉〈y| ,

with |x〉 =
√
a |u〉 −

√
1− a |v〉 , |y〉 =

√
a |u〉+

√
1− a |v〉 . (2.96)

We do not have a maximal information of the state since we do not know what the mixture
is made of.

Let us illustrate with an example the difference between a coherent superposition of
pure states (another pure state) and a incoherent mixture of pure states (mixed state).
Consider the following two states:
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22 Chapter 2: Postulates of Quantum Mechanics

• The pure state |Sx+〉, that can be written as the superposition of eigenstates of Sz,

|Sx+〉 =
1√
2
|Sz+〉+

1√
2
|Sz−〉

.
=

1√
2

(
1
1

)
(2.97)

⇒ ρ1 = |Sx + 〉〈Sx + | .= 1

2

(
1 1
1 1

)
(2.98)

in the basis {|Sz+〉 , |Sz−〉}. The density matrix ρ1 is an alternative way of describing
this state. Notice that it corresponds to a pure state because

ρ2
1 = ρ1. (2.99)

• The mixed state

ρ2 =
1

2
|Sz + 〉〈Sz + |+ 1

2
|Sz − 〉〈Sz − |

.
=

1

2

(
1 0
0 1

)
(2.100)

(ρ2
2 6= ρ2).

In both states the probability to find either Sz = ±~/2 is the same,

PSz ,+ = |Sz + 〉〈Sz + | .=
(

1 0
0 0

)
, PSz ,− = |Sz − 〉〈Sz − |

.
=

(
0 0
0 1

)
(2.101)

ρ1 : pSz+ = Tr(ρ1PSz ,+) =
1

2
, pSz− = Tr(ρ1PSz ,−) =

1

2
, (2.102)

ρ2 : pSz+ = Tr(ρ2PSz ,+) =
1

2
pSz− = Tr(ρ2PSz ,−) =

1

2
(2.103)

and the expectation value (average) of Sz is also the same,

Sz
.
=

~
2

(
1 0
0 −1

)
(2.104)

〈Sz〉ρ1 = Tr(ρ1Sz) = 0, ∆ρ1Sz =
√
〈S2
z 〉ρ1 − 〈Sz〉2ρ1 =

~
2

(2.105)

〈Sz〉ρ2 = Tr(ρ2Sz) = 0, ∆ρ2Sz =
√
〈S2
z 〉ρ2 − 〈S2

z 〉2ρ2 =
~
2
. (2.106)

But in contrast to ρ2, the state ρ1 has a well defined spin orientation (along the x-axis),

PSx,+ = |Sx + 〉〈Sx + | .= 1

2

(
1 1
1 1

)
, PSx,− = |Sx − 〉〈Sx − |

.
=

1

2

(
1 −1
−1 1

)
(2.107)

ρ1 : pSx+ = Tr(ρ1PSx,+) = 1, pSx− = Tr(ρ1PSx,−) = 0 (2.108)

ρ2 : pSx+ = Tr(ρ2PSx,+) =
1

2
, pSx− = Tr(ρ2PSx,−) =

1

2
(2.109)

In fact,

Sx
.
=

~
2

(
0 1
1 0

)
(2.110)

〈Sx〉ρ1 = Tr(ρ1Sx) =
~
2
, ∆ρ1Sx =

√
〈S2
x〉ρ1 − 〈Sx〉2ρ1 = 0 (2.111)

〈Sx〉ρ2 = Tr(ρ2Sx) = 0, ∆ρ2Sx =
√
〈S2
x〉ρ2 − 〈Sx〉2ρ2 =

~
2
. (2.112)

Actually ρ1 represents a polarized beam (along the x-axis) and ρ2 an unpolarized beam.
The silver atoms exiting the furnace in the Stern-Gerlach experiment are in the mixed
state ρ2 (unpolarized), but those filtered by SGx̂ are in the pure state ρ1 (polarized).
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2.6. Composite systems. Entanglement 23

• We could also prepare a partially polarized beam along the z-axis,

ρ3 = w1 |Sz + 〉〈Sz + |+ w2 |Sz − 〉〈Sz − |
.
=

(
w1 0
0 w2

)
(2.113)

with w1 + w2 = 1 (wi 6= 0, w1 6= w2). This is also a mixed state (ρ2
3 6= ρ3) that has

ρ3 : pSz+ = Tr(ρ3PSz ,+) = w1, pSz− = Tr(ρ3PSz ,−) = w2 (2.114)

pSx+ = Tr(ρ3PSx,+) =
1

2
, pSx− = Tr(ρ3PSx,−) =

1

2
(2.115)

〈Sz〉ρ3 = Tr(ρ3Sz) =
~
2

(w1 − w2), ∆ρ3Sz =
√
〈S2
z 〉ρ3 − 〈Sz〉2ρ3 = ~

√
w1w2 (2.116)

〈Sx〉ρ3 = Tr(ρ3Sx) = 0, ∆ρ3Sx =
√
〈S2
x〉ρ1 − 〈Sx〉2ρ3 =

~
2
. (2.117)

• Of course, |Sz+〉, |Sy+〉 = 1√
2
(|Sz+〉+ i |Sz−〉) and in general

|(θ, ϕ)〉 = cos(θ/2) |Sz+〉+ eiϕ sin(θ/2) |Sz−〉 , (2.118)

with θ ∈ [0, π], ϕ ∈ [0, 2π], are other examples of pure states, polarized along the
direction n̂(θ, ϕ). Check that their corresponding density matrices fulfill ρ2 = ρ. The
spin along n̂ can be determined with full precision: we have maximal information
about them. In contrast, the spin cannot be determined along any direction without
uncertainty when measured over the mixed states ρ2 or ρ3.

2.6 Composite systems. Entanglement

A composite system of two subsystems with Hilbert spaces H1 and H2 is associated the
Hilbert space H = H1 ⊗H2 (tensor product). This space consists of all the ordered pairs
|u〉 ⊗ |v〉 ≡ |u〉 |v〉 ≡ |uv〉, with |u〉 ∈ H1, |v〉 ∈ H2, and their linear combinations. By
definition, if c ∈ C,

c(|u〉 ⊗ |v〉) = (c |u〉)⊗ |v〉 = |u〉 ⊗ (c |v〉) (2.119)

(|u1〉+ |u2〉)⊗ |v〉 = |u1〉 ⊗ |v〉+ |u2〉 ⊗ |v〉 (2.120)

|u〉 ⊗ (|v1〉+ |v2〉) = |u〉 ⊗ |v1〉+ |u〉 ⊗ |v2〉 . (2.121)

The states that can be written as the direct product of one vector |u〉 ∈ H1 and one vector
|v〉 ∈ H2 are called separable states. The linear combination of two or more separable
states are called entangled states.

If {|ui〉} and {|vj〉} are bases of H1 and H2, respectively, then {|ui〉⊗|vj〉}, i = 1, . . . , n,
j = 1, . . . ,m, is a basis of H1 ⊗H2 (that has dimension m× n),

|ψ〉 =
∑
ij

αij |ui〉 ⊗ |vj〉 , ∀ |ψ〉 ∈ H1 ⊗H2. (2.122)

The scalar product in H1 ⊗H2 is defined by∑
ij

αij |ui〉 ⊗ |vj〉 ,
∑
ij

βij |ui〉 ⊗ |vj〉

 =
∑
ijkl

α∗ijβkl 〈ui |uk〉 〈vj |vl〉
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24 Chapter 2: Postulates of Quantum Mechanics

=
∑
ij

α∗ijβij (if both are orthonormal bases).

(2.123)

If A, B are operators acting on H1 and H2, respectively, we define the operator A⊗B
acting on H1 ⊗H2 by

(A⊗B)(|u〉 ⊗ |v〉) = (A |u〉)⊗ (B |v〉). (2.124)

In fact, every linear operator C on H1 ⊗H2 can be written as

C =
∑
ij

cijAi ⊗Bj , (2.125)

with Ai and Bj operators on H1 and H2, respectively.

Consider an observable A acting just on the subsystem H1. Then it is of the form
A⊗ IH2 on H1 ⊗H2 and

A |uivj〉 = (A |ui〉) |vj〉 . (2.126)

We can write the expected value of A in a state of density matrix ρ of the composite system
as its expected value in the subsystem H1 with reduced density matrix ρH1 ,

Tr(ρA) =
∑
ij

〈uivj | ρA |uivj〉 =
∑
ij

〈uivj | ρ |vj〉A |ui〉

=
∑
i

〈ui|

∑
j

〈vj | ρ |vj〉

A |ui〉 = TrH1(ρH1A) (2.127)

where we have introduced the partial trace of ρ (or any other operator) as

ρH1 ≡ TrH2(ρ) =
∑
j

〈vj | ρ |vj〉 . (2.128)

We see that the reduced density matrix, defined as the partial trace of the density matrix
of a composite system, describes the state of a subsystem when we ignore the information
about the rest of the system. Since, in principle, we lose part of the information, the
reduced density matrix of a pure state may be a mixed state. This happens in particular
when the state of the composite system is an entangled state.

For example, consider a four-dimensional system S = S1⊗S2 composed of two subsys-
tems of bases {|↑〉 , |↓〉} and {|+〉 , |−〉}. Assume the system is in an entangled state

|ψ〉 =
1√
2
|↑〉 |+〉+

1√
2
|↓〉 |−〉

≡ 1√
2
|↑ +〉+

1√
2
|↓ −〉 .= 1√

2


1
0
0
1

 (2.129)

that we have expressed for convenience in the basis {|↑ +〉 , |↑ −〉 , |↓ +〉 , |↓ −〉}. The density
matrix describing the composite system in that state is

ρ = |ψ〉〈ψ| .= 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (2.130)
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2.7. Quantum dynamics: the Schrödinger equation 25

that, of course, fulfills ρ2 = ρ, because |ψ〉 is a pure state. Now, the reduced density matrix
of subsystem S1 is the partial trace

ρS1 ≡ TrS2(ρ) = 〈+| ρ |+〉+ 〈−| ρ |−〉

= 〈+|ψ〉 〈ψ |+〉+ 〈−|ψ〉 〈ψ |−〉 =
1

2
|↑ 〉〈↑ |+ 1

2
|↓ 〉〈↓ | . (2.131)

Notice that ρS1 does not describe a pure but a mixed state (Tr[(ρS1)2] < Tr(ρS1) = 1):
half of the times the subsystem is in the state |↑〉 and the other half in the state |↓〉, but
never in a coherent superposition. The coherence is lost, just because we ignore (have
not measured) all the details of the complementary system(s). In practice, this is always
what happens when we measure an observable in a non-isolated system: the system is
entangled with the measuring apparatus, trillion trillions atoms whose state is impossible
to determine. This inevitable partial knowledge leads to a Schrödinger’s cat that is either
dead or alive, and not in a coherent superposition.

In general, a bipartite pure state ρ is entangled if and only if its reduced states are
mixed rather than pure.

2.7 Quantum dynamics: the Schrödinger equation

How does a quantum system change with time?

2.7.1 Postulate V

Postulate V
In the time interval between two consecutive measurements (closed system), pure states
remain pure, and the time evolution is described by the Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (2.132)

where H(t) is an observable called the Hamiltonian of the system.

The Schrödinger equation is deterministic. Given the quantum state at a time t1 it is
known at any later (or earlier) time t2. Notice that in QM time is not an observable, it is
a parameter. In contrast, the position is an observable. This is at odds with the theory of
Special Relativity, where space and time are treated on an equal footing.

An important property of the Schrödinger equation is that, during the evolution be-
tween two measurements, the norm of the states does not change,

i~
d

dt
〈ψ(t)|ψ(t)〉 =

[
i~

d 〈ψ(t)|
dt

]
|ψ(t)〉+ 〈ψ(t)|

[
i~

d |ψ(t)〉
dt

]
= −〈ψ(t)|H(t) |ψ(t)〉+ 〈ψ(t)|H(t) |ψ(t)〉 = 0 (2.133)

where we have used that H(t) is Hermitian. On the other hand, the Schrödinger equation
is linear. Therefore, the time evolution must be described by a unitary operatorh

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , U †U = UU † = I. (2.134)

hRecall that if U is unitary and |ψ′〉 = U |ψ〉 then the norm is preserved, 〈ψ′|ψ′〉 = 〈ψ|U†U |ψ〉 = 〈ψ|ψ〉.
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26 Chapter 2: Postulates of Quantum Mechanics

From the relations

|ψ(t3)〉 = U(t3, t2) |ψ(t2)〉 , |ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 , (2.135)

one gets

U(t, t) = I, (2.136)

U(t3, t1) = U(t3, t2)U(t2, t1), (2.137)

U(t2, t1) = U−1(t1, t2) = U †(t1, t2) ⇐ U(t2, t1)U(t1, t2) = I. (2.138)

Notice that, as anticipated above, the time evolution of a state of a closed system is
reversible. If t > t0,

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , |ψ(t0)〉 = U †(t, t0) |ψ(t)〉 . (2.139)

There is no loss of information. In contrast, the measurement process (collapse of the
state) is not a unitary, reversible process. Since this is produced by the interaction with
an external apparatus, the system will be no longer closed. However, as we have seen,
one can include the measuring apparatus as a part of the (composite) system. Then the
time evolution will be unitary and reversible and there is no need to introduce the bizarre
collapse.

The evolution of a mixed state ρ(t) =
∑
i

wi |αi(t)〉〈αi(t)| also follows from (2.132),

i~
dρ(t)

dt
=
∑
i

wi

{
i~
[

d |αi(t)〉
dt

]
〈αi(t)|+ |αi(t)〉

[
i~

d 〈αi(t)|
dt

]}
=
∑
i

wi {H(t) |αi(t)〉 〈αi(t)| − |αi(t)〉 〈αi(t)|H(t)} , (2.140)

assuming time-independence of the frequencies, and hence

dρ(t)

dt
=

i

~
[ρ(t), H(t)]. (2.141)

In general, the expectation values change with time,

d

dt
〈ψ(t)|A |ψ(t)〉 =

[
d 〈ψ(t)|

dt

]
A |ψ(t)〉+ 〈ψ(t)|A

[
d |ψ(t)〉

dt

]
+ 〈ψ(t)| ∂A

∂t
|ψ(t)〉

= − i

~
〈ψ| [A,H] |ψ〉+ 〈ψ| ∂A

∂t
|ψ〉 . (2.142)

The self-adjoint operator H is called Hamiltonian, but in QM there is no prescription
to obtain it. It has clearly the dimensions of energy, thanks to the introduction of the
dimensionful constant ~ in (2.132). In systems with a quantum analog one can usually
(not always) infer its form from the corresponding classical Hamiltonian (see §2.8).

2.7.2 Time evolution operator

Substituting (2.134) into (2.132) we get the Schrödinger equation for the time evolution
operator U ,

i~
d

dt
U(t, t0) = H(t)U(t, t0) (2.143)
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2.7. Quantum dynamics: the Schrödinger equation 27

where we have used that

d

dt
{U(t, t0) |ψ(t0)〉} =

d

dt
U(t, t0) |ψ(t0)〉 (2.144)

because |ψ(t0)〉 does not depend on t. Then, using the properties of U ,

dU(t, t0) = − i

~
H(t)U(t, t0)dt

⇒ U(t+ δt, t0)− U(t, t0) = − i

~
H(t)U(t, t0)δt (2.145)

and taking t0 = t,

U(t+ δt, t) = I − i

~
H(t)δt. (2.146)

This is the expression for an infinitesimal time evolution. It reveals that H/~ is the
generator of time translations (when H 6= H(t)). Let us find the evolution operator for an
arbitrary time interval.

• If H 6= H(t), the differential equation (2.143), with U(t0, t0) = I, is easy to solve,

U(t, t0) = exp

{
− i

~
H(t− t0)

}
. (2.147)

• If H = H(t) one can check that the solution is the Dyson series,

U(t, t0) = I +
∞∑
n=1

(
− i

~

)n ˆ t

t0

dt1

ˆ t1

t0

dt2 . . .

ˆ tn−1

t0

dtnH(t1)H(t2) . . . H(tn).

(2.148)

If [H(t), H(t′)] = 0 it simplifies to

U(t, t0) = exp

{
− i

~

ˆ t

t0

dtH(t)

}
. (2.149)

2.7.3 Stationary states and constants of motion

Consider a time-independent Hamiltonian H 6= H(t). Since H is self-adjoint it can be
diagonalized,

H |En〉 = En |En〉 , En ∈ R. (2.150)

The eigenvalues En are the allowed energies or energy levels and the |En〉 the energy
eigenstates of the system. The time evolution (2.147) of the energy eigenstates is trivial,

U(t, t0) |En〉 = e−
i
~H(t−t0) |En〉 = e−

i
~En(t−t0) |En〉 . (2.151)

The only change is an irrelevant global phase, so the state remains the same. Hence, the
energy eigenstates are stationary. One can write the time evolution operator in the basis
of energy eigenstates (spectral resolution of U) as

U(t, t0) =
∑
m

∑
n

|Em〉〈Em| e−
i
~H(t−t0) |En〉〈En| =

∑
n

e−
i
~En(t−t0) |En〉〈En| . (2.152)
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28 Chapter 2: Postulates of Quantum Mechanics

The time evolution of a generic state |ψ〉 =
∑
i

ci |Ei〉 is

|ψ(t)〉 = U(t, t0) |ψ〉 =
∑
i

∑
n

ci e−
i
~En(t−t0) |En〉 〈En |Ei〉 =

∑
i

ci e−
i
~Ei(t−t0) |Ei〉 .

(2.153)

Since the components change by different phases,

ci −→ ci e−
i
~Ei(t−t0), (2.154)

the state |ψ〉 is not stationary unless it is an energy eigenstate.

On the other hand, according to (2.142), we say that a time-independent observable A
that commutes with H is a constant of motion since its expectation value in any state |ψ〉
does not change with time,

∂A

∂t
= 0, [A,H] = 0 ⇒ i~

d

dt
〈A〉ψ = 0. (2.155)

In particular, since [H,H] = 0, a time-independent Hamiltonian is a constant of motion,
and the average energy 〈H〉ψ does not change with time even if |ψ〉 is not a stationary
state. And if |ψ〉 is stationary then any time-dependent observable is a constant of motion.

2.7.4 Time evolution pictures

So far, we have considered that states evolve with time and observables (unless explicitly
dependent on time) stay constant,

|α〉 t−−→ U |α〉 , A
t−−→ A. (2.156)

This is called the Schrödinger picture. However, since after all we just deal with the
results of our observations (measurements), we could view things in an alternative way.

The time evolution of the expected value

〈α|A |β〉 t−−→ 〈α|U †AU |β〉 (2.157)

can also be interpreted as if the states do not evolve but the observable does,

|α〉 t−−→ |α〉 , |β〉 t−−→ |β〉 , A
t−−→ U †AU. (2.158)

This is the Heisenberg picture. To distinguish both pictures, when necessary, we denote

|α〉H = |α(t0)〉S = U † |α(t)〉S (2.159)

A(H)(t) = U †A(S)U, A(H)(t0) = A(S). (2.160)

The predictions are identical:

H〈α|A
(H)(t) |β〉H = S〈α(t)|A(S) |β(t)〉S (2.161)

and the hamiltonian H has the same form in both pictures,

H = U †HU. (2.162)
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2.7. Quantum dynamics: the Schrödinger equation 29

An observable A in the Heisenberg picture may change with time because of the dynamics
of the system or because of its explicit dependence with time. Then, using (2.143), we
obtain the Heisenberg equation of motion,

dA(H)

dt
=

[
dU †

dt

]
A(S)U + U †A(S)

[
dU

dt

]
+ U †

∂A(S)

∂t
U

= − i

~
U †[A(S), H]U + U †

∂A(S)

∂t
U

= − i

~
[A(H), H] +

(
∂A

∂t

)(H)

(2.163)

where one usually writes (
∂A

∂t

)(H)

≡ U †∂A
(S)

∂t
U. (2.164)

The density matrix changes with time in the Schrödinger picture according to (2.141),

dρ(S)(t)

dt
=

i

~
[ρ(S)(t), H(t)] (2.165)

but it is constant in the Heisenberg picture,

ρ(S)(t0) =
∑
i

ωi |αi(t0)〉〈αi(t0)|

⇒ ρ(S)(t) = U(t, t0)ρ(t0)U †(t, t0)

⇒ ρ(H)(t) = U †(t, t0)ρ(S)(t)U(t, t0) = ρ(S)(t0) = ρ(H)(t0)

⇒ dρ(H)(t)

dt
= 0. (2.166)

The Heisenberg picture is more similar to the usual description in Classical Mechanics,
where the observables (position, momentum, . . . ) change with time. Actually, the Heisen-
berg equation of motion has the same form as the Hamilton’s equation for a classical
variable A = A(x1, . . . , xN , p1, . . . , pN ; t),

dA

dt
= [A,H]P +

∂A

∂t
(2.167)

replacing the Poisson bracket,

[A,B]P ≡
∑
i

(
∂A

∂xi

∂B

∂pi
− ∂A

∂pi

∂B

∂xi

)
(2.168)

by a commutator, namely

(classical) [·, ·]P −→ −
i

~
[·, ·] (quantum). (2.169)

This analogy reinforces the idea that the operator H introduced in (2.132) is in fact the
Hamiltonian of the system.
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30 Chapter 2: Postulates of Quantum Mechanics

2.8 Quantization rules

How to build quantum operators that represent the physical observables? Next, we will
discuss the canonical quantization rules.

2.8.1 Postulate VI

For a physical system in which the Cartesian coordinates are x1, x2, . . . , xN , with
corresponding momenta p1, p2, . . . , pN , the operators Xr and Ps, which represent these
observables in QM, must satisfy the commutation relations

[Xr, Xs] = 0, [Pr, Ps] = 0, [Xr, Ps] = i~δrsI. (2.170)

If the system has an observable whose classical expression is A(x1, . . . , xN , p1, . . . , pN ; t)
then the corresponding operator can be obtained by “conveniently” substituting he
variables xr and ps by the operators Xr and Ps, respectively.

Here, “conveniently” means the following. Since X and P are noncommuting ob-
servables, one should write classical variables like xp as an equivalent combination whose
quantum analog is a self-adjoint operator. In fact, the product XP is not self-adjoint, since
X = X†, P = P † and

[X,P ] = XP − PX = i~I ⇒ (XP )† = (PX)† − i~I = XP − i~I 6= XP. (2.171)

However,

xp =
1

2
(xp+ px) ;

1

2
(XP + PX) (2.172)

is a self-adjoint operator with the same classical expression.

This postulate will look less bizarre when we see in chapter 3 that identifying the
momentum with an operator P that satisfies the commutation relations (2.170) is the
right way to understand P/~ as the generator of spatial translations.

2.9 Superselection rules

Suppose we have an observable whose operator Q commutes (is compatible) with all other
operators associated to observables in H, [Q,A] = 0. Then for any pair of eigenstates of
Q with different eigenvalues,

Q |ψ1〉 = q1 |ψ1〉 , Q |ψ2〉 = q2 |ψ2〉 , (2.173)

we have that

∀A 0 = 〈ψ1| [Q,A] |ψ2〉 = 〈ψ1|QA |ψ2〉 − 〈ψ1|AQ |ψ2〉 = (q1 − q2) 〈ψ1|A |ψ2〉

⇒ 〈ψ1|A |ψ2〉 = 0 if q1 6= q2. (2.174)

This means there are no transitions between whatever two eigenstates with different eigen-
values of Q.
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2.10. No-cloning theorem 31

As a consequence, let us see that there is no pure state in H that is a superposition of
states with different values of Q. Suppose that such a pure state |ψ〉 exists. Then, since
the eigenvectors of Q are a basis of H,

|ψ〉 =
∑
i

ci |ψi〉 with Q |ψi〉 = qi |ψi〉 . (2.175)

Using (2.174) the expectation of any observable A in this state,

〈ψ|A |ψ〉 =
∑
i

|ci|2 〈ψi|A |ψi〉 = Tr(ρA) with ρ =
∑
i

|ci|2 |ψi〉〈ψi| . (2.176)

We see that unless |ψ〉 has a well-defined value of Q (there is just one ci 6= 0) ρ describes
a mixed state (incoherent superposition of pure states) despite |ψ〉 ∈ H.

Any observable Q with these properties is called a superselection observable and gives
rise to superselection rules: one can prepare only states with well defined values of Q.
States with different values of Q live in separate Hilbert spaces Hq. For example, the
electric charge, the parity, the baryon and lepton number, . . .

2.10 No-cloning theorem

In §2.2 we emphasized that a quantum state can not be understood as an element of
reality but as a collection of similarly prepared systems. But how to make identical state
preparations of a state? Notice that the state, in principle, might be even unknown.
Sometimes things are easy: it is possible to prepare the lowest energy state of a system by
simply waiting for the system to decay to its ground state. Another way is filtering, the
technique used in the Stern-Gerlach experiment.

But we would really like to have a procedure to make exact replicas or clones of a
prototype of the state, provided it exists. This is a common method in classical physics:
the duplication of a key or the copying of a computer file. However, surprisingly, let us see
that cloning quantum states is impossible.

Suppose we want to build a machine to copy a quantum state. There are only two
permissible quantum operations with which we may manipulate the composite system. If
we perform an observation, the original state will irreversibly collapse into some eigenstate
of the observable, corrupting the information contained in the qubit(s). This is obviously
not what we want. Instead, we should use unitary operations. Given |ψ〉 and a “blank
piece of paper” |b〉,

|ψ〉 ⊗ |b〉 −→ U(|ψ〉 ⊗ |b〉) = |ψ〉 ⊗ |ψ〉 . (2.177)

(Imagine we are so wise as to control the Hamiltonian to make the state evolve this way.)
And the same wih another state |φ〉,

|φ〉 ⊗ |b〉 −→ U(|φ〉 ⊗ |b〉) = |φ〉 ⊗ |φ〉 . (2.178)

This looks perfect but, if we take the scalar product of both resulting states,

(〈φ| ⊗ 〈b|)U †U(|ψ〉 ⊗ |b〉) = 〈φ|ψ〉 (2.179)

= (〈φ| ⊗ 〈φ|)(|ψ〉 ⊗ |ψ〉) = 〈φ|ψ〉2 , (2.180)
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32 Chapter 2: Postulates of Quantum Mechanics

we see that this is only possible if

〈φ|ψ〉 = 0 or ± 1, (2.181)

namely, if |ψ〉 and |φ〉 are either the same state or they are orthogonal. Therefore, a
single universal U cannot clone a general quantum state (arbitrary superpositions of the
orthogonal qubits |0〉 and |1〉).

Notice that states which are classically different will certainly be orthogonal, so the
no-cloning theorem for quantum states is not in conflict with the well-known possibility of
copying classical states.
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Chapter 3

The wave function

3.1 Continuous spectrum

So far we have assumed observables with a discrete spectrum of possible values. This is in
particular the case of Sz. But there are observables, like the position or the momentum of
a free particle, that have a continuum of possible values. As a consequence of postulate
III, we will need an operator with a continuous set of eigenvalues. Then the operator will
be acting on a Hilbert space of infinite dimension. As we will see in this chapter, most of
the results that we have already obtained can be generalized to a continuous spectrum.

Let us revise first the concept of orthonormal basis. If A is an operator with a
(non-degenerate) discrete spectrum, A |a〉 = a |a〉, then {|a〉} is an orthonormal basis,〈

a
∣∣a′〉 = δaa′ (Krönecker delta), δaa′ =

{
1 , a = a′

0 , a 6= a′
(3.1)

Consider now a generic operator X with a continuous spectrum, X |x〉 = x |x〉. Then {|x〉}
is an orthonormal basis in the following sense,〈

x
∣∣x′〉 = δ(x− x′) (Dirac delta), δ(x− x′) =

{
∞ , x = x′

0 , x 6= x′
(3.2)

The Dirac delta is strictly not a function, it is a distribution that assigns a complex number
to each smooth function in x = x0 constrained to satisfy

ˆ ∞
−∞

dx δ(x− x0)f(x) =

ˆ x0+ε

x0−ε
dx δ(x− x0)f(x) = f(x0), (3.3)

equivalently, a distribution that fulfills
ˆ ∞
−∞

dx δ(x− x0) = 1, δ(x) = 0, ∀x 6= 0. (3.4)

From now on, definite integrals extend from −∞ to ∞ unless otherwise stated.

The Dirac delta can be otained as the limit when L→∞ or ε→ 0+ of the functions:

(a) δL(x) =
1

2π

ˆ L

−L
dk eikx =

sinLx

πx
, (3.5)

(b) δε(x) =
1

(2πε2)1/2
e−x

2/(2ε2) (Gaussian), (3.6)
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34 Chapter 3: The wave function

(a) (b) (c) (d)

Figure 3.1: Several representations (in some limit) of the Dirac delta function (see text).

(c) δε(x) =
ε/π

x2 + ε2
, (3.7)

(d) δε(x) =
θ(x+ ε

2)− θ(x− ε
2)

ε
→ dθ(x)

dx
, θ(x) = Heaviside step function. (3.8)

For continuous spectra the completeness relation is generalized as follows

A :
∑
a

|a〉〈a| = I, X :

ˆ
dx |x〉〈x| = I. (3.9)

Any vector in the Hilbert space of an operator A can be expressed in the basis of eigen-
vectors,

A : |ψ〉 =
∑
a

|a〉 〈a|ψ〉 ≡
∑
a

|a〉 ca (3.10)

where ca is the component of |ψ〉 along |a〉. In the case of X with a continuous spectrum,

X : |ψ〉 =

ˆ
dx |x〉 〈x|ψ〉 ≡

ˆ
dx |x〉 ψ(x) (3.11)

where ψ(x) is the wave function of |ψ〉, analogous to the component of |ψ〉 along |x〉.
Notice that the vectors in the Hilbert space of A must be normalized,

〈ψ |ψ〉 =
∑
a

〈ψ |a〉 〈a|ψ〉 =
∑
a

c∗aca =
∑
a

|ca|2 = 1. (3.12)

Likewise,

〈ψ |ψ〉 =

ˆ
dx 〈ψ |x〉 〈x|ψ〉 =

ˆ
dxψ∗(x)ψ(x) =

ˆ
dx |ψ(x)|2 = 1. (3.13)

This requires ψ(x) ∈ L2(R), a square-integrable function in R.

The probability to obtain an eigenvalue a of the observable A on the state |ψ〉 is

pa = 〈ψ|PA,a |ψ〉 = 〈ψ|

(∑
ai=a

|ai〉〈ai|

)
|ψ〉

=
∑
i

| 〈ai |ψ〉 |2 (3.14)

for the general case of a degenerate eigenvalue. Analogously, the probability to obtain a
value x of the observable X in the interval [x0, x1] on the state |ψ〉 is

p[x0,x1] = 〈ψ|PX,[x0,x1] |ψ〉 = 〈ψ|
(ˆ x1

x0

dx |x〉〈x|
)
|ψ〉
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3.2. Position representation 35

=

ˆ x1

x0

dx |ψ(x)|2. (3.15)

Hence, |ψ(x)|2 is the probability density to obtain a value x of X that gives the proba-
bility to obtain x in the interval [x, x+ dx]

Finally, the braket of two states

〈φ|ψ〉 =

ˆ
dx 〈φ|x〉 〈x|ψ〉 =

ˆ
dxφ∗(x)ψ(x) (3.16)

is the overlap between their wave functions. And for an arbitrary function F = F (X),

F (X) |x〉 = F (x) |x〉 , (3.17)

the matrix element

〈φ|F (X) |ψ〉 =

ˆ
dx 〈φ|F (X) |x〉 〈x|ψ〉 =

ˆ
dxF (x) 〈φ|x〉 〈x|ψ〉

=

ˆ
dxF (x)φ∗(x)ψ(x). (3.18)

3.2 Position representation

The position of a particle will be given by the eigenvalue of the position operator,

~X = (X1, X2, X3) = (X,Y, Z). (3.19)

The (infinite-dimensional) orthonormal basis of eigenvectors of ~X is {|~x〉} where ~x labels
every point in the 3-dimensional space,〈

~x
∣∣~x′〉 = δ3(~x− ~x′) = δ(x− x′)δ(y − y′)δ(z − z′) (orthonormality) (3.20)ˆ

d3x |~x〉〈~x| = I (closure). (3.21)

The wave function in this basis is called the position representation,

〈~x|ψ〉 ≡ ψ(~x) = ψ(x, y, z). (3.22)

The normalization of the physical states is expressed as

1 = 〈ψ |ψ〉 =

ˆ
d3x 〈ψ |~x〉 〈~x|ψ〉 =

ˆ
d3xψ∗(~x)ψ(~x) =

ˆ
d3x |ψ(~x)|2. (3.23)

The Hilbert space of physical states is formed by the square-integrable functions in R3,
L2(R3). It is remarkable that, in particular, the wave function of |~x′〉,〈

~x
∣∣~x′〉 = δ3(~x− ~x′) (3.24)

is not a square-integrable function and hence does not belong to H = L2(R3). In order to
incorporate it, one must enlarge H to include distributions. This is the so called rigged or
equipped Hilbert space, introduced to account for the continuous spectrum, as was done
implicitly in the previous section.
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36 Chapter 3: The wave function

Furthermore, we should not be concerned that a state described by a delta function
cannot be normalized, because it is not physical (but a limiting case), since one cannot
measure the position ~x with infinite precision. In practice, when we measure the position
X of the state |ψ〉, it collapses to a state that is actually a superposition of a continuum
of eigenstates of X in the interval [x−∆/2, x+ ∆/2] where ∆ is a narrow (but non zero)
range around x that our detector cannot resolve,

|ψ〉 →
ˆ x+∆/2

x−∆/2
dx′
∣∣x′〉 〈x′∣∣ψ〉 . (3.25)

These can be considered as eigenvectors of a common eigenvalue x, analogous to the case
of a degenerate eigenvalue a of an operator A with a discrete spectrum,

|ψ〉 →
∑
ai

|ai〉 〈ai |ψ〉 ⇒ pa =
∑
i

| 〈ai |ψ〉 |2, (3.26)

assuming that 〈x|ψ〉 does not appreciably change within an infinitesimal interval ∆

⇒ p(x) =

ˆ x+∆/2

x−∆/2
dx′ |

〈
x′
∣∣ψ〉 |2 = ∆ | 〈x|ψ〉 |2. (3.27)

Then ψ(~x) is the amplitude and |ψ(~x)|2 is the probability density to find a particle at
~x.

Let us now introduce the operator that produces a space displacement (translation)
from the position ~x to ~x+ ~x0:

T ( ~x0) |~x〉 = |~x+ ~x0〉 . (3.28)

There is a continuous set of translations, ~x0 ∈ R3, that can be composed (multiplied),

T (~x1)T (~x2) = T (~x1 + ~x2). (3.29)

They have the mathematical structure of a Lie group called T3. They are represented by
unitary transformations acting on H,

|~x〉 −→ T (~x0) |~x〉 ,
∣∣~x′〉 −→ T (~x0)

∣∣~x′〉 (3.30)

〈~x|T †(~x0)T (~x0)
∣∣~x′〉 =

〈
~x+ ~x0

∣∣~x′ + ~x0

〉
= δ3(~x+ ~x0 − ~x′ − ~x0) = δ3(~x− ~x′) =

〈
~x
∣∣~x′〉 (3.31)

⇒ T †(~x0) = T−1(~x0) = T (−~x0). (3.32)

The elements of a Lie group can be written in terms of the generators. Consider first
the generator of translations in R,

T (x0) |x〉 = |x+ x0〉 . (3.33)

We define the generator K as the operator such that

T (δx) ≡ I − iδxK (3.34)

for an infinitesimal translation δx. K is self-adjoint,

T−1(δx) = I + iδxK, T †(δx) = I + iδxK† ⇒ K† = K, (3.35)
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and satisfies the differential equation

T (x+ δx) = T (x) +
dT

dx
δx

T (x+ δx) = T (x)T (δx) = T (x) (I − iδxK) = T (x)− iδx T (x)K

⇒ dT

dx
= −iT K (3.36)

with the boundary condition T (0) = I. Hence,

T (x) = e−iKx

= I − iKx+
1

2!
(−iKx)2 + . . .

= lim
N→∞

(
I − iK

x

N

)N
. (3.37)

A finite translation x is the composition ofN →∞ infinitesimal translations x/N generated
by K. The displacement x is the parameter of this one-dimensional Lie group. Next we
will investigate how K commutes with the position operator in one dimension:

X T (δx) |x〉 = X |x+ δx〉 = (x+ δx) |x+ δx〉 ,
T (δx)X |x〉 = T (δx)x |x〉 = x |x+ δx〉 ,

⇒ [X,T (δx)] |x〉 = δx |x+ δx〉 = δx T (δx) |x〉 ∀ |x〉

⇒ [X,T (δx)] = δx T (δx). (3.38)

Writing this expression in terms of the generator, to leading order in δx,

[X,T (δx)] = [X, I − iδxK] = −iδx [X,K] (3.39)

δx T (δx) = δx (I − iδxK) = δx I, (3.40)

we find that

[X,K] = iI (3.41)

or

[X, ~K] = i~I. (3.42)

So, the generator of translations in one dimension, multiplied by ~, has the same commu-
tation relations (2.170) with X as the momentum P = ~K.

In R3 the Lie group of translations has 3 independent generators, ~K,

T (δ~x) = I − i(δxKx + δy Ky + δz Kz) = I − iδ~x · ~K. (3.43)

One can easily check that the commutation relations of ~X and ~P = ~ ~K are as in (2.170),

[Xr,Ks] = iδrsI ⇒ [Xr, Ps] = i~δrsI. (3.44)

This is a remarkable result: in QM the momentum is the generator of translations,

~P = ~ ~K, (3.45)
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38 Chapter 3: The wave function

since it is represented by the same operator in the Hilbert space,

T (~x) = e−
i
~
~P ·~x. (3.46)

How does the momentum ~P act on the position representation? Consider first R,

T (δx) |x〉 = |x+ δx〉

with T (δx) |x〉 =

(
I − i

~
Pδx

)
|x〉 = |x〉 − i

~
δxP |x〉

⇒ P |x〉 = i~
|x+ δx〉 − |x〉

δx
. (3.47)

And for the bra,

〈x|P † = 〈x|P = −i~
〈x+ δx| − 〈x|

δx
. (3.48)

Let’s find the wave function of the kets P |ψ〉 in the position representation:

〈x|P |ψ〉 = 〈x|P
ˆ

dx′
∣∣x′〉 〈x′∣∣ψ〉

= −i~
〈x+ δx| − 〈x|

δx

ˆ
dx′

∣∣x′〉ψ(x′)

= −i~
1

δx

ˆ
dx′ [δ(x+ δx− x′)− δ(x− x′)]ψ(x′)

= −i~
ψ(x+ δx)− ψ(x)

δx

= −i~
dψ(x)

dx
. (3.49)

We see that P is represented by a differential operator in the basis {|x〉},

|ψ〉 .= 〈x|ψ〉 = ψ(x),

P
.
= −i~

d

dx
⇐ 〈x|P |ψ〉 = −i~

dψ

dx
. (3.50)

Proceeding in the same way, in R3 one obtains

~P
.
= −i~~∇ = −i~

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (3.51)

3.3 Momentum representation

Instead of the basis {|~x〉} we can use the basis of momentum eigenstates {|~p〉},

~P |~p〉 = ~p |~p〉 (3.52)

This is also an infinite-dimensional orthonormal basis,〈
~p
∣∣~p′〉 = δ3(~p− ~p′) = δ(p1 − p′1)δ(p2 − p′2)δ(p3 − p′3) (3.53)ˆ

d3p |~p〉〈~p| = I. (3.54)
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3.3. Momentum representation 39

The wave function of a state |ψ〉 in the momentum representation is

ψ̂(~p) ≡ 〈~p|ψ〉 . (3.55)

with

1 = 〈ψ |ψ〉 =

ˆ
d3p 〈ψ |~p〉 〈~p|ψ〉 =

ˆ
d3p ψ̂∗(~p)ψ̂(~p) =

ˆ
d3p |ψ̂(~p)|2. (3.56)

Let us see how to express |~p〉 in the position representation. Consider first R,

P |p〉 = p |p〉 ⇒ 〈x|P |p〉 = p 〈x|p〉 . (3.57)

Using (3.50) we find

−i~
d

dx
〈x|p〉 = p 〈x|p〉 ⇒ 〈x|p〉 = N e

i
~px (3.58)

where N is a normalization constant that we will determine next. Writing the Dirac delta
in the form (3.5) and using the property δ(ax) = 1

|a|δ(x), we have

〈
p
∣∣p′〉 = δ(p− p′) = δ(~(k − k′)) =

1

~
δ(k′ − k)

=
1

2π~

ˆ
dx eix(k′−k) =

1

2π~

ˆ
dx e

i
~ (p′−p)x

=

ˆ
dx 〈p|x〉

〈
x
∣∣p′〉 = |N |2

ˆ
dx e

i
~ (p′−p)x

⇒ N =
1

(2π~)1/2
. (3.59)

Hence, the wave function of |p〉 in the position representation is

〈x|p〉 =
1

(2π~)1/2
e

i
~px (3.60)

and in R3,

〈~x|~p〉 =
1

(2π~)3/2
e

i
~ ~p·~x. (3.61)

And then, the wave function of |~x〉 in the momentum representation is

〈~p|~x〉 = 〈~x|~p〉∗ =
1

(2π~)3/2
e−

i
~ ~p·~x. (3.62)

Now we can change from one basis to the other. Consider a state |ψ〉 in the one-
dimensional momentum representation,

ψ̂(p) = 〈p|ψ〉 =

ˆ
dx 〈p|x〉 〈x|ψ〉

=
1

(2π~)1/2

ˆ
dx e−

i
~px ψ(x) = F [ψ(x)]. (3.63)

We see that ψ̂(p) is the Fourier transform of ψ(x). Analogously, ψ(x) is the inverse Fourier
transform of ψ̂(p):

ψ(x) = 〈x|ψ〉 =

ˆ
dp 〈x|p〉 〈p|ψ〉
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40 Chapter 3: The wave function

=
1

(2π~)1/2

ˆ
dp e

i
~px ψ̂(p) = F−1[ψ̂(p)]. (3.64)

The Fourier transform is defined for square-integrable functions and for distributions. For
example, the wave function of a particle perfectly localized at x0 is

ψ(x) = 〈x|x0〉 = δ(x− x0) (3.65)

ψ̂(p) = F [δ(x− x0)] =
1

(2π~)1/2
e−

i
~px0 (3.66)

whose distribution of momentum is constant (all momenta are equally probable),

|ψ̂(p)|2 =
1

2π~
∀p ∈ (−∞,∞). (3.67)

And the wave function of a particle with a well-defined momentum p0 is a plane wave,

ψ̂(p) = 〈p0 |p〉 = δ(p− p0) (3.68)

ψ(x) = F−1[δ(p− p0)] =
1

(2π~)1/2
e

i
~p0x (3.69)

whose spatial distribution is constant (all positions are equally probable),

|ψ(x)|2 =
1

2π~
∀x ∈ (−∞,∞). (3.70)

These results are as expected because, using the general uncertainty relations (2.75) and
the commutation relation of X and P (2.170), one has that the product of uncertainties in
position and momentum is

∆ψX ∆ψP ≥
~
2
. (3.71)

Hence, if one of them is perfectly known the other must be totally uncertain. In practice,
the wave function (3.64) is not a plane wave but a wave packet, a superposition of plane
waves, with ψ̂(p) a function peaking more or less sharply at p = p0, not quite as δ(p− p0).
It is instructive to calculate [exercise] the expectation values and uncertainties 〈X〉ψ, ∆ψX,
〈P 〉ψ, ∆ψP for different wave packets and check that the Gaussian wave packet,

ψ(x) = c0 e−
(x−x0)

2

2σ2 e
i
~p0x (3.72)

ψ̂(p) =
c0 σ

~
e
− (p−p0)

2

2(~/σ)2 (3.73)

with normalization c2
0 = 1√

πσ2
, is a minimum uncertainty packet, that satisfies

∆ψX ∆ψP =
~
2
. (3.74)

3.4 Probability density and probability current density

We can now find the Schrödinger equation for the wave function ψ(~x, t) = 〈~x|ψ(t)〉 of a
particle of mass m moving in a potential. Starting with (2.132),

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|H |ψ(t)〉 (3.75)
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3.4. Probability density and probability current density 41

and taking the position representation of a time-independent Hamiltonian, H 6= H(t),

H =
P 2

2m
+ V ( ~X)

.
= − ~2

2m
∇2 + V (~x), (3.76)

we get the Schrödinger wave equation:

i~
∂

∂t
ψ(~x, t) =

(
− ~2

2m
∇2 + V (~x)

)
ψ(~x, t). (3.77)

In particular, we confirm that energy eigenstates are stationary,

〈x|H |ψE(t)〉 = E 〈x|ψE(t)〉 = E ψE(~x, t), (3.78)

i~
∂

∂t
ψE(~x, t) = E ψE(~x, t) ⇒ ψE(~x, t) = e−

i
~E(t−t0)ψE(~x, t0) (3.79)

and satisfy (
− ~2

2m
∇2 + V (~x)

)
ψE(~x, t) = E ψE(~x, t). (3.80)

Let us see now the evolution with time of the probability density

%(~x, t) = |ψ(~x, t)|2 = ψ∗(~x, t)ψ(~x, t), (3.81)

∂%

∂t
=
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
= − 1

i~
[(Hψ)∗ψ − ψ∗Hψ]

= − i~
2m

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
= −~∇ ·

[
i~

2m

(
ψ~∇ψ∗ − ψ∗~∇ψ

)]
. (3.82)

Hence, the probability density satisfies the continuity equation:

∂%(~x, t)

∂t
+ ~∇ · ~J(~x, t) = 0, (3.83)

~J(~x, t) ≡ i~
2m

(
ψ~∇ψ∗ − ψ∗~∇ψ

)
=

~
m

Im(ψ∗~∇ψ). (3.84)

where ~J is the probability current density. Integrating this equation over an arbitrary
region V of R3, and applying the divergence (or Gauss’s) theorem,

ˆ
V

dV
∂%

∂t
+

ˆ
dV ~∇ · ~J = 0

⇒ ∂

∂t

ˆ
V

dV %+

˛
S

d~S · ~J = 0 (3.85)

we find that flux of the current density through the surface S enclosing the region V gives
the total probability that has escaped or entered that region per time unit. If V = R3 the
total probability is constant.

The probability current density integrated over R3 is the average particle velocity in
the state |ψ〉,

〈~v〉ψ =
1

m
〈ψ| ~P |ψ〉 =

1

m

ˆ
d3x 〈ψ |x〉 〈x| ~P |ψ〉

=
1

m

ˆ
d3xψ∗(−i~~∇ψ) =

ˆ
d3x

(
− i~
m
ψ∗~∇ψ

)
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42 Chapter 3: The wave function

=
1

m

ˆ
d3x (i~~∇ψ∗)ψ =

ˆ
d3x

(
i~
m
ψ~∇ψ∗

)
(3.86)

⇒
ˆ

d3x ~J =
i~

2m

ˆ
d3x

(
ψ~∇ψ∗ − ψ∗~∇ψ

)
= 〈~v〉ψ. (3.87)

For an energy eigenstate (3.79), that is stationary, the probability density to find the
particle at ~x does not change with time, since

% = |ψE(~x, t))|2 = |ψE(~x, t0))|2 ⇒ ∂%

∂t
= ~∇ · ~J = 0. (3.88)

The time evolution of a generic wave function will be described in §3.6.

3.5 Ehrenfest’s theorem

We have seen in (2.142) how expectation values change with time. It is remarkable that
the expectation values of X and P for a particle of mass m moving in a potential V (x),a

d

dt
〈X〉ψ = − i

~
〈[X,H]〉ψ =

1

m
〈P 〉ψ (3.89)

d

dt
〈P 〉ψ = − i

~
〈[P,H]〉ψ = −

〈
dV

dx

〉
ψ

= 〈F (x)〉ψ (3.90)

verify similar equations of motion as the the classical variables x and p:

dx

dt
=

∂H

∂p
=

p

m
(3.91)

dp

dt
= −∂H

∂x
= −dV

dx
= F (x). (3.92)

In fact, putting together (3.89) and (3.90) one finds the Ehrenfest’s theorem,

m
d2

dt2
〈X〉ψ = 〈F (x)〉ψ (3.93)

stating that the center of the wave function 〈X〉ψ moves like a classical particle under the
average force 〈F 〉ψ.

Although, at first glance, it might appear that Ehrenfest’s theorem is saying that the
quantum mechanical expectation values obey Newton’s classical equations of motion, this
is not actually the case, because in general

〈F (x)〉ψ 6= F (〈X〉ψ). (3.94)

Exceptions to this inequality are potentials of the form

V (x) = −λxn, F (x) = nλxn−1 (3.95)

for: n = 0 (free particle), n = 1 (constant force) or n = 2 (harmonic potential). [Exercise]

aTo check (3.89) and (3.90) notice that

[X,P 2] = [X,P ]P + P [X,P ] = 2i~P ⇐ [A,BC] = [A,B]C +B[A,C],

[P, V ] = PV − V P .
= −i~dV

dx
− i~V d

dx
− V

(
−i~ d

dx

)
= −i~dV

dx
.
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3.6. Propagator 43

3.6 Propagator

The time evolution of the wave function can be expressed in terms of the propagator. This
is a general approach that allows a perturbative treatment. It is frequently applied in
Quantum Field Theory, where the propagator is a fundamental concept. We will introduce
it here although it will not be used in this course.

The propagator K(~x2, t2; ~x1, t1) is an integral operator that acts on the initial wave
function and transforms it to the final one,

ψ(~x2, t2) =

ˆ
d3x1K(~x2, t2; ~x1, t1)ψ(~x1, t1). (3.96)

Let us explore its meaning. Suppose a particle perfectly localized initially (t1) at ~xi. Its
wave function is just

ψ(~x1, t1) = δ(~x1 − ~xi). (3.97)

According to (3.96), at a time t2 the wave function develops into

ψ(~x2, t2) =

ˆ
d3x1K(~x2, t2; ~x1, t1) δ(~x1 − ~xi) = K(~x2, t2; ~xi, t1). (3.98)

Therefore, the propagator K(~x2, t2; ~x1, t1) provides the probability amplitude to find a
particle in ~x2 at t2 if the particle was in ~x1 at t1, namely, it is the probability amplitude
for the “propagation” between those points in that interval.

Remember that |ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 = e−
i
~H(t2−t1) |ψ(t1)〉. Then, taking |ψ(t1)〉 =

|~x1〉 we have

〈~x2 |ψ(t2)〉 = K(~x2, t2; ~x1, t1) = 〈~x2|U(t2, t1) |~x1〉 ≡ 〈~x2, t2 |~x1, t1〉 (3.99)

where |~x1, t1〉 and |~x2, t2〉 are position eigenstates in the Heisenberg picture. And in terms
of energy eigenstates:b

ψ(~x2, t2) = 〈~x2 |ψ(t2)〉 = 〈~x2| e−
i
~H(t2−t1) |ψ(t1)〉 =

∑
E

〈~x2 |E〉 〈E |ψ(t1)〉 e−
i
~E(t2−t1)

=

ˆ
d3x1

∑
E

〈~x2 |E〉 〈E |~x1〉 〈~x1 |ψ(t1)〉 e−
i
~E(t2−t1)

=

ˆ
d3x1

∑
E

ψE(~x2)ψ∗E(~x1)e−
i
~E(t2−t1) ψ(~x1, t1)

⇒ K(~x2, t2; ~x1, t1) =
∑
E

ψE(~x2)ψ∗E(~x1)e−
i
~E(t2−t1). (3.100)

Restricting ourselves to the case t2 > t1 we define the retarded propagator

K+(~x2, t2; ~x1, t1) ≡ θ(t2 − t1) 〈~x2|U(t2, t1) |~x1〉 (3.101)

where θ(t) is the Heaviside step function

θ(t2 − t1) =

{
1 , t2 > t1
0 , t2 < t1

(3.102)

bReplace
∑
E

|E〉〈E| with

ˆ
dE |E〉〈E| if the energy spectrum is continuous.
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whose derivative is the Dirac delta,

∂θ(t2 − t1)

∂t2
= δ(t2 − t1). (3.103)

The retarded propagator is the Green’s function of the operator H − i~
∂

∂t
:[

− ~2

2m
∇2
x2 + V (~x2)− i~

∂

∂t2

] [
θ(t2 − t1)

∑
E

ψE(~x2)ψ∗E(~x1)e−
i
~E(t2−t1)

]
= θ(t2 − t1)

∑
E

E ψE(~x2)ψ∗E(~x1)e−
i
~E(t2−t1)

− i~ δ(t2 − t1)
∑
E

ψE(~x2)ψ∗E(~x1)e−
i
~E(t2−t1)

− i~ θ(t2 − t1)
∑
E

ψE(~x2)ψ∗E(~x1)

(
− i

~
E

)
e−

i
~E(t2−t1)

= −i~ δ(t2 − t1)δ3(~x2 − ~x1) (3.104)

where we have used H ψE = E ψE , δ(t2 − t1)e−
i
~E(t2−t1) = 1 and∑

E

ψE(~x2)ψ∗E(~x1) =
∑
E

〈~x2 |E〉 〈E |~x1〉 = δ3(~x2 − ~x1). (3.105)

Finding K+ is difficult in general, depending on the form of the potential V (~x). An
easily solvable case is the free propagator, V (~x) = 0,

〈~x2|U(t2, t1) |~x1〉 =

ˆ
d3p 〈~x2 |~p〉 〈~p|~x1〉 e−

i
~E(t2−t1)

with 〈~x|~p〉 =
1

(2π~)3/2
e

i
~ ~p·~x, E =

p2

2m
(3.106)

⇒ K0
+(~x2, t2; ~x1, t1) = θ(t2 − t1)

ˆ
d3p

1

(2π~)3
e

i
~ ~p·(~x2− ~x1)e−

i
~
p2

2m
(t2−t1)

= θ(t2 − t1)e−i 3π
4

[
m

2π~(t2 − t1)

]3/2

e
i
~
m
2
| ~x2−~x1|

2

t2−t1 (3.107)

where we have used (to the third power in 3 dimensions),
ˆ ∞
−∞

dp e−i(ap2+2bp) =

√
π

a
e−iπ

4 ei b
2

a , a > 0. (3.108)

It is instructive to see [exercise] how a Gaussian wave packet evolves freely with time:
its center moves with constant group velocity and the packet broadens being no longer
minimal: ∆x∆p > ~/2 (while ∆p remains constant).

The free propagator is used as a starting point to find perturbative solutions at order
V n(~x). This is the usual approach in Quantum Field Theory.

3.7 Feynman formulation of Quantum Mechanics: path in-
tegral

In Classical Mechanics, dynamics is governed by Hamilton’s principle: the trajectory of a
system (Fig. 3.2) in the phase space (coordinates and velocities) is an extreme of the action
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3.7. Feynman formulation of Quantum Mechanics: path integral 45

xi = x(ti)

xf = x(tf )

Figure 3.2: Possible trajectories x(t) in the phase space of one particle (x, ẋ). In Classical
Mechanics the particle follows just the one that minimizes the action.

(usually a minimum),

δS = δ

ˆ tf

ti

dt L(x, ẋ) = 0, (3.109)

where the Lagrangian L(x, ẋ) is a function which contains all physical information con-
cerning the system. If it is conservative,

L(x, ẋ) =
1

2
mẋ2 − V (x). (3.110)

From this variational principle one derives the Euler-Lagrange differential equations, whose
solutions provide the equations of motion of the system.

In 1933, Dirac pointed out that, in contrast to Classical Mechanics, the action seemed
to play no relevant role in QM. He unsuccessfully speculated that the propagator might
correspond to exp{iS/~} where S is the classical action evaluated along the classical trajec-
tory. In 1948, Feynman developed Dirac’s idea and accomplished a new formulation of QM
based on writing the propagator as the sum over all possible paths (not just the classical
one) of exp{iS/~} between the initial and the final state. Somehow, a quantum particle
manages to take all paths and the probability amplitude of each one adds up according to
the superposition principle of QM.c

We have seen (??) that in the canonical formalism, the propagator is

〈xf , tf |xi, ti〉 = 〈xf | e−iH∆t/~ |xi〉 . (3.111)

Notice that at every fixed time t, the states {|x, t〉} form a complete set,

I =

ˆ
dx |x, t〉〈x, t| . (3.112)

Let us choose a set of intermediate times tn ∈ {t0, t1, . . . , tN} with ti ≡ t0 < t1 < · · · <
tN ≡ tf that will be assumed equidistant to simplify,

tn = t0 + nδt , δt =
tf − ti
N

. (3.113)

Then the propagator reads

〈xf , tf |xi, ti〉 =

ˆ
dx1 〈xf , tf |x1, t1〉 〈x1, t1 |xi, ti〉

cR. P. Feynman, Space-time approach to nonrelativistic Quantum Mechanics, Rev. Mod. Phys. 20 (1948)
367.

45 © www.ugr.es/local/jillana



46 Chapter 3: The wave function

tNt0 t1 t2

x0

x2

x1

x3

xN

t3

Figure 3.3: Path x(t) defined by the interpolation of x(t0) = x0, . . . , x(tN ) = xN .

=

ˆ
dx1dx2 〈xf , tf |x2, t2〉 〈x2, t2 |x1, t1〉 〈x1, t1 |xi, ti〉

=

ˆ
dx1 · · · dxN−1

N−1∏
n=0

〈xn+1, tn+1 |xn, tn〉 (3.114)

with the notation xi ≡ x0, xf ≡ xN . For small enough δt,

〈xn+1, tn+1 |xn, tn〉 = 〈xn+1| e−iHδt/~ |xn〉
= 〈xn+1| (1− iHδt/~) |xn〉+O(δt)2 . (3.115)

In the momentum representation and neglecting terms of order (δt)2,

〈xn+1, tn+1 |xn, tn〉 = 〈xn+1| (1− iHδt/~) |xn〉

=

ˆ
dpn 〈xn+1 |pn〉 〈pn| (1− iHδt/~) |xn〉

=

ˆ
dpn 〈xn+1 |pn〉 [1− iH(pn, xn)δt/~] 〈pn |xn〉

=

ˆ
dpn
2π~

eipn(xn+1−xn)/~e−iH(pn,xn)δt/~

=

ˆ
dpn
2π~

exp

{
i

~

[
pn
xn+1 − xn

δt
−H(pn, xn)

]
δt

}
, (3.116)

and substituting in (3.114) in the limit of large N , we have

〈xf , tf |xi, ti〉 = lim
N→∞

ˆ
dx1 · · · dxN−1

ˆ
dp0

2π~
· · · dpN−1

2π~

× exp

{
i

~

N−1∑
n=0

[
pn
xn+1 − xn

δt
−H(pn, xn)

]
δt

}
. (3.117)

The expression above is an integral over all the possible values of x1, . . . , xN−1. Every
set of values defines a path, i.e. a function x(t) given by the interpolation of x(t0) =
x0, . . . , x(tN ) = xN , with fixed x0 and xN (Fig. 3.3). There is also an integral over N
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momenta p0, . . . , pN−1. Therefore, we can write the propagator as the discretized version
of the functional integral

〈xf , tf |xi, ti〉 =

ˆ
Dx(t)Dp(t) exp

{
i

~

ˆ tf

ti

dt [pẋ−H(p, x)]

}
(3.118)

where the x(t) have fixed boundary conditions and the momenta p(t) are unbounded.

The potential of a conservative system does not depend on p, so V factors out and we
can integrate over the momenta, with the help of (3.108),

ˆ
dpn
2π~

exp

{
−p2

n

iδt

2m~
+ pn

i(xn+1 − xn)

~

}
=
( m

2πi~δt

)1/2
exp

{
im(xn+1 − xn)2

2~δt

}
(3.119)

Hence,

〈xf , tf |xi, ti〉 = lim
N→∞

( m

2πi~δt

)N/2 ˆ
dx1 · · · dxN−1

× exp

{
i

~

N−1∑
n=0

[
m

2

(
xn+1 − xn

δt

)2

− V (xn)

]
δt

}
(3.120)

that is the discretized version of the functional integral:

〈xf , tf |xi, ti〉 =

ˆ
Dx(t) exp

{
i

~

ˆ tf

ti

dt
[m

2
ẋ2 − V (x)

]}
=

ˆ
Dx(t) exp

{
i

~
S[x(t)]

}
(3.121)

where the action S[x(t)] is a functional of all possible paths, in terms of the Lagrangian,

S[x(t)] =

ˆ tf

ti

dt L(x, ẋ) , L(x, ẋ) =
m

2
ẋ2 − V (x), (3.122)

the result we had advertised. We may interpret
´
Dx(t) as a sum over all paths that we

usually call path integral.

This alternative formulation of QM provides an extremely interesting and intuitive view
of quantum processes and allows to derive the classical limit in a very natural way.

As an illustration, let us consider the famous double slit experiment. The double-slit
experiment was first performed with (sun)light by Thomas Young in 1801 and was key
to accept the wave theory of light: the beams passing (diffracting) through two closely
separated slits pierced on a plate interfere in their way to a screen where they display
a fringe pattern of dark and bright bands (Fig. 3.4). In 1927, Davisson and Germer
demonstrated that electrons show the same behaviour (using a nickel crystal instead of
two slits), which was later extended to atoms and molecules! Similar experiments with low
intensity beams of single photons or single electrons sent one by one (using a biprism instead
of slits) have been performed with identical results (3.5). The details of the experimental
setup are not relevant for us. We will take it as a thought experiment with profound
consequences. Richard Feynman in [?] called it

“a phenomenon which is impossible, absolutely impossible, to explain in any
classical way, and which has in it the heart of quantum mechanics. In reality,
it contains the only mystery”.
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48 Chapter 3: The wave function

Figure 3.4: Left: Sketch of the double slit experiment for both coherent light and electrons,
showing two possible electron paths. Right: Interference fringes for light (bottom), and electron
impacts on the screen (up) of the experiment in Fig. 3.5.

Figure 3.5: Experiment by A. Tonomura et al. [American Journal of Physics 57 (1989) 117]:
(b) 200, (c) 6000, (d) 40000, (e) 140000 electrons are sent one by one through a double slit.

One may think that a flux of electrons behaves like a fluid of many particles interacting
with each other and this may cause the accumulation of impacts in bands on the screen
resembling an interference pattern. But when sending electrons one by one there is no
doubt that somehow every electron “interferes” with itself. Even more striking is the fact
that if one detects which of the slit each electron goes through, or one closes the other
slit, the interference pattern disappears! But how can an electron “know” if the other slit
is open? And when both slits are open, how can one electron interfere with another one
emitted before or afterwards?

The interpretation of Feynman is perhaps the most satisfactory, though contrary to the
common sense.d The only thing we know for sure about the electron is that it comes from
the source and ends up on the screen, but we have no information about its intermediate
positions. So, in between, one can not say if the electron is here or there. Actually it is in
a cohererent superposition of all possible paths. Of course, classically this makes no sense:
nothing can be in more than one state at the same time. To the resulting probability
amplitude (path integral) contribute not only the classical path but every path compatible

d“[Quantum theory] describes nature as absurd from the point of view of common sense. And yet it
fully agrees with experiment. So I hope you can accept nature as She is — absurd.” R. P. Feynman in
QED: the strange theory of light and matter, Princeton University Press, 1985.
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3.7. Feynman formulation of Quantum Mechanics: path integral 49

with the boundary conditions. If the electron is detected through one of the slits then the
possible paths are restricted in such a way that the interference cancels.

In the classical limit (~→ 0) one can apply the stationary phase approximation to the
functional integral (3.121): the only contribution to this oscillatory integral, with a rapidly
varying phase, is the one that is an extreme of the integrand (the others cancel out),

δ

δx(t)
S[x(t)]

∣∣∣∣
cl

= 0. (3.123)

We recover Hamilton’s principle! The principle of minimal action is just a good approxi-
mation of our quantum world in the classical domain.

When we deal with macroscopic systems the action along different paths is always
much larger than ~ so the system obeys the familiar classical rules. Things change when
the difference of the action along the possible paths is comparable to ~. For example,
consider two electron paths (Fig. 3.4) with constant velocities v1 = D/t y v2 = (D + d)/t,
and assume d� D, so v = v1 ≈ v2. Then∣∣∣∣exp

{
i

~
S[x1]

}
+ exp

{
i

~
S[x2]

}∣∣∣∣2 ∝ 1 + cos ∆ϕ, (3.124)

∆ϕ =
1

~

(
mv2

2t

2
− mv2

1t

2

)
≈ mDd

~t
≈ pd

~
= 2π

d

λ
(3.125)

where we have introduced de Broglie’s relation p = h/λ with p = mv. This is exactly the
phase difference of two “waves” in a diffraction experiment.

The de Broglie’s wavelength assigned to a particle of momentum p should not be taken
literally. It is rather an equivalent way of viewing things in the microcosmos.
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Chapter 4

Angular momentum

4.1 Commutation relations of angular momentum

Classically, one defines the angular momentum with respect to the origin of a particle with
position ~x and linear momentum ~p as

~L = ~x× ~p. (4.1)

A non-vanishing ~L corresponds to a particle rotating around the origin.

Following postulate VI, the quantum operator representing the angular momentum
observable is obtained by substituting the position and momentum operators ~x→ ~X and
~p→ ~P ,

~L = ~X × ~P or Li =

3∑
j=1

3∑
k=1

εijkXjPk ≡ εijkXjPk (self-adjoint) (4.2)

where εijk is the Levi-Civita symbol,

εijk =


+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 otherwise.
(4.3)

and Einstein’s notation (summation over repeated indices) will be applied from now on.
We will call ~L the orbital angular momentum. In the position representation,

~L
.
= −i~ ~X × ~∇, 〈~L〉ψ = 〈ψ| ~L |ψ〉 s− i~

ˆ
d3xψ∗(x)(~x× ~∇)ψ(x) (4.4)

Lz
.
= −i~

(
x
∂

∂y
− y ∂

∂x

)
, 〈Lz〉ψ = 〈ψ|Lz |ψ〉 = −i~

ˆ
d3xψ∗(x)

(
x
∂ψ

∂y
− y∂ψ

∂x

)
. (4.5)

Lz measures the angular momentum around the z-axis of a system described by the wave
function ψ. From the commutation relations [Xi, Pj ] = i~δijI it is straightfoward to derivea

[Li, Lj ] = i~εijkLk. (4.6)

aUse [AB,CD] = C[AB,D] + [AB,C]D = C(A[B,D] + [A,D]B) + (A[B,C] + [A,C]B)D.
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52 Chapter 4: Angular momentum

4.2 The rotation group

The rotations in the 3-dimensional space form a continuous (Lie) group called SO(3), whose
(infinite) elements can be labeled by 3 independent parameters. There are two common
parametrizations of the rotations in 3D:

• The axis-angle parametrization (θ ∈ [0, π], ϕ ∈ [0, 2π], φ ∈ [0, 2π]):

Rn̂(φ), n̂ = n̂(θ, ϕ). (4.7)

• The Euler-angle parametrization (α ∈ [0, 2π], β ∈ [0, π], γ ∈ [0, 2π]):

R(α, β, γ) ≡ Rẑ(α)Rŷ(β)Rẑ(γ)

= Rẑ′(γ)Rŷ′(β)Rẑ(α) (4.8)

Let us consider the subgroup of rotations around the z-axis, Rz(φ). Choosing the
orthonormal basis {x̂, ŷ, ẑ},

x̂ 7→ cosφ x̂+ sinφ ŷ
ŷ 7→ − sinφ x̂+ cosφ ŷ
ẑ 7→ ẑ

namely

Rẑ(φ)
(
x̂ ŷ ẑ

)
=
(
x̂ ŷ ẑ

)cosφ − sinφ 0
sinφ cosφ 0

0 0 1


⇒ Rẑ(φ)

.
=

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (4.9)

Analogously, the rotations around the x-axis and the y-axis are subgroups,

⇒ Rx̂(φ)
.
=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (4.10)

⇒ Rŷ(φ)
.
=

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 . (4.11)
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4.2. The rotation group 53

Each subgroup depends on one parameter φ. We say that the elements of every sub-
group are generated by one generator. Let us consider Rẑ(φ). The corresponding generator
Kz is obtained doing infinitesimal rotations around the z-axis,

Rẑ(δφ) ≡ I − iδφKz (4.12)

Rẑ(δφ)
.
=

 1 −δφ 0
δφ 1 0
0 0 1

⇒ Kz
.
=

0 −i 0
i 0 0
0 0 0

 . (4.13)

As we did for translations, we write

Rẑ(φ+ δφ) = Rẑ(φ)Rẑ(δφ)

Rẑ(φ) +
dRẑ
dφ

δφ = Rẑ(φ)(I − iδφKz)

dRẑ
dφ

= −iRẑ(φ)Kz

⇒ Rẑ(φ) = e−iKzφ (4.14)

where we have used the boundary condition Rẑ(0) = I. Analogously, the rotations around
the x-axis and the y-axis are generated by

Kx
.
=

0 0 0
0 0 −i
0 i 0

 , Ky
.
=

 0 0 i
0 0 0
−i 0 0

 . (4.15)

One can see that an infinitesimal rotation around the axis n̂ = (nx, ny, nz) is given by

Rn̂(δφ) = I − iδφ (nxKx + nyKy + nzKz) = I − iδφ n̂ · ~K (4.16)

⇒ Rn̂(φ) = e−iφn̂· ~K . (4.17)

The linear combination of generators is another generator. All of them define a 3-
dimensional algebra of generators with commutation relations:

[Kx,Ky] = iKz. (4.18)

This means that ~J = ~ ~K have the same algebra as the angular momentum (4.6),

[Jx, Jy] = i~Jz. (4.19)

Hence, in QM the generators of the rotations are (represented by the same operators in
any Hilbert space as) the three components of the angular momentum divided by ~,

Rn̂(φ) = e−
i
~φn̂· ~J = e−

i
~φ(nxJx+nyJy+nzJz). (4.20)

In the widely used Euler-angle parametrization,b

R(α, β, γ) = Rẑ(α)Rŷ(β)Rẑ(γ) = e−
i
~Jzαe−

i
~Jyβe−

i
~Jzγ

bNotice that indeed the group of rotations is isomorphic to SO(3), the group of 3×3 orthogonal matrices
with unit determinant: RRT = I, detR = 1.
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54 Chapter 4: Angular momentum

.
=

cosα − sinα 0
sinα cosα 0

0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

cos γ − sin γ 0
sin γ cos γ 0

0 0 1


=

cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ cosα sinβ
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ

 .

(4.21)

The Euler-angle and the axis-angle parametrizations are related by

tan θ =
tan β

2

sin α+γ
2

, ϕ =
π + α− γ

2
, cosφ = 2 cos2 β

2
cos2 α+ γ

2
− 1. (4.22)

Summarizing, in the Hilbert space H that describes the state of angular momentum
of any system, the operators Li or Ji representing the angular momentum satisfy (4.19).
Under rotations of angle φ around the axis n̂, the vectors |α〉 ∈ H will change by

|α〉 7→ Rn̂(φ) |α〉 = e−
i
~φn̂· ~J |α〉 . (4.23)

So far, we have found 3× 3 matrices that satisfy the commutation relations (4.19),

Jx
.
= ~

0 0 0
0 0 −i
0 i 0

 , Jy
.
= ~

 0 0 i
0 0 0
−i 0 0

 , Jz
.
= ~

0 −i 0
i 0 0
0 0 0

 . (4.24)

Hence there is a 3-dimensional Hilbert space (not necessarily R3), that we will call Hj=1,
that describes the angular momentum of a particular physical system. In this case, when
we measure Jz we will obtain one of the 3 eigenvalues of Jz (+~, 0,−~) and the state of
the system will collapse to the corresponding eigenvector (|jm〉 = |11〉 , |10〉 , |1− 1〉):

det(Jz − λI) = 0⇒ λ ≡ ~m = +~, 0,−~ (4.25)

Jz |jm〉 = λ |jm〉 ⇒ |11〉 .= 1√
2

1
i
0

 , |10〉 .=

0
0
1

 , |1− 1〉 .= 1√
2

−1
i
0

 (4.26)

(up to arbitrary global phases). We say that this is the system of angular momentum j = 1.

One can also write ~J in the basis of eigenvectors of Jz, where Jz is diagonal. Check
that in this new basis (|11〉 , |10〉 , |1− 1〉) the angular momentum operators read

Jx
.
= − ~√

2

0 1 0
1 0 1
0 1 0

 , Jy
.
=

~√
2

 0 i 0
−i 0 i
0 −i 0

 , Jz
.
= ~

1 0 0
0 0 0
0 0 −1

 (4.27)

that can be obtained from (4.26) by the change of basis matrix

U =
1√
2

1 0 −1
i 0 i

0
√

2 0

 . (4.28)

using |ẽj〉 = |ei〉Uij (2.49) with

{|ei〉} = {|ex〉 , |ey〉 , |ez〉} (4.29)

{|ẽj〉} = {|11〉 , |10〉 , |1− 1〉}. (4.30)
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4.3 Systems of spin 1/2

Consider now the following three 2 × 2 complex Hermitian matrices Ji = ~
2σi with σi the

Pauli matrices,

Jx =
~
2

(
0 1
1 0

)
, Jy =

~
2

(
0 −i
i 0

)
, Jz =

~
2

(
1 0
0 −1

)
(4.31)

that verify the same commutation relations as the angular momentum (4.19). Thus, they
are another representation of the angular momentum algebra, the generators of the rota-
tions in the 3-dimensional space of another system (spin 1

2 system) whose 2-dimensional

Hilbert space will be called Hj=
1
2 .

When we measure Jz on a state |α〉 of a spin 1
2 system we may find one of the two

eigenvalues of Jz (±~
2). We will label the corresponding eigenvectors |jm〉 =

∣∣1
2

1
2

〉
,
∣∣1

2 −
1
2

〉
,

that serve as a basis of the Hilbert space. This is actually the original basis (4.31) in which

Jz is diagonal. In this basis any |α〉 ∈ Hj=
1
2 is expressed as

|α〉 .=
(
α1

α2

)
,
∣∣1

2
1
2

〉 .
=

(
1
0

)
,
∣∣1

2 −
1
2

〉 .
=

(
0
1

)
. (4.32)

How does |α〉 change under rotations?

Rẑ(φ) = e−
i
~Jzφ

.
=

(
e−iφ

2 0

0 eiφ
2

)
(4.33)

Rŷ(φ) = e−
i
~Jyφ

.
= e−

i
~σy

φ
2

= I − i
φ

2
σy +

1

2!

(
−i
φ

2

)2

σ2
y +

1

3!

(
−i
φ

2

)3

σ3
y . . .

= I

[
1− 1

2!

(
φ

2

)2

+ . . .

]
− iσy

[
φ

2
− 1

3!

(
φ

2

)3

+ . . .

]

= I cos
φ

2
− iσy sin

φ

2

=

(
cos φ2 − sin φ

2

sin φ
2 cos φ2

)
. (4.34)

Notice that a rotation of 2π radians does not take the system back to the original state:

Rẑ(2π) |α〉 = Rŷ(2π) |α〉 .=
(
−1 0
0 −1

)(
α1

α2

)
= − |α〉 . (4.35)

A rotation of 4π would be needed for that purpose! Are there physical systems with ~/2
angular momentum? We will see later that orbital wave functions cannot have this angular
momentum. However, the intrinsic angular momentum (spin) of the electron, for example,
is ~/2.

From (4.33) and (4.34) one gets how to perform a general rotation of a spin 1
2 system,

R(α, β, γ) = Rẑ(α)Rŷ(β)Rẑ(γ)
.
=

(
e−iα+γ

2 cos β2 −e−iα−γ
2 sin β

2

eiα−γ
2 sin β

2 eiα+γ
2 cos β2

)
. (4.36)
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56 Chapter 4: Angular momentum

Therefore, rotations in this space are represented by complex unitary 2 × 2 matrices of
unit determinant (R†R = I, detR = 1), that form the group SU(2). The groups SU(2)
and SO(3) are locally isomorphic: they have the same generators (same algebra). But
their global properties are different: there are more elements in SU(2) than in SO(3). For
instance,

SO(3) : Rn̂(0) = Rn̂(2π) = I (4.37)

SU(2) : Rn̂(0) 6= Rn̂(2π) = −I 6∈ SO(3). (4.38)

(SU(2) is the universal cover of SO(3), there is a two-to-one relation between them.) Since
there are physical systems, like the electron, with spin 1

2 , we will say that the rotation
group is SU(2) rather than SO(3).

Rotating the eigenstate |+〉 ≡
∣∣1

2
1
2

〉
of Jz = ~

2σz (state of spin +~
2 in the ẑ direction),

one can build the state |+〉n̂ with spin ~
2 along an arbitrary direction n̂(θ, ϕ),

|+〉n̂ = Rẑ(ϕ)Rŷ(θ)
.
=

(
e−iϕ

2 cos θ2
eiϕ

2 sin θ
2

)
.

(4.39)

Check that the state |+〉n̂ is in fact the eigenstate of n̂ · ~J with eigenvalue +~
2 .

In particular (up to global phase) we find the states of Stern-Gerlach experiment:

|±〉x̂ =
1√
2
|+〉 ± 1√

2
|−〉 , |±〉ŷ =

1√
2
|+〉 ± i√

2
|−〉 .

4.4 Representations of angular momentum

So far we have constructed two representations of angular momentum, j = 1
2 and j = 1.

They describe the behaviour of two different systems under spatial rotations. Are there
other Hilbert spaces where one can represent the 3 angular momentum operators Ji? One
has to find a set of 3 matrices, rotation group generators, that satisfy the commutation
relations (4.19).

To label the states of the different representations, and justify our previous notation,
let us define the operator

[J2, Ji] = 0, ∀i (J2 is a Casimir operator = multiple of the identity). (4.40)

It is straightforward to see that J2 commutes with the 3 generators,

[J2, Ji] = 0, ∀i. (4.41)

Then one can take J2 and one of the Ji, say Jz, as a CSCO and use their simultaneous
eigenvectors as a basis of the Hilbert space,

J2 |ab〉 ≡ ~2a |ab〉 , Jz |ab〉 ≡ ~b |ab〉 . (4.42)

© www.ugr.es/local/jillana 56



4.4. Representations of angular momentum 57

To determine the possible values of a and b it is useful to define the ladder operatos J±,

J+ ≡ Jx + iJy

J− ≡ Jx − iJy
⇔

Jx ≡ 1
2(J+ + J−)

Jy ≡ − i
2(J+ − J−)

, J†+ = J−. (4.43)

The commutation relations among the operators J2, J+, J−, Jz are easy to derive from
(4.19) and (4.41),

[J+, J−] = 2~Jz (4.44)

[Jz, J±] = ±~J± (4.45)

[J2, J±] = 0. (4.46)

Then

J2 = J2
z + 1

2J+J− + 1
2J−J+ (4.47)

= J2
z − ~Jz + J+J− (4.48)

= J2
z + ~Jz + J−J+. (4.49)

The strategy to find the basis is the following. Take a vector |ab〉 and let the algebra
operators act on it to obtain new (linearly independent) eigenvectors until the whole basis
is obtained.

Notice that if |ab〉 is an eigenvector of J2 with eigenvalue ~2a then J+ |ab〉 is also an
eigenvector with the same eigenvalue:

J2 |ab〉 = ~2a |ab〉
⇒ J2J+ |ab〉 = ([J2, J+] + J+J

2) |ab〉 = J+J
2 |ab〉 = ~2a J+ |ab〉 . (4.50)

And J+ |ab〉 is also an eigenvector of Jz with eigenvalue ~(b+ 1),

Jz |ab〉 = ~b |ab〉
⇒ JzJ+ |ab〉 = ([Jz, J+] + J+Jz) |ab〉 = (~J+ + J+Jz) |ab〉 = ~(b+ 1) J+ |ab〉 . (4.51)

Therefore,

J+ |ab〉 ∝ |a b+ 1〉 . (4.52)

The operator J+ is called the ascending operator because it provides vectors of higher Jz.
Applying successively J+,

|ab〉 J+−−→ |a b+ 1〉 J+−−→ |a b+ 2〉 . . . J+−−→ |a bmax〉 . (4.53)

There is a last one for which

J+ |a bmax〉 = 0 (4.54)

or otherwise we would get an infinite-dimensional Hilbert space (and systems do not have
infinite Jz). Analogously, we can act on |ab〉 with J− (descending operator) and get

|ab〉 J−−−→ |a b− 1〉 J−−−→ |a b− 2〉 . . . J−−−→ |a bmin〉 (4.55)

with

J− |a bmin〉 = 0. (4.56)
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All the basis vectors,

{|a bmax〉 , |a bmax − 1〉 , . . . , |ab〉 , . . . , |a bmin + 1〉 , |a bmin〉} (4.57)

are eigenvectors of J2 with the same eigenvalue ~2a. Let us see that a is related to bmax

and bmax = −bmin. First notice that

J2 |a bmax〉 = (J2
z + ~Jz +���J−J+) |a bmax〉 = ~2bmax(bmax + 1) |a bmax〉 (4.58)

and remember that every |ab〉 is an eigenvector of J2 with the same eigenvalue. Then it is
convenient to change the notation and call

a = bmax(bmax + 1) ≡ j(j + 1)
b ≡ m

|ab〉 ≡ |jm〉

 ⇒
J2 |jm〉 = ~2j(j + 1) |jm〉
Jz |jm〉 = ~m |jm〉

(4.59)

and

|J± |jm〉 |2 = 〈jm| J∓J± |jm〉 = 〈jm| (J2 − J2
z ∓ ~Jz) |jm〉

= ~2[j(j + 1)−m(m± 1)]

⇒ J± |jm〉 = ~
√
j(j + 1)−m(m± 1) |j m± 1〉 . (4.60)

where we have used 〈jm|jm〉 = 1 and taken the Condon and Shortley phase convention
(later defined in general). We have defined bmax = j and then J+ |jj〉 = 0. Let us now
define bmin = l. Then J− |jl〉 = 0 and

j(j + 1)− l(l − 1) = 0 ⇒ l = −j. (4.61)

As a consequence, the basis of the Hilbert space Hj is

{|jj〉 , |j j − 1〉 , . . . , |jm〉 , . . . , |j − j + 1〉 , |j − j〉}. (4.62)

What are the possible values of j? We go from |jj〉 to |j − j〉 through jumps of one unit.
Therefore, the difference between j and −j must be a natural number n (number of jumps),

j − (−j) = 2j = n = 0, 1, 2, 3, . . . ⇒ j =
n

2
= 0, 1

2 , 1,
3
2 , . . . (4.63)

and the dimension of Hj is n + 1 = 2j + 1. This way we have found the Hilbert spaces
describing the possible systems of a given angular momentum, whose bases are

Hj=0 : {|00〉}, (4.64)

Hj=
1
2 : {

∣∣1
2

1
2

〉
,
∣∣1

2 −
1
2

〉
}, (4.65)

Hj=1 : {|11〉 , |10〉 , |1 − 1〉}, (4.66)

Hj=
3
2 : {

∣∣3
2

3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
}, etc. (4.67)

Given a value of j, from the action of Jz, J+ and J− on the basis vectors {|jm〉} one can
obtain the matrices that represent the Ji, using (4.59) and (4.60). For example, the 4× 4
matrices of the j = 3

2 representation are

Jz (
∣∣3

2
3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
)
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= (
∣∣3

2
3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
) ~


3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2

 (4.68)

J+ (
∣∣3

2 ,
3
2

〉
,
∣∣3

2 ,
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
)

= (
∣∣3

2
3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
) ~


0
√

3 0 0
0 0 2 0

0 0 0
√

3
0 0 0 0

 (4.69)

J− (
∣∣3

2
3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
)

= (
∣∣3

2
3
2

〉
,
∣∣3

2
1
2

〉
,
∣∣3

2 −
1
2

〉
,
∣∣3

2 −
3
2

〉
) ~


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0

 (4.70)

that implies

Jx
.
= 1

2(J+ + J−) =
~
2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 (4.71)

Jy
.
= − i

2(J+ − J−) = i
~
2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0

 (4.72)

Jz
.
= ~


3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2

 . (4.73)

These are irreducible representations of the generators (there is no basis where these matri-
ces can be simultaneously reduced into smaller diagonal blocks). Taking the tensor product
of two representations, j1 and j2, one can obtain another (reducible) representation of a
higher dimension, (2j1 + 1)(2j2 + 1),

Hj1 : {|j1m1〉}, Hj2 : {|j2m2〉}, (4.74)

that contains (is the direct sum of) irreducible representations of spin j

H = Hj1 ⊗Hj2 =
⊕
j

Hj with j = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2. (4.75)
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Then

Jx,y,z = where
j1+j2∑

j=|j1−j2|

2j + 1 = (2j1 + 1)(2j2 + 1).

(4.76)

The basis vectors of the invariant subspaces with well defined j , |jm〉, do not have well
defined j1 and j2 in general, but are combinations (entangled states) of the direct product
basis vectors |j1m1〉 |j2m2〉 (see §4.7). For example (as we will see in Eqs. (4.127)–(4.130)):

Hj=
1
2 ⊗Hj=

1
2 = Hj=0 ⊕Hj=1

Hj=
1
2 ⊗Hj=

1
2 : {|+〉 |+〉 , |+〉 |−〉 , |−〉 |+〉 , |−〉 |−〉} (4.77)

Hj=0 : |0 0〉 =
1√
2

(|+〉 |−〉 − |−〉 |+〉) (4.78)

Hj=1 :


|1 1〉 = |+〉 |+〉
|1 0〉 =

1√
2

(|+〉 |−〉+ |−〉 |+〉)

|1 − 1〉 = |−〉 |−〉

(4.79)

with |+〉 ≡
∣∣1

2
1
2

〉
and |−〉 ≡

∣∣1
2 −

1
2

〉
.

Once you know the spin j representation of the angular momentum generators, the
rotation matrices of the rotation operators R(α, β, γ) in the basis {|jm〉} follow by Taylor
expanding the exponential of generator Jy,

c

Dj
m′m(α, β, γ) =

〈
jm′

∣∣ e− i
~Jzαe−

i
~Jyβe−

i
~Jzγ |jm〉

= e−im′α
〈
jm′

∣∣ e− i
~Jyβ |jm〉 e−imγ ≡ e−i(m′α+mγ)djm′m(β). (4.80)

4.5 Spin and orbital angular momentum

In the Stern-Gerlach experiment we have seen that there are systems whose orbital angular
momentum ~L is zero but have a non vanishing angular momentum, that we call spin ~S. The
spin would be analogous to the intrinsic angular momentum of a pointlike particle rotating
around an inner axis (classically this has no sense). But there are quantum systems that
behave this way: electrons (spin 1

2), photons (spin 1), gravitons (spin 2), etc.

We have seen that the group of rotations admits representations of j = 0, 1
2 , 1,

3
2 , 2, . . . .

However the orbital wave functions must be invariant under rotations of 2π radians. As
a consequence, the orbital angular momentum is restricted to representations of integer
` = 0, 1, 2, . . . , whereas spin representations may have s = 0, 1

2 , 1,
3
2 , 2, . . . .

cThis is not so simple for j > 1. Nevertheless there are other ways to obtain djm′m(θ) that lead to
Wigner’s formula (vid. book by Sakurai, p. 223). These matrices are collected in tables for low j in many
books.
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4.6. Spherical harmonics 61

In general, the total angular momentum of the system is given by the sum of the orbital
and the spin angular momenta,

~J = ~L+ ~S. (4.81)

In section §4.7 we will see how to obtain the irreducible representations contained in the
addition of whatever two angular momentum representations j1 and j2.

4.6 Spherical harmonics

Let us consider a spinless system with spherical symmetry. Then all Li commute with the
Hamiltonian H (the rotated state of an energy eigenstate will have the same energy):

H |n〉 = En |n〉 , [Li, H] = 0 ⇒ H(Li |n〉) = LiH |n〉 = En(Li |n〉). (4.82)

As a consequence, H, L2 and Lz have a common set of eigenstates,

H |n`m〉 = En |n`m〉 (4.83)

L2 |n`m〉 = ~2 `(`+ 1) |n`m〉 (4.84)

Lz |n`m〉 = ~m |n`m〉 . (4.85)

It is convenient to write the wave function ψ(~x) in spherical coordinates,

x = r sin θ cosϕ
y = r sin θ sinϕ
z = r cos θ

〈~x|ψ〉 = ψ(~x) = ψ(r, θ, ϕ). (4.86)

The orbital angular momentum operators in spherical coordinates are [exercise]:

Lx
.
= −i~

(
y
∂

∂z
− z ∂

∂y

)
= i~

(
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
(4.87)

Ly
.
= −i~

(
z
∂

∂x
− x ∂

∂z

)
= −i~

(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
(4.88)

Lz
.
= −i~

(
x
∂

∂y
− y ∂

∂x

)
= −i~

∂

∂ϕ
(4.89)

L2 .
= −~2

[
1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
. (4.90)

They do not depend on the radial coordinate r. On the other hand [exercise],

P 2 .
= −~2∇2 = −~2

(
∂2

∂r2
+

2

r

∂

∂r
− L2

~2r2

)
. (4.91)

Hence, [Li, P
2] = 0 and the (conservative) system is described by a central potential V (r),

0 = [Li, H] = [Li, V ] ⇔ V = V (r). (4.92)

Then the wave function can be separated in a radial part and an angular part,

〈~x|n`m〉 = Rn`(r)Y
m
` (θ, ϕ) (4.93)
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where both parts are normalized,

〈ψ |ψ〉 =

ˆ
d3x |ψ(~x)|2 =

ˆ ∞
0

dr r2

ˆ 1

−1
d cos θ

ˆ 2π

0
dϕ |ψ(r, θ, ϕ)|2 = 1

⇒
ˆ ∞

0
dr r2|Rn`(r)|2 = 1,

ˆ 1

−1
d cos θ

ˆ 2π

0
dϕ |Y m

` (θ, ϕ)|2 = 1. (4.94)

The spherical harmonics are the eigenfunctions of angular momentum in the position rep-
resentation

−i~
∂

∂ϕ
Y m
` (θ, ϕ) = ~mY m

` (θ, ϕ) (4.95)

−~2

[
1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
Y m
` (θ, ϕ) = ~2`(`+ 1)Y m

` (θ, ϕ) (4.96)

satisfying the orthonormality relations

ˆ 1

−1
d cos θ

ˆ 2π

0
dϕY m∗

` (θ, ϕ)Y m′
`′ (θ, ϕ) = δ``′δmm′ . (4.97)

They can be found in tables. If the radial dependence of the wave function factors out,

ψ(r, θ, ϕ) = (〈r| 〈θϕ|) |ψ〉 = f(r) Ψ(θ, ϕ) (4.98)

then the angular dependence can be expanded in spherical harmonics that give the angular
momentum of the system,

Ψ(θ, ϕ) =

∞∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, ϕ) (4.99)

with

cm` =

ˆ 1

−1
d cos θ

ˆ 2π

0
dϕY m∗

` (θ, ϕ) Ψ(θ, ϕ) (4.100)

where |cm` |2 is the probability to find the system in the state of angular momentum `,m.
And the probability density to find the system along the direction (θ, ϕ) is

ˆ ∞
0

dr r2 |ψ(r, θ, ϕ)|2 = |Ψ(θ, ϕ)|2. (4.101)

If the (spinless) system has a well defined orbital angular momentum then the probability
density along the direction (θ, ϕ) is just

|Y m
` (θ, ϕ)|2. (4.102)

4.7 Addition of angular momenta

Suppose we have two spin 1
2 particles bound together; for example, two quarks in a meson

(q̄q). If the orbital angular momentum ~L of the system is zero (` = 0), what is the spin of
the meson?
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4.7. Addition of angular momenta 63

Analogously, suppose we have a single particle of spin s turning in a central potential
with orbital angular momentum `. What is the Hilbert space associated to the total angular
momentum of the particle?

The formalism in both cases is the same. As we have seen in a previous chapter, when
we compose two quantum systems the resulting Hilbert space is the direct product (or
tensor product) of the Hilbert spaces of the two subsystems, H = H1 ⊗H2.

Consider ~J1 and ~J2 the angular momentum operators acting on Hj1 and Hj2 , respec-
tively. Then their action on H = Hj1 ⊗Hj2 is given by

~J1 ⊗ I ≡ ~J1 and I ⊗ ~J2 ≡ ~J2 (4.103)

(abusing of the notation) and the total angular momentum is

~J = ~J1 ⊗ I + I ⊗ ~J2 ≡ ~J1 + ~J2. (4.104)

Notice that, since ~J1 and ~J2 act on different spaces,

[ ~J1, ~J2] = 0 (4.105)

and verify separately the generator algebra,

[Jpi, Jpj ] = i~εijkJpk (p = 1, 2) [Ji, Jj ] = i~εijkJk. (4.106)

The (2j1 + 1)(2j2 + 1) dimensional representation of ~J on H is reducible, in general, and
in the direct product basis {|j1m1; j2m2〉 ≡ |j1m1〉 |j2m2〉} can be obtained from

~J |j1m1; j2m2〉 = ( ~J1 |j1m1〉) |j2m2〉+ |j1m1〉 ( ~J2 |j2m2〉). (4.107)

We would like to find its irreducible components, going to a basis where the block struc-
ture is manifest. Every irreducible prepresentation (irrep) of ~J is labeled by an eigenvalue
of J2, and the corresponding states by the eigenvalues of Jz, where

J2 = J2
1 ⊗ I + I ⊗ J2

2 + ( ~J1 ⊗ I) · (I ⊗ ~J2) + (I ⊗ ~J2) · ( ~J1 ⊗ I)

= J2
1 ⊗ I + I ⊗ J2

2 + 2
∑

i=x,y,z

J1i ⊗ J2i ≡ J2
1 + J2

2 + 2 ~J1 · ~J2 (4.108)

Jz = J1z ⊗ I + I ⊗ J2z ≡ ~J1z + ~J2z. (4.109)

Notice that the operators J2
1 , J

2
2 , J

2, Jz commute with each other. However, [J2, J1z] 6=
0 and [J2, J2z] 6= 0. Therefore, apart from the original basis, eigenstates of J2

1 , J
2
2 , J1z, J2z

(|j1m1; j2m2〉), we can define another basis of eigenstates of J2
1 , J

2
2 , J

2, Jz (|j1j2jm〉). Given
j1 and j2, both bases have the same number of vectors (2j1 + 1)(2j2 + 1), that can be
expressed one in terms of the other,

|j1j2jm〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1; j2m2〉 〈j1m1; j2m2 |j1j2jm〉 . (4.110)

The elements of the change of basis matrix

〈j1m1; j2m2 |jm〉 (4.111)

are called Clebsch-Gordan coefficients (CGC).
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Clearly, 〈j1m1; j2m2 |j1j2jm〉 = 0 if m 6= m1 +m2 since

0 = 〈j1m1; j2m2| 0 |jm〉
= 〈j1m1; j2m2| (Jz − J1z − J2z) |jm〉
= ~(m−m1 −m2) 〈j1m1; j2m2 |jm〉 . (4.112)

Hence, m = m1 +m2 and the maximum value of m is

mmax = mmax
1 +mmax

2 = j1 + j2 ⇒ jmax = j1 + j2. (4.113)

Then from (4.110) the “maximum weight” state (j = j1 + j2, m = j1 + j2) is

|(j1 + j2) (j1 + j2)〉 = |j1j1; j2j2〉 〈j1j1; j2j2 |(j1 + j2) (j1 + j2)〉 (4.114)

since only m1 = j1 and m2 = j2 contribute. In the Condon and Shortley phase convention,

〈j1j1; j2j2 |(j1 + j2) (j1 + j2)〉 = 1. (4.115)

Acting on this state with J− we generate the 2(j1 + j2) + 1 states of the irrep j = j1 + j2.
Likewise one proceeds starting with the state |j1j2 (j1 + j2 − 1) (j1 + j2 − 1)〉, that is fixed
up to a phase because it must be orthogonal to |j1j2 (j1 + j2) (j1 + j2 − 1)〉 and has unit
norm. And then we repeat the process for the rest of the j until j = |j1 − j2|. Let us see
this with an example: j1 = 1 and j2 = 1

2 .

• We start by ∣∣11
2

3
2

3
2

〉
= |11〉

∣∣1
2

1
2

〉
. (4.116)

• Apply J− to this state:

J−
∣∣11

2
3
2

3
2

〉
= (J− |11〉)

∣∣1
2

1
2

〉
+ |11〉 (J−

∣∣1
2

1
2

〉
)

√
3
∣∣11

2
3
2

1
2

〉
=
√

2 |10〉
∣∣1

2
1
2

〉
+ |11〉

∣∣1
2 −

1
2

〉
⇒

∣∣11
2

3
2

1
2

〉
=

√
2

3
|10〉

∣∣1
2

1
2

〉
+

1√
3
|11〉

∣∣1
2 −

1
2

〉
. (4.117)

• Apply to J− succesively to the states we find:

J−
∣∣11

2
3
2

1
2

〉
=

√
2

3
(J− |10〉)

∣∣1
2

1
2

〉
+

√
2

3
|10〉 (J−

∣∣1
2

1
2

〉
) +

1√
3

(J− |11〉)
∣∣1

2 −
1
2

〉
2
∣∣11

2
3
2 −

1
2

〉
=

2√
3
|1− 1〉

∣∣1
2

1
2

〉
+

√
2

3
|10〉

∣∣1
2 −

1
2

〉
+

√
2

3
|10〉

∣∣1
2 −

1
2

〉
=

2√
3
|1− 1〉

∣∣1
2

1
2

〉
+ 2

√
2

3
|10〉

∣∣1
2 −

1
2

〉
⇒

∣∣11
2

3
2 −

1
2

〉
=

1√
3
|1− 1〉

∣∣1
2

1
2

〉
+

√
2

3
|10〉

∣∣1
2 −

1
2

〉
. (4.118)

J−
∣∣11

2
3
2 −

1
2

〉
=

1√
3
|1− 1〉 (J−

∣∣1
2

1
2

〉
) +

√
2

3
(J− |10〉)

∣∣1
2 −

1
2

〉
√

3
∣∣11

2
3
2 −

3
2

〉
=

1√
3
|1− 1〉

∣∣1
2 −

1
2

〉
+

2√
3
|1− 1〉

∣∣1
2 −

1
2

〉
=
√

3 |1− 1〉
∣∣1

2 −
1
2

〉
⇒

∣∣11
2

3
2 −

3
2

〉
= |1− 1〉

∣∣1
2 −

1
2

〉
. (4.119)
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• Now consider the state
∣∣11

2
1
2

1
2

〉
. It must be a unit vector orthogonal to

∣∣11
2

3
2

1
2

〉
.

Then ∣∣11
2

1
2

1
2

〉
= − 1√

3
|10〉

∣∣1
2

1
2

〉
+

√
2

3
|11〉

∣∣1
2 −

1
2

〉
(4.120)

in the phase convention of Condon and Shortley, 〈j1j1; j2 j − j1 |jj〉 ≥ 0.

• Apply J− to the previous state:

J−
∣∣11

2
1
2

1
2

〉
= − 1√

3
(J− |10〉)

∣∣1
2

1
2

〉
− 1√

3
|10〉 (J−

∣∣1
2

1
2

〉
) +

√
2

3
(J− |11〉)

∣∣1
2 −

1
2

〉
∣∣11

2
1
2 −

1
2

〉
= −

√
2

3
|1− 1〉

∣∣1
2

1
2

〉
− 1√

3
|10〉

∣∣1
2 −

1
2

〉
+

2√
3
|10〉

∣∣1
2 −

1
2

〉
⇒

∣∣11
2

1
2 −

1
2

〉
= −

√
2

3
|1− 1〉

∣∣1
2

1
2

〉
+

1√
3
|10〉

∣∣1
2 −

1
2

〉
. (4.121)

With this procedure we can read the CGC by taking the scalar products

〈j1m1; j2m2 |jm〉 = (〈j1m1| 〈j2m2|) |jm〉 . (4.122)

For a few values of j1 and j2 they are collected in tables of the form

j1 ⊗ j2
j
m

j
m

. . .

. . .

m1 m2

m1 m2 CGC
...

...

In the previous example, we have found (empty entries are zero)

1⊗ 1
2

3
2

3
2

3
2

1
2

1
2

1
2

3
2

−1
2

1
2

−1
2

3
2

−3
2

1 1
2 1

1 −1
2

1√
3

√
2
3

0 1
2

√
2
3 − 1√

3

0 −1
2

√
2
3

1√
3

−1 1
2

1√
3
−
√

2
3

−1 −1
2 1

Analogously, check that for j1 = j2 = 1
2 one obtains (as we had anticipated):∣∣1

2
1
2 11

〉
=
∣∣1

2
1
2

〉 ∣∣1
2

1
2

〉
(4.123)∣∣1

2
1
2 10

〉
=

1√
2

∣∣1
2 −

1
2

〉 ∣∣1
2

1
2

〉
+

1√
2

∣∣1
2

1
2

〉 ∣∣1
2 −

1
2

〉
(4.124)∣∣1

2
1
2 1− 1

〉
=
∣∣1

2 −
1
2

〉 ∣∣1
2 −

1
2

〉
(4.125)
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∣∣1
2

1
2 00

〉
= − 1√

2

∣∣1
2 −

1
2

〉 ∣∣1
2

1
2

〉
+

1√
2

∣∣1
2

1
2

〉 ∣∣1
2 −

1
2

〉
(4.126)

or in a simplified notation,

|11〉 = |+〉 |+〉 (4.127)

|10〉 =
1√
2

(|+〉 |−〉+ |−〉 |+〉) (4.128)

|1− 1〉 = |−〉 |−〉 (4.129)

|00〉 =
1√
2

(|+〉 |−〉 − |−〉 |+〉) (4.130)

and hence

1
2 ⊗

1
2

1

1

1

0

0

0

0

−1

1
2

1
2 1

1
2 −1

2
1√
2

1√
2

−1
2

1
2

1√
2
− 1√

2

−1
2 −1

2 1

We can now explore the physical consequences of this formalism applying it to the two
examples at the beginning of the section.

Consider the two spin 1
2 quarks composing a meson with ` = 0. Suppose they are in a

state of total spin |sm〉 = |10〉. This is an entangled state where the individual spin states
of each quark

(
|+〉 ≡

∣∣1
2

1
2

〉
, |−〉 ≡

∣∣1
2 −

1
2

〉)
are not well defined,

|ψ〉 = |sm〉 |10〉 =
1√
2

(|+〉 |−〉+ |−〉 |+〉). (4.131)

If we measure the spin of the first quark, what is the probability to obtain, for instance,
S1z = +~

2? And what is the state |ψ′〉 of the system after the measurement? Following the
postulates of QM,

PS1z ,+ = |+〉〈+| ⊗ Is2 PS1z ,+ |ψ〉 =
1√
2
|+〉 |−〉 (4.132)

p1+ = 〈ψ|PS1z ,+ |ψ〉 =
1

2
‖PS1z ,+ |ψ〉 ‖ =

√
〈ψ|PS1z ,+ |ψ〉 (4.133)

|ψ〉 →
∣∣ψ′〉 =

PS1z ,+ |ψ〉
‖PS1z ,+ |ψ〉 ‖

= |+〉 |−〉 . (4.134)

Consider now the example of a spin s = 1
2 particle bound in a central potential with

` = 1. Suppose it is in the following state of total angular momentum j,

|ψ〉 = |jm〉 =
∣∣1

2 −
1
2

〉
=

1√
3
|10〉 |−〉 −

√
2

3
|1− 1〉 |+〉 . (4.135)

Since the orbital angular momentum is well defined, the radial part of the wave function
is separable. In contrast, spatial direction and spin can be entangled, as happens here,

〈rθϕ|ψ〉 = f(r)
〈
θϕ
∣∣1

2 −
1
2

〉
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= f(r)

{
1√
3
〈θϕ|10〉 |−〉 −

√
2

3
〈θϕ|1− 1〉 |+〉

}

= f(r)

{
1√
3
Y 0

1 (θ, ϕ) |−〉 −
√

2

3
Y −1

1 (θ, ϕ) |+〉

}
. (4.136)

What is the angular distribution of the particle, i.e. the probability density to find it along
the direction (θ, ϕ)? Since the radial part factors out and it is normalized,

Pθϕ = |θϕ〉〈θϕ| ⊗ Ispin (4.137)

Pθϕ
∣∣1

2 −
1
2

〉
= |θϕ〉

[
1√
3
Y 0

1 (θ, ϕ) |−〉 −
√

2

3
Y −1

1 (θ, ϕ) |+〉

]
(4.138)

pθϕ =
〈

1
2 −

1
2

∣∣Pθϕ ∣∣12 − 1
2

〉
=

1

3
|Y 0

1 (θ, ϕ)|2 +
2

3
|Y −1

1 (θ, ϕ)|2. (4.139)

What is the probability (density) to find particles along the direction (θ, ϕ) with Sz = +~
2?

PSz ,+ = |θϕ〉〈θϕ| ⊗ |+〉〈+| (4.140)

PSz ,+
∣∣1

2 −
1
2

〉
= − |θϕ〉 |+〉

√
2

3
Y −1

1 (θ, ϕ) (4.141)

p+ =
〈

1
2 −

1
2

∣∣PSz ,+ ∣∣12 − 1
2

〉
=

2

3
|Y −1

1 (θ, ϕ)|2. (4.142)

But if one filters the particles along the direction (θ, ϕ), what is the probability that they
have Sz = +~

2? After the measurement of (θ, ϕ) the state |ψ〉 (ignore the radial part)
collapses to

∣∣ψ′〉 =
Pθϕ |ψ〉
‖Pθϕ |ψ〉 ‖

= |θϕ〉
1√
3
Y 0

1 (θ, ϕ) |−〉 −
√

2
3Y
−1

1 (θ, ϕ) |+〉√
1
3 |Y

0
1 (θ, ϕ)|2 + 2

3 |Y
−1

1 (θ, ϕ)|2
(4.143)

The probability to find Sz = +~
2 on this state is given by

PSz ,+ = Iorbital ⊗ |+〉〈+| (4.144)

PSz ,+
∣∣ψ′〉 = −

√
2
3Y
−1

1 (θ, ϕ) |θϕ〉 |+〉√
1
3 |Y

0
1 (θ, ϕ)|2 + 2

3 |Y
−1

1 (θ, ϕ)|2
(4.145)

p =
〈
ψ′
∣∣PSz ,+ ∣∣ψ′〉 =

2
3 |Y

−1
1 (θ, ϕ)|2

1
3 |Y

0
1 (θ, ϕ)|2 + 2

3 |Y
−1

1 (θ, ϕ)|2
. (4.146)

As a final comment, notice that the case of two particles of masses m1 and m2 and
spins ~S1 and ~S2 interacting with each other via a (spin-independent) potential V (|~x1−~x2|)
can be reduced to one particle of mass m and spin ~S = ~S1 + ~S2 bound in a central potential
V (r), with

m =
m1m2

M
, M = m1 +m2, ~x = ~x1 − ~x2, ~xCM =

m1~x1 +m2~x2

M
. (4.147)

In fact, the system is equivalent to one particle of mass M at the center of mass of the
system moving with constant momentum ~pCM = M~̇xCM and one particle of mass m with
momentum ~p = m~̇x,

H =
~p2

1

2m1
+

~p2
2

2m2
+ V (|~x1 − ~x2|) =

~p2
CM

2M
+

~p2

2m
+ V (r). (4.148)
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Hence, in the center of mass frame,

H =
~p2

2m
+ V (r). (4.149)

4.8 Vector operators

We have already introduced several operators that are vectors, like ~X, ~P , ~L, ~S, . . . , but
we have not yet discussed how they transform under rotations.

In classical physics, a vector ~V is a quantity with 3 components that, by definition,
transform under a rotation R like

Vi → RijVj . (4.150)

It is reasonable to demand that the expectation value of a vector operator ~V in QM
transforms like a classical vector under rotations,

|ψ〉 → D(R) |ψ〉 (4.151)

〈ψ|Vi |ψ〉 → 〈ψ|D†(R)ViD(R) |ψ〉 = Rij 〈ψ|Vj |ψ〉 . (4.152)

Since this must be true for any state |ψ〉, this leads to the operator equation

D†(R)ViD(R) = RijVj (4.153)

where R is a 3× 3 matrix while D(R) and Vi are operators acting on our Hilbert space of
arbitrary dimension.

For an infinitesimal rotation δφ around an axis n̂,

D(R) = I − i

~
δφ n̂ · ~J, (4.154)

the opeator equation above reads

Vi −
i

~
δφ[Vi, n̂ · ~J ] = Rij(n̂; δφ)Vj . (4.155)

And remembering that

R(x̂; δφ) =

1 0 0
0 1 −δφ
0 δφ 1

 R(ŷ; δφ) =

 1 0 δφ
0 1 0
−δφ 0 1

 R(ẑ; δφ) =

 1 −δφ 0
δφ 1 0
0 0 1


(4.156)

one easily gets that relation (4.152) is equivalent to

[Vi, Jj ] = i~εijkVk. (4.157)

This can be taken as a defining property of a vector operator. Check that in fact this
property is fulfilled by the vector operators we have introduced so far, like ~J , ~X, ~P :

Vi = Ji : [Ji, Jj ] = i~εijkJk (4.158)

Vi = Xi : [Xi, Lj ] = i~εijkXk (4.159)

Vi = Pi : [Pi, Lj ] = i~εijkPk. (4.160)
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4.9 Tensor operators

A Cartesian tensor Ti1i2···ir is a generalization of a vector Vi, that under rotations R trans-
forms as

Ti1i2···ir → Ri1j1Ri2j2 · · ·RirjrTj1j2···jr (4.161)

The number of indices r is the rank of the tensor. A scalar is a tensor of rank 0 (no indices;
it does not transform). A vector is a tensor of rank 1. A rank 2 tensor is an element
(vector) of the direct product of a vector space with itself (another vector space).

The trouble with Cartesian tensors is that, in general, they are reducible representations
of the group of rotations. The properties of the tensors are more apparent in the basis of
spherical tensors (vectors with well defined angular momentum).

For instance, take the basis {|1m〉 = |11〉 , |10〉 , |1− 1〉} of R3 ∼ Hj=1. The space of
rank 2 tensors form a reducible representation space that can be written as a direct sum of
subspaces with well defined angular momentum j:

Hj=1 ⊗Hj=1 = Hj=0 ⊕Hj=1 ⊕Hj=2 (4.162)

Under rotations, the tensors of each subspace Hj transform to tensors within the same
subspace. They are irreducible representations. This means that the 9 components Tij of
a rank 2 Cartesian tensor can be decomposed into 3 types of irreducible spherical tensors
T kq with q = −k, . . . , k that have well defined properties under rotations:

Tij = Tδij +Aij + Sij (4.163)

T = 1
3

∑
i

Tii (proportional to trace of the tensor) (4.164)

Aij = 1
2(Tij − Tji) (antisymmetric tensor) (4.165)

Sij = 1
2(Tij + Tji)− Tδij (traceless symmetric tensor) (4.166)

T = T 0
0 , Aij ↔ T 1

q , Sij ↔ T 2
q . (4.167)

Notice that, in fact, 9 = 3× 3 = 1 + 3 + 5.

The spherical tensors transform under a rotation R like

T kq →
∑
q′

T kq′ D
k(R)q′q (4.168)

since

|jm〉 → D(R) |jm〉
j∑

m′=−j

∣∣jm′〉 〈jm′∣∣jm〉→ j∑
m′=−j

∣∣jm′〉〈jm′∣∣D(R) |jm〉

|jm〉 →
j∑

m′=−j

∣∣jm′〉Dj(R)m′m

|jm〉 →
j∑

m′=−j

∣∣jm′〉Dj(R)m′m (4.169)
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⇔ Dj(R)m′m =
〈
jm′

∣∣D(R) |jm〉 . (4.170)

As we did before for vector operators, we demand that the expectation value of spherical
tensor operators transforms like a classical tensor,

|ψ〉 → D(R) |ψ〉

〈ψ|T kq |ψ〉 → 〈ψ|D†(R)T kq D(R) |ψ〉 =
k∑

q′=−k
〈ψ|T kq′ |ψ〉Dk(R)q′q (4.171)

⇒ D†(R)T kq D(R) =

k∑
q′=−k

T kq′ D
k(R)q′q (4.172)

where every T kq is an operator (n-dimensional matrix) acting on our n-dimensional Hilbert

space, and the right hand side is a linear combination of the (2k + 1) matrices T kq′ with

coefficients Dk(R)q′q.

Taking now an infinitesimal rotation (4.154) we get

[n̂ · ~J, T kq ] =
k∑

q′=−k
T kq′
〈
kq′
∣∣ n̂ · ~J |kq〉 . (4.173)

Therefore, the relation (4.172) is equivalent to

[Jz, T
k
q ] = ~q T kq (4.174)

[J±, T
k
q ] = ~

√
k(k + 1)− q(q ± 1)T kq±1 (4.175)

that is the defining property of a (irreducible) spherical tensor operator.

4.10 Wigner-Eckart theorem

The matrix elements of spherical tensor operators satisfy

〈α2; j2m2|T kq |α1; j1m1〉 = 〈kq; j1m1 |j2m2〉 〈α2; j2‖T k‖α1; j1〉 (4.176)

where 〈α2; j2‖T k‖α1; j1〉 is a reduced matrix element independent of m1, m2 and q. This
is the Wigner-Eckart theorem.d

This theorem simplifies the calculation of transition amplitudes between different states
because once we know the corresponding matrix element for a given transition we obtain
the rest just by using a CGC. And it also tells us directly which transitions are forbidden
(selection rules).

For example, a trivial case is a transition mediated by a scalar operator,

〈α2; j2m2|T 0
0 |α1; j1m1〉 = 〈00; j1m1 |j2m2〉 〈α2; j2‖T 0‖α1; j1〉

= δj1j2δm1m2〈α2; j2‖T 0‖α1; j1〉. (4.177)

dThe proof is a bit convoluted and can be found in Sakurai’s book [?].
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Chapter 5

Symmetries and conservation laws

5.1 Symmetries in Classical Mechanics

Both in classical and quantum mechanics the information about the dynamics of a physical
system is in the Lagrangian L(xi, ẋi) or the Hamiltonian H(xi, pi). A symmetry of the
system is a group of transformations that leaves H invariant. There is a connection between
symmetries and conservation laws: for every symmetry there is a quantity that remains
constant in time (it is conserved). In particular,

• The invariance under spatial translations:

H(xi) = H(xi + δxi) ⇒ ṗi = −∂H
∂xi

= 0 ⇒ pi = const. (5.1)

• The invariance under time translations:

H(t) = H(t+ δt) ⇒ dH

dt
= 0 ⇒ E = const. (5.2)

• The invariance under rotations:

H(~x) = H(R~x) ⇒ ~L = const. (5.3)

5.2 Symmetries in Quantum Mechanics

In QM most of the symmetries are associated to unitary operators acting on the Hilbert
space. We have already seen a few examples:

• Spatial translations:

|α〉 → |α̃〉 = T (~x) |α〉 , T (δ~x) = I − i

~
∑
i

δxiPi (5.4)

where the momentum operators Pi are the generators of spatial translations.

• Time translations:

|α〉 → |α̃〉 = U(t, t0) |α〉 , U(t0 + δt0, t) = I − i

~
δtH (5.5)

where the Hamiltonian operator H is the generator of time translations.
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• Rotations:

|α〉 → |α̃〉 = Rn̂(φ) |α〉 , Rn̂(δφ) = I − i

~
δφ
∑
i

niJi (5.6)

where the angular momentum operators Ji are the generators of rotations.

All the unitary transformations S (with S−1 = S†) we have seen so far are continuous.
They are generated by (a set of) self-adjoint operators G (group generators) and specified
by a (a set of) parameters x,

S(δx) = I − iδxG (5.7)

S−1(δx) = S(−δx) = S†(δx) ⇒ I + iδxG = I + iδxG† ⇒ G = G†. (5.8)

We say that S is a symmetry of the system if it commutes with the Hamiltonian H,

[S,H] = 0 ⇒ SH = HS or SHS† = H. (5.9)

This implies that |ψ〉 and
∣∣∣ψ̃〉 = S |ψ〉 have the same energy:

〈H〉ψ = 〈ψ|H |ψ〉 = 〈ψ|S†S H S†S |ψ〉 =
〈
ψ̃
∣∣∣H ∣∣∣ψ̃〉 = 〈H〉ψ̃ (5.10)

and also, for a continuous symmetry,

[S,H] = 0 ⇒ [G,H] = 0 ⇒ d

dt
〈ψ|G |ψ〉 = − i

~
〈ψ| [G,H] |ψ〉 = 0, (5.11)

the generator of a continuous symmetry is a constant of motion.

In general, we also say that any unitary operator is a symmetry even if it does not
commute with H, and its generator is not a constant of motion. We call it a broken
symmetry. And this is extended to any types of symmetries (see below).

Not all symmetries are related to continuous and space-time transformations. In this
chapter we will study two discrete symmetries (parity and time reversal) and an internal
continuous symmetry (isospin).

Unitary transformations (continuous or discrete) statisfy〈
β̃
∣∣∣α̃〉 = 〈β|U †U |α〉 = 〈β |α〉 (5.12)

and hence they preserve the norm of a vector,

〈α̃|α̃〉 = 〈α|α〉 . (5.13)

But the norm is also preserved if we simply impose

|
〈
β̃
∣∣∣α̃〉 | = | 〈β |α〉 |. (5.14)

and this is all we need to declare |alpha〉 → |α̃〉 a symmetry transformation. Actually,
Wigner’s theorem states that any symmetry transformation is represented on the Hilbert
space by a linear and unitary or antilinear and antiunitary transformation. The latter
satisfy 〈

β̃
∣∣∣α̃〉 = 〈β |α〉∗ = 〈α|β〉 . (5.15)
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A transformation Θ

|α〉 → |α̃〉 = Θ |α〉 , |β〉 →
∣∣∣β̃〉 = Θ |β〉 (5.16)

is said to be antiunitary if 〈
β̃
∣∣∣α̃〉 = 〈β |α〉∗ (5.17)

and antilinear if

Θ(c1 |α〉+ c2 |β〉) = c∗1Θ |α〉+ c∗2Θ |β〉 . (5.18)

An antiunitary operator can be always written as

Θ = UK (5.19)

where U is a unitary operator and K is the operator that takes the complex-conjugate of
any coefficient that multiplies a ket. Then the antilinearity is obvious. Let us prove the
other property:

|α̃〉 = Θ |α〉 = UK
∑
a′

∣∣a′〉 〈a′∣∣α〉 =
∑
a′

〈
a′
∣∣α〉∗ U ∣∣a′〉 . (5.20)

We do not need to define the action on bras nor it is necessary to define Θ†. We simply
take the adjoint relation between kets and bras:∣∣∣β̃〉 = Θ |β〉 =

∑
a′′

〈
a′′
∣∣β〉∗ U ∣∣a′′〉 ⇒

〈
β̃
∣∣∣ =

∑
a′′

〈
a′′
∣∣β〉 〈a′′∣∣U †. (5.21)

Then 〈
β̃
∣∣∣α̃〉 =

∑
a′

∑
a′′

〈
a′′
∣∣β〉 〈a′∣∣α〉∗ 〈a′′∣∣U †U ∣∣a′〉 =

∑
a′

〈
a′
∣∣β〉 〈a′∣∣α〉∗

=
∑
a′

〈
α
∣∣a′〉 〈a′∣∣β〉 = 〈α|β〉 = 〈β |α〉∗ . (5.22)

We will have to introduce an antiunitary operator to define the time reversal symmetry.

An important observation is the relation between symmetry and degeneracy. We have
already seen that a symmetry S commutes with the Hamiltonian. Therefore given an energy
eigenstate |n〉 the states S |n〉 (if they are different to |n〉) are degenerate states with the
same energy. For example, if H is invariant under rotations then [J2, H] = [Ji, H] = 0
then the (2j + 1) states |njm〉 with m = −j, . . . , j have the same energy,

H |njm〉 = En |njm〉 , (5.23)

since

[J±, H] = 0 ⇒ H(J± |njm〉) = J±H |njm〉 = En(J± |njm〉)
⇒ H |nj m± 1〉 = En |nj m± 1〉 . (5.24)

This is the case of an atomic electron bound by a potential V (r) + VLS(r) ~L · ~S. Because
r and ~L · ~S = 1

2(J2−L2− S2) are rotationally invariant, there is a (2j + 1) degeneracy for
each atomic level (fine structure of atomic levels for ` ≥ 1). For a Hydrogen atom (s = 1

2):
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n 2s+1`j

1 2S 1
2

2 2S 1
2

2P 1
2

2P 3
2

3 2S 1
2

2P 1
2

2P 3
2

2D 3
2

2D 5
2

... . . .

5.3 Discrete symmetries

5.3.1 Parity

Rotations and spatial translations are continuous transformations, that can be obtained
by successive infinitesimal transformations (they can be continuously connected with the
identity). Not all symmetries are like this.

In particular, the parity transformation or space inversion Π is defined as an order 2
operation,

Π2 = I ⇒ Π−1 = Π† = Π, (5.25)

that changes the sign of the expectation value of the position operator ~X:

|ψ〉 → Π |ψ〉 (5.26)

〈ψ|Xi |ψ〉 → 〈ψ|ΠXiΠ |ψ〉 = −〈ψ|Xi |ψ〉 ⇒ ΠXiΠ = −Xi. (5.27)

Notice that ΠXi = −XiΠ (they do not commute but anticommute) so they do not have a
common basis of eigenvectors. In fact,

Xi Π |~x〉 = −ΠXi |~x〉 = −Πxi |~x〉 = −xi Π |~x〉 ⇒ Π |~x〉 = ηI |−~x〉 (5.28)

where ηI is the intrinsic parity of the system (state independent), with

Π2 |~x〉 = |~x〉 = η2
I |~x〉 ⇒ ηI = ±1. (5.29)

The linear momentum operator also changes sign under parity,

~P = m
d ~X

dt
⇒ ΠPiΠ = −Pi (5.30)

while the angular momentum ~J (~L or ~S) does not change (by analogy with ~L = ~X × ~P ),

ΠJiΠ = Ji ⇒ [Π, Ji] = 0. (5.31)

Therefore, in contrast to position or linear momentum, angular momentum and parity
have common eigenstates.. Notice that ~X and ~P are vectors but ~J is a pseudovector or
axial-vector. This is consistent with the meaning of a parity transformation, that takes the
system to its mirror image (along the perpendicular direction):

© www.ugr.es/local/jillana 74



5.3. Discrete symmetries 75

What is the parity transform of the wave function in the position representation ψ(~x) =
〈~x|ψ〉 of a system in a state |ψ〉?

〈~x|Π |ψ〉 = ηI 〈−~x|ψ〉 = ηIψ(−~x) ⇒ Πψ(~x) = ηIψ(−~x). (5.32)

Let us examine the eigenstates of Π. Since Π2 = I they verify

Π |ψ〉 = η |ψ〉 with η = ±1 (parity of the state) (5.33)

and their wave function is

〈~x|Π |ψ〉 =

{
η 〈~x|ψ〉 = ηψ(~x)

ηI 〈−~x|ψ〉 = ηIψ(−~x)
⇒ ψ(−~x) = ηψψ(~x) with η = ηIηψ.

(5.34)

Therefore the eigenstates of Π in position representation are of two types:

• Even or symmetric wave functions (ηψ = +1): ψ(−~x) = ψ(~x).

• Odd or antisymmetric wave functions (ηψ = −1): ψ(−~x) = −ψ(~x).

Clearly, the plane waves ψ(~x) = 〈~x|~p〉 =
1

(2π~)3/2
e

i
~ ~p·~x do not have well defined parity, but

spherical harmonics do:

~x→ −~x :
r → r
θ → π − θ
ϕ→ ϕ+ π

 ⇒ Y m
` (θ, ϕ)→ (−1)`Y m

` (θ, ϕ). (5.35)

Therefore,

Π |`m〉 = (−1)` |`m〉 . (5.36)

This is in agreement with [Π, Ji] = 0: the orbital angular momentum eigenstates are also
eigenstates of parity.

Recall that for a system with intrinsic parity ηI , in a state |ψ〉 whose wave function has
a well defined parity ηψ (parity eigenstate), the total parity of that state is η,

η = ηIηψ, Π |ψ〉 = η |ψ〉 . (5.37)

If [Π, H] = 0 then the total parity η is conserved, and the energy eigenstates are also states
with well defined parity η.

Remember that a system of two particles with masses m1 and m2 is equivalent to one
particle of reduced mass m = m1m2/(m1 + m2) submitted to a central potential V (|~x|)
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where ~x is the position of one of the two particles in their center of mass frame. Then the
composite system will have an intrinsic parity

ηI = η1η2(−1)` (5.38)

where η1 and η2 are the intrinsic parities of each particle and ` the orbital angular momen-
tum of the reduced system.

One usually defines the spin J of the system (its total angular momentum at rest) and
the intrinsic parity P , the so-called spin-parity JP . The conservation of parity in a reaction
(scattering or decay) depends on the type of mediating interaction:

• Strong interactions do not violate parity.

• Electromagnetic interactions do not violate parity.

• Weak interactions violate parity.

• Gravitational interactions do not violate parity.

For example, we observe that nuclei with spin-parity JP decay very fast (strongly) into an
α particle (4He) and a lighter nucleus, both of 0+, preserving parity:

JP → 0+ + 0+ initial parity: P, final parity: (−1)` = (−1)j . (5.39)

However, sometimes we also observe (rare) weak decays changing parity, like:

16O (2−)→ 12C (0+) + α (0+)

initial parity: − 1, final parity: (−1)` = (−1)j = (−1)2 = +1. (5.40)

5.3.2 Time reversal

Time reversal changes the direction of the time evolution. Classically, if we have a particle
that describes a trajectory ~x(t), a time reversal transformation would show a particle that
describes the reversed trajectory:

In QM, the time-reversed state

|α̃〉 = Θ |α〉 (5.41)

should be called the motion-reversed state. That is, if |α〉 is a state with well defined
momentum ~p then |α̃〉 is a state with momentum −~p. Likewise, the angular momentum
should be reversed. So, up to a possible complex phase,

Θ |~x〉 = |~x〉 (5.42)

Θ |~p〉 = |−~p〉 (5.43)

Θ |jm〉 = |j −m〉 . (5.44)
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Therefore, if the system is invariant under time-reversal, |α̃〉 = Θ |α〉 ⇒ |α̃(δt)〉 = Θ |α(−δt)〉:

(5.45)

Let us see that the operator Θ must be an antiunitary operator:

|α̃(δt)〉 = (I − i
~δtH) |α̃〉 = (I − i

~δtH)Θ |α〉
= Θ |α(−δt)〉 = Θ(I − i

~(−δt)H) |α〉 , ∀ |α〉

⇒ −iHΘ = ΘiH. (5.46)

If Θ was linear then ΘH = −HΘ and the time-reversed state of an energy eigenstate would
have negative energy:

H |E〉 = E |E〉 ⇒ H Θ |E〉 = −ΘH |E〉 = −EΘ |E〉 (5.47)

that would be unphysical. Therefore, Θ must be antilinear (antiunitary), Θ = UK, and
then

−iHΘ = ΘiH = −iΘH ⇒ ΘH = HΘ. (5.48)

Now Θ and H commute, so they have common eigenvectors.

To derive the commutation relations of Θ with ~X, ~P and ~J , remember that

|α̃〉 = Θ |α〉 ⇒ |α〉 = Θ−1 |α̃〉 (5.49)

and both Θ and Θ−1 act on kets only. Then for a given operator A,

〈α|A |β〉 = 〈β|A† |α〉∗ =
〈
β
∣∣∣A†α〉∗

=
〈
β̃
∣∣∣Ã†α〉 =

〈
β̃
∣∣∣Θ ∣∣∣A†α〉 =

〈
β̃
∣∣∣ΘA† |α〉

=
〈
β̃
∣∣∣ΘA†Θ−1 |α̃〉 . (5.50)

Therefore, the expectation values of our self-adjoint operators satisfy:

〈α̃| ~X |α̃〉 ≡ + 〈α| ~X |α〉 = 〈α̃|Θ ~XΘ−1 |α̃〉 ⇒ ΘXiΘ
−1 = Xi ⇒ [Xi,Θ] = 0

(5.51)

〈α̃| ~P |α̃〉 ≡ − 〈α| ~P |α〉 = −〈α̃|Θ~PΘ−1 |α̃〉 ⇒ ΘPiΘ
−1 = −Pi (5.52)

〈α̃| ~J |α̃〉 ≡ − 〈α| ~J |α〉 = −〈α̃|Θ ~JΘ−1 |α̃〉 ⇒ ΘJiΘ
−1 = −Ji (5.53)

As expected, ~X and Θ have common eigenvectors but neither ~P nor ~J do.

What is the action of Θ on the wave function of a spinless system?

|ψ〉 =

ˆ
d3x′

∣∣~x′〉 〈~x′∣∣ψ〉 =

ˆ
d3x′

∣∣~x′〉ψ(~x′)

⇒ Θ |ψ〉 =

ˆ
d3x′

∣∣~x′〉ψ∗(~x′)
⇒ 〈~x|Θ |ψ〉 =

ˆ
d3x′ δ3(~x− ~x′)ψ∗(~x′)
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⇒ ψ(~x)
Θ−−→ ψ∗(~x) (the complex conjugate). (5.54)

How does Θ act on a wave function with well defined (orbital) angular momentum?

〈θϕ|ψ〉 = Y m
` (θ, ϕ)

Θ−−→ Y m∗
` (θ, ϕ) = (−1)mY −m` (θ, ϕ) (5.55)

(not an eigenstate of Θ as expected). Therefore

Θ |`m〉 = (−1)m |` −m〉 . (5.56)

And what is the action of Θ on a spin state? Notice that Θ changes the sign of the
angular momentum, because ΘJiΘ

−1 = −Ji. Therefore the time-reversed of |+〉 ≡
∣∣1

2
1
2

〉
is

|−〉 ≡
∣∣1

2 −
1
2

〉
, up to a complex phase η:

Θ |+〉 = η |−〉 , |η|2 = 1 (normalized state). (5.57)

Hence, Θ = UK is defined by a rotation of π radians about the y axis:

(5.58)

Θ = ηe−
i
~πJyK, e−

i
~πJy

.
= e−iπ

2
σy =

(
cos π2 − sin π

2
sin π

2 cos π2

)
=

(
0 −1
1 0

)
⇒ Θ = η

(
0 −1
1 0

)
K. (5.59)

Then (K is irrelevant when acting on basis states):

Θ |+〉 = η |−〉 , Θ |−〉 = −η |+〉 (5.60)

and for any state c1 |+〉+ c2 |−〉 we have

Θ(c1 |+〉+ c2 |−〉) = η(c∗1 |−〉 − c∗2 |+〉) (5.61)

⇒ Θ2(c1 |+〉+ c2 |−〉) = −ηη∗(c1 |+〉+ c2 |−〉) = −(c1 |+〉+ c2 |−〉). (5.62)

Thus, Θ2 = −I when acting on a spin 1
2 state. The same will happen whenever we have

a state of j = 1
2 ,

3
2 , . . . , that changes sign when rotated 2π radians. This is in contrast

with the states of integer j, since we have seen that Θ |`m〉 = (−1)m |`−m〉, so Θ2 = I on
these states. Therefore, we choose η = i for states of half-integer spin, so that the general
expression, valid for both orbital (m = integer) and spin angular momentum, is

Θ |jm〉 = i2m |j −m〉 . (5.63)

If the system is time-reversal symmetric then |E〉 and Θ |E〉 have the same energy,

[Θ, H] = 0, H |E〉 = E |E〉 ⇒ H Θ |E〉 = ΘH |E〉 = EΘ |E〉 . (5.64)

And if |E〉 and Θ |E〉 were different states this energy eigenstate would be degenerate.
Notice that both states are the same if they differ at most by a phase factor:

Θ |E〉 = eiδ |E〉 ⇒ Θ2 |E〉 = + |E〉 . (5.65)

This happens only for integer j systems. Therefore Θ |E〉 6= eiδ |E〉 for half-integer j
systems. So the energy states are (at least doubly) degenerate if they have half-integer spin.
For instance, the energy levels of a system with an odd total number of fermions (such
as electrons, protons and neutrons) are at least doubly degenerate. This is the Kramers
degeneracy.
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5.3.3 About the group and representations of Parity and Time reversal

Π and Θ are order two operations, because they leave the system invariant after applying
them twice. Therefore both have the structure of the (abelian) symmetry group Z2.

What are their representations in the Hilbert space of states (unit rays)? Remember
that two states are the same if their (unit) vectors differ at most by a global phase. The
representations must verify:

� Π2 |α〉 = eiφ |α〉 and Π is a unitary representation.

� Θ2 |α〉 = eiφ |α〉 and Θ is an antiunitary representation.

Let’s examine them separately.

Parity

Π2 = eiφI, but since Π is unitary one can absorb a phase eiφ/2 replacing Π→ Π′:

Π′ = e−iφ/2Π ⇒ Π′2 = e−iφΠ2 = I. (5.66)

So we can always take Π2 = I without loss of generality.

Time reversal

Θ2 = eiφI, but now Θ = UK (antiunitary) and then Θ2 = UKUK = UU∗. And since U
is unitary then U †U = I ⇒ UTU∗ = I. Therefore:

Θ2 = UU∗ = eiφI = eiφUTU∗ ⇒ U = eiφUT (5.67)

⇒ U = eiφ(eiφUT )T = e2iφU ⇒ e2iφ = 1 ⇒ eiφ = ±1 (5.68)

⇒ Θ2 = ±I. (5.69)

So there are two types of distinct representations of Θ. Two relevant comments are in
order:

(1) The representation of Θ with Θ2 = UU∗ = −I cannot be one-dimensional. This is
not in contradiction with the fact that unitary representations of an abelian group
must be one-dimensional, because this is antiunitary.

(2) Recall that Θ = UK reverses the angular momentum ~J : ΘJi = −JiΘi. In the
Condon and Shortley convention J± are real matrices, so Jx = 1

2(J+ + J−) and Jz
are real but Jy = − i

2(J+ − J−) is pure imaginary. Since K changes the sign of Jy
but not that of Jx and Jz, we need that U changes the sign of Jx and Jz leaving Jy
untouched. Then U must be a rotation of π about the y–axis (up to a global phase
η):

U = ηe−
i
~πJy , |η|2 = 1, Θ = UK. (5.70)

This explains the connection between the time reversal and spin representations:

Θ2 = e−
i
~2πJy =

{
+I, if j integer
−I, if j half-integer

(5.71)

And, as we have already seen, Θ can be represented by

Θ |jm〉 = i2m |j −m〉 . (5.72)
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5.4 Isospin

All the symmetries we have discussed so far are space-time symmetries: they transform
the system into a different space time configuration (time or spatial translation, rotation,
space or time inversion).

However, there are other symmetries, called internal symmetries of different nature.
We will describe here just the isospin symmetry and skip the most important internal
symmetries, the so called gauge symmetries.

Consider a proton p and a neutron n. The proton has a positive electric charge and
the neutron has no electric charge. But other than that they are very similar: nearly
the same mass (mp = 0.938 GeV/c2, mn = 0.939 GeV/c2), the same spin and parity

(1
2

+
). When they combine to form nuclei the (attractive) strong interaction among protons

and neutrons is the same and much more important than the (repulsive) electromagnetic
interaction among protons.a Therefore, one may suppose that |p〉 and |n〉 are two isospin
states of the same quantum system (the nucleon), like |+〉 and |−〉 are two spin states of a
the same spin 1

2 particle. The states |p〉 and |n〉 would be related by a (isospin) symmetry
transformation, just like |+〉 and |−〉 are related by a rotation. Let us examine the analogy
in more detail.

The rotations acting on the two-dimensional Hilbert space of a spin 1
2 system are SU(2)

matrices that mix the two possible spin eigenstates (|+〉, |−〉). If the system is invariant
under rotations, [Ji, H] = 0, these spin states are dynamically equivalent and the angular
momentum (generators of rotations in space) is conserved.

The hypothesis is that there is a similar symmetry relating the two states of a nucleon,
proton and neutron. This is not a space-time symmetry but an internal one. The “isospin”
symmetry, also matrices of SU(2), mixes |p〉 and |n〉, eigenstates of isospin t = 1

2 . If the
system is invariant under these transformations, their generators Ti (analogous to Ji) verify
[Ti, H] = 0, the two isospin states of the nucleon are dynamically equivalent and the isospin
(generators of this kind of “rotations in flavour space”) is conserved.

In general, particles have spin; they are vectors of Hs=0,
1
2 ,1,.... Analogously, hadrons

(particles that experience strong interactions) have isospin; they are vectors of Ht=0,
1
2 ,1,....

Therefore, the Hilbert space describing a spin 1
2 nucleon is Hs=

1
2 ⊗ Ht=

1
2 , with basis

{|+〉 , |−〉} ⊗ {|p〉 =
∣∣1

2 + 1
2

〉
, |n〉 =

∣∣1
2 −

1
2

〉
}. And, for instance, the Hilbert space describ-

ing the spin 0, isospin triplet of pions (π0, π±) is Hs=0⊗Ht=1 with basis {|00〉} ⊗ {|π+〉 =
|1 + 1〉 ,

∣∣π0
〉

= |1 0〉 , |π−〉 = |1 − 1〉}.

The isospin symmetry is actually an approximate symmetry that organizes the hadrons
into multiplets of SU(2). But it is still useful when isospin violation is negligible. In
reactions mediated by strong interactions isospin is conserved (like angular momentum is
conserved under rotations when interactions are due to a central potential). Then the
probability amplitude to obtain a given final state is determined by which is its component
with same isospin as the initial one (it will depend on Clebsch-Gordan coefficients). And
if the reaction produces a final state of different isospin than the initial state (isospin is
violated), then it will be mediated by a linear combination of spherical tensors T kq with
k 6= 0, and one can use the Wigner-Eckart theorem to relate the matrix elements of the

aStrong interactions are responsible for the nucleus stability.
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different final states,

〈α2; t2m2|T kq |α1; t1m1〉 = 〈kq; t1m1 |t2m2〉 〈α2; t2‖T k‖α1; t1〉. (5.73)

Let us see how it works.

The probability of a reaction to occur is described by the cross section σ, which is
proportional to the modulus squared of the so called scattering amplitude A between the
initial state |i〉 and the final state |f〉 (see chapter 8),

σ(i→ f) ∝ |A(i→ f)|2. (5.74)

The amplitude, in turn, is in first approximation proportional to the matrix element:

A(i→ f) ∝ 〈f |V |i〉 (5.75)

where the initial state is of the form

|i〉 = |iorbital〉 ⊗ |ispin〉 ⊗ |iisospin〉 ⊗ · · · (5.76)

and similarly the final state |f〉. If the Hamiltonian H is invariant under isospin transfor-
mations (electromagnetic or strong interactions) then the isospin will be conserved,

A(i→ f) ∝ 〈f |V |i〉 ∝ 〈fisospin |iisospin〉 . (5.77)

For example, consider the following proton-deuteron (strong) reactions (the deuteron is a
nucleus of 2H with isospin |00〉) producing a pion and a member of the isospin doublet
{
∣∣3He

〉
=
∣∣1

2
1
2

〉
,
∣∣3H
〉

=
∣∣1

2 −
1
2

〉
}, the nuclei of 3He and tritium, respectively:

(1) p + d→ π+ + 3H. The total isospin states are

|iisospin〉 =
∣∣1

2 + 1
2

〉
|00〉 =

∣∣1
2 + 1

2

〉
(5.78)

|fisospin〉 = |1 + 1〉
∣∣1

2 −
1
2

〉
= 1√

3

∣∣3
2 + 1

2

〉
+
√

2
3

∣∣1
2 + 1

2

〉
(5.79)

and

σ1 ∝ | 〈fisospin |iisospin〉 |2 =

∣∣∣∣∣
√

2

3

∣∣∣∣∣
2

=
2

3
. (5.80)

(2) p + d→ π0 + 3He. The total isospin states are

|iisospin〉 =
∣∣1

2 + 1
2

〉
|00〉 =

∣∣1
2 + 1

2

〉
(5.81)

|fisospin〉 = |1 0〉
∣∣1

2 + 1
2

〉
=
√

2
3

∣∣3
2 + 1

2

〉
− 1√

3

∣∣1
2 + 1

2

〉
(5.82)

and

σ2 ∝ | 〈fisospin |iisospin〉 |2 =

∣∣∣∣− 1√
3

∣∣∣∣2 =
1

3
. (5.83)

Therefore,

σ(p + d→ π+ + 3H)

σ(p + d→ π0 + 3He)
= 2. (5.84)
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Chapter 6

Systems of identical particles

6.1 Indistinguisible particles

Particles are identical if they cannot be distinguished from one another.

In classical physics it is possible to keep track of individual particles even if they may
look alike (Fig. 6.1). In principle, one can know their positions and follow their trajectories
separately. In addition, the probability to find two identical particles in exactly the same
position (in this case we would be unable to distinguish them) is zero, since there is a
continuum of locations.

Figure 6.1: The paths of classical identical particles can be tracked.

In quantum mechanics, however, identical particles are truly indistinguisible. All the
information we have about a system of identical particles is provided by a complete set
of commuting observables (CSCO). Then we cannot label them or follow their individual
trajectories (positions and momenta) because this would disturb the system (Fig. 6.2).
Furthermore, since the only values of the physical observables (eigenvalues of the CSCO)
are quantized, it may be possible that two particles are in the same state. We will see that
this has far-reaching consequences.

Figure 6.2: Indistinguisable paths of the quantum system of two identical particles.
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6.2 Symmetry under permutations

Let us consider two identical particles (later we will generalize to n identical particles)
characterized by their eigenvalues with respect to the same CSCO (A,B, . . . ):∣∣a′b′ . . . 〉 ≡ ∣∣a′〉 , A

∣∣a′〉 = a′
∣∣a′〉 and

∣∣a′′b′′ . . . 〉 ≡ ∣∣a′′〉 , A
∣∣a′′〉 = a′′

∣∣a′′〉 (6.1)

(to simplify the notation we label the ket just by the eigenvalues of A).

The system of both particles is described by the tensor product∣∣a′〉⊗ ∣∣a′′〉 =
∣∣a′a′′〉 (6.2)

where it is understood that the first eigenvalue corresponds to particle 1 and the second
to particle 2. How does an observable A act on the system?

A = A1 ⊗ I + I ⊗A2 (6.3)

A
∣∣a′a′′〉 = A1

∣∣a′〉⊗ I ∣∣a′′〉+ I
∣∣a′〉⊗A2

∣∣a′′〉
= a′

∣∣a′a′′〉+ a′′
∣∣a′a′′〉

= (a′ + a′′)
∣∣a′a′′〉 . (6.4)

Notice that the states |a′a′′〉 and |a′′a′〉 are mathematically different (orthogonal) but one
cannot distinguish them by measuring any observable in the CSCO, since they have the
same eigenvalues,

A
∣∣a′′a′〉 = (a′ + a′′)

∣∣a′′a′〉 . (6.5)

Therefore if we measure A and obtain a′ + a′′ we do not know a priori whether the state
ket is |a′a′′〉, |a′′a′〉 or any linear combination,

α
∣∣a′a′′〉+ β

∣∣a′′a′〉 . (6.6)

This is known as exchange degeneracy. It presents a difficulty because, unlike the single
particle case, a specification of the eigenvalue of a CSCO does not completely determine
the state. We will see in the next section how nature solves this problem, but before let us
review the mathematics we need to study the permutation symmetry.

The permutations of n objects form the symmetric group, called Sn, with n! elements.
A permutation p ∈ Sn is denoted by

p =

(
1 2 · · · n
p1 p2 · · · pn

)
(6.7)

although the alternative cycle notation is more economical. For example,(
1 2 3 4
2 1 4 3

)
≡ (12)(34),

(
1 2 3 4
2 3 1 4

)
≡ (123). (6.8)

The advantage of cycles is that if they are disjoint their product can be specified in any
order, and any rotation of a given cycle specifies the same cycle,

(12)(34) = (34)(12), (123) = (231) = (312). (6.9)

© www.ugr.es/local/jillana 84



6.2. Symmetry under permutations 85

Read (123) as 1→ 2, 2→ 3, 3→ 1. For example, the 3! = 6 permutations in S3 are

S3 =

{
e,

(
1 2 3
2 1 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
= {e, (12), (23), (13), (123), (132)} . (6.10)

The permutations can be composed (multiplied), form right to left. For example:

(123)(132) = (1)(2)(3) = e, (13)(12) = (123). (6.11)

They form a group. In general, permutations do not commute,

(12)(13) = (132), (13)(12) = (123). (6.12)

Any permutation p can be written as a product of r transpositions (ij). The parity of the
permutation p is (−1)r = ±1 that will be denoted as (−1)p. For example,

e and (123) = (12)(23) are even (+1); (12) and (13)(245) are odd (−1). (6.13)

A cycle of length r + 1 can be written as the product of r transpositions:

(i1i2 . . . ir+1) = (i1i2)(i2i3) · · · (irir+1) ⇒ parity = (−1)r (6.14)

Notice that however this decomposition is not unique. For example:

(12)(23) = (231) = (123) and also (13)(12) = (123). (6.15)

We define the action of the permutations of Sn on a system of n identical particles as

(12)
∣∣a′a′′〉 =

∣∣a′′a′〉 , (132)
∣∣a′a′′a′′′〉 =

∣∣a′′a′′′a′〉 , etc. (6.16)

Let us go back to the system of two identical particles. One can define two operators,

s =
1

2
[e+ (12)] (symmetrizer) (6.17)

a =
1

2
[e− (12)] (antisymmetrizer). (6.18)

They are orthogonal projectors (s2 = s, a2 = a, s a = 0) into invariant subspaces of vectors
that are symmetric or antisymmetric, respectively, under the exchange of the two particles,

s
∣∣a′a′′〉 =

1

2
(
∣∣a′a′′〉+

∣∣a′′a′〉) (6.19)

a
∣∣a′a′′〉 =

1

2
(
∣∣a′a′′〉− ∣∣a′′a′〉). (6.20)

Since the states of the system must be normalized we will define∣∣a′a′′〉
s
≡ 1√

2
(
∣∣a′a′′〉+

∣∣a′′a′〉), (12)
∣∣a′a′′〉

s
= +

∣∣a′a′′〉
s

(6.21)∣∣a′a′′〉
a
≡ 1√

2
(
∣∣a′a′′〉− ∣∣a′′a′〉), (12)

∣∣a′a′′〉
a

= −
∣∣a′a′′〉

a
. (6.22)

In the general case of n identical particles, one defines

s =
1

n!

∑
p∈Sn

p (symmetrizer) (6.23)
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a =
1

n!

∑
p∈Sn

(−1)p p (antisymmetrizer) (6.24)

that project into invariant subspaces of vectors that are totally symmetric or antisymmetric,
respectively, under the exchange of any pair of particles (transpositions),

s
∣∣a′a′′a′′′ . . . 〉 normalized−−−−−−→

∣∣a′a′′a′′′ . . . 〉
s
, (ij)

∣∣a′a′′a′′′ . . . 〉
s

= +
∣∣a′a′′a′′′ . . . 〉

s
(6.25)

a
∣∣a′a′′a′′′ . . . 〉 normalized−−−−−−→

∣∣a′a′′a′′′ . . . 〉
a
, (ij)

∣∣a′a′′a′′′ . . . 〉
a

= −
∣∣a′a′′a′′′ . . . 〉

a
. (6.26)

For example, consider the system of 3 identical particles in the states |a′〉, |a′′〉 and |a′′′〉,
find |a′a′′a′′′〉s and |a′a′′a′′′〉a and check that (23) |a′a′′a′′′〉s(a) = +(−) |a′a′′a′′′〉s(a).

The Hilbert space of a system of two identical particles of spins si and isospins ti
is H = Hspace ⊗ Hspin ⊗ Hisospin ⊗ · · · where every factor is also the tensor product of
the corresponding Hilbert spaces of each particle. For example, consider a system of two
identical particles of spin 1

2 and isospin 1
2 ,

Hspace : {|ψ1〉} ⊗ {|ψ2〉} = {|ψ1ψ2〉} (6.27)

Hspin : {|+〉 , |−〉} ⊗ {|+〉 , |−〉} = {|++〉 , |+−〉 , |−+〉 , |−−〉} (6.28)

Hisospin : {|u〉 , |d〉} ⊗ {|u〉 , |d〉} = {|uu〉 , |ud〉 , |du〉 , |dd〉}. (6.29)

To antisymmetrize the state |ψ1ψ2〉 ⊗ |+−〉 ⊗ |ud〉:

(12) |ψ1ψ2〉 ⊗ |+−〉 ⊗ |ud〉 = |ψ2ψ1〉 ⊗ |−+〉 ⊗ |du〉 (6.30)

1

2
[e− (12)] |ψ1ψ2〉 ⊗ |+−〉 ⊗ |ud〉

normalized−−−−−−→ 1√
2

[|ψ1ψ2〉 ⊗ |+−〉 ⊗ |ud〉 − |ψ2ψ1〉 ⊗ |−+〉 ⊗ |du〉]. (6.31)

6.3 Symmetrization postulate

We have seen that states differing by a permutation of two identical particles, though being
different (orthogonal), would be indistinguishable by any observation (exchange degener-
acy). To reconcile this with the fact that a state must be fully determined by a CSOC,
one has to introduce the following postulate (in full agreement with experiment):

Symmetrization postulate
The states of a system of identical particles must be either totally symmetric or anti-
symmetric under the exchange of any pair.

Since the only one-dimensional invariant subspaces under the exchange of two particles
are the totally symmetric and the totally antisymmetric vectors, this postulate guarantees
that the states of systems of identical particles are perfectly determined by a complete set
of observations.

On the other hand, in the context of relativistic quantum field theory one can prove
the following theorem, that otherwise would be part of the symmetrization postulate:
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6.3. Symmetrization postulate 87

Spin-statistics connection
The states of a system of identical particles are totally symmetric (antisymmetric)
under the exchange of any pair if their spin is integer (half-integer).

One can show that systems of identical particles with totally symmetric wave functions
obey the Bose-Einstein statistics (these particles are called bosons) and those with totally
antisymmetric wave functions obey the Fermi-Dirac statistics (these particles are called
fermions). Therefore, this theorem establishes a connection between the spin and the
bosonic of fermionic behaviour (statistics) of identical particles: the spin of a boson is
integer and the spin of a fermion is half-integer.

A corolary of the symmetrization postulate and the spin-statistics connection theorem
is that there are only fermions and bosons in nature.a

An immediate consequence of the symmetrization postulate is that identical fermions
satisfy the Pauli exclusion principle: two of them cannot ocupy the same state, since
|· · · a′ · · · a′ · · · 〉a = 0. This is why there can only be one electron of a given spin component
(two of opposite spins) per energy level in an atomic orbital. This is key to understand the
electronic configuration of atoms and hence the periodic table of the chemical elements,
the cornerstone of the whole of chemistry. And thanks to Pauli exclusion principle, some
types of stars (white dwarfs and neutron stars) may avoid the gravitational collapse.

One may say that fermions are “less sociable” than bosons, since they “avoid” being
in the same state as an alike partner. Bosons, in turn, are more “friendly”; they do not
mind to be altogether in the same state and actually they do if they can. For instance,
at very low temperature they form Bose-Einstein condensates, with many particles in the
minimum energy state, that gives the system very perculiar properties like superfluidity or
superconductivity.

Consider two identical particles, each of them in two possible states + or −. Then:

• Classically, think of two balls labeled with a sign; there are 4 possible configurations:
1/2 with both “states” equal (|+○ +○〉, | -○ -○〉) and 1/2 that are different (|+○ -○〉,
| -○ +○〉).

• If they behave as bosons, they must be in symmetric configurations (symmetric state
of the system) and there are 3 possibilities: 2/3 have same quantum numbers (|++〉,
|−−〉) and 1/3 has different quantum numbers

(
1√
2
(|+−〉+ |−+〉)

)
.

• If they behave as fermions, they must be in antisymmetric configurations (antisym-
metric state of the system) and there is just 1 possibility, that, of course, has different

quantum numbers
(

1√
2
(|+−〉 − |−+〉)

)
.

This illustrates that bosons are more friendly than classical identical particles (2/3 versus
1/2 of the cases they are in the same state in our example) while fermions are antisocial,
never in the same state.

How does a permutation act on the wave function of identical particles? For example,

(123)ψ(~x1, ~x2, ~x3) = 〈~x1, ~x2, ~x3| (123) |ψ〉 (6.32)

aHowever, in two-dimensional systems there are “quasiparticles” called anyons that obey intermediate
statistics. They play an important role in the fractional quantum Hall effect.
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We know that on the ket,

(123) |~x1, ~x2, ~x3〉 = |~x3, ~x1, ~x2〉 (6.33)

but notice that in the wave function p = (123) acts on the bra. Then, from

δ3(x1 − ~x′1)δ3(x2 − ~x′2)δ3(x3 − ~x′3) =
〈
~x1, ~x2, ~x3

∣∣~x′1, ~x′2, ~x′3〉
= 〈~x1, ~x2, ~x3| (123)(132)

∣∣~x′1, ~x′2, ~x′3〉
= 〈~x1, ~x2, ~x3| (123)

∣∣~x′2, ~x′3, ~x′1〉 (6.34)

where we have used p−1 = (132), we have that

〈~x1, ~x2, ~x3| (123) = 〈~x2, ~x3, ~x1| ⇒ (123)ψ(~x1, ~x2, ~x3) = ψ(~x2, ~x3, ~x1) (6.35)

where the arguments of the wave functions are exchanged by the inverse permutation.

6.4 System of two electrons

Consider a system of two electrons (s = 1
2). The first electron is described by a ket of

H1 = Hspace
1 ⊗Hspin

1 : {|ψspace
1 〉} ⊗

{∣∣∣ψspin
1

〉}
(6.36)

where |ψspace
1 〉 gives the position ~x of electron 1, whose wave function (space part) is

ψ1(~x) ≡ 〈~x|ψspace
1 〉 in the position representation, and

∣∣∣ψspin
1

〉
= |+〉 or |−〉. And similarly

for the second electron. The system of the two electrons is described by

|ψ〉 ∈ H = H1 ⊗H2 : {|ψspace〉} ⊗
{∣∣ψspin

〉}
= Hspace ⊗Hspin : {|ψspace

1 ψspace
2 〉} ⊗

{∣∣∣ψspin
1 ψspin

2

〉}
(6.37)

where |ψspace〉 gives the positions ~x1 of electron 1 an ~x2 of electron 2, whose wave func-
tion (space part) is ψ( ~x1, ~x2) ≡ 〈 ~x1, ~x2 |ψspace〉 = ψ1(~x1)ψ2(~x2), and

∣∣ψspin
〉

is any linear
combination of {|++〉 , |+−〉 , |−+〉 , |−−〉}.

The positions of both electrons could be entangled and also their spins (to make a state
with well defined total spin) and also the positions with the total spin. Let us see that if
the total spin is well defined, [H,S2] = 0, then the symmetrization implies that positions
and spin states are separable. Because the electrons are fermions, we must antisymmetrize
and normalize the possible states:

(ψ1(~x1)ψ2(~x2) |++〉)a =
1√
2

[ψ1(~x1)ψ2(~x2)− ψ1(~x2)ψ2(~x1)] |++〉 (6.38)

(ψ1(~x1)ψ2(~x2) |−−〉)a =
1√
2

[ψ1(~x1)ψ2(~x2)− ψ1(~x2)ψ2(~x1)] |−−〉 (6.39)

(ψ1(~x1)ψ2(~x2) |+−〉)a =
1√
2

[ψ1(~x1)ψ2(~x2) |+−〉 − ψ1(~x2)ψ2(~x1) |−+〉] (6.40)

(ψ1(~x1)ψ2(~x2) |−+〉)a =
1√
2

[ψ1(~x1)ψ2(~x2) |−+〉 − ψ1(~x2)ψ2(~x1) |+−〉]. (6.41)

(Last two are not separable but their (total) spin is not well defined.)
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Remember that the total spin of the system of two electrons can be s = 0 or s = 1 with

|0 0〉 =
1√
2

(|+−〉 − |−+〉) (6.42)

|1 + 1〉 = |++〉 , |1 0〉 =
1√
2

(|+−〉+ |−+〉), |1 − 1〉 = |−−〉 . (6.43)

Notice that the members of the spin multiplet have the same properties under exchange.
This is because S± = S1± + S2± and (12) commute (for any spin). In our system of two
identical spin 1

2 fermions the spin state with s = 0 is antisymmetric and the spin states
with s = 1 are symmetric under exchange.

Can we write the four antisymmetric states above as states with well defined spin
without spoiling the symmetrization? We just need to combine a symmetric space part
and an antisymmetric spin state or viceversa. A symmetric (antisymmetric) space part of
the wave function is:

ψ±(~x1, ~x2) =
1√
2

[ψ1(~x1)ψ2(~x2)± ψ1(~x2)ψ2(~x1)]. (6.44)

Then we see that the first two are already as needed:

ψ−(~x1, ~x2) |1 + 1〉 = (ψ1(~x1)ψ2(~x2) |++〉)a (6.45)

ψ−(~x1, ~x2) |1 − 1〉 = (ψ1(~x1)ψ2(~x2) |−−〉)a (6.46)

and we can combine the other two into:

ψ−(~x1, ~x2) |1 0〉 =
1√
2

[
(ψ1(~x1)ψ2(~x2) |+−〉)a + (ψ1(~x1)ψ2(~x2) |−+〉)a

]
(6.47)

ψ+(~x1, ~x2) |0 0〉 =
1√
2

[
(ψ1(~x1)ψ2(~x2) |+−〉)a − (ψ1(~x1)ψ2(~x2) |−+〉)a

]
(6.48)

As a particular case, in the center of mass frame (CoM),

~r = ~x1 − ~x2, ψ(~x1, ~x2) = ψ(~r), (12)ψ(~r) = ψ(−~r). (6.49)

Then

ψ(~r) = ±ψ(−~r) ⇔ ψ(~r) ∝ Y m
` (r̂), Y m

` (r̂) = (−1)`Y m
` (−r̂). (6.50)

Therefore, in this case the space (orbital) part of the wave function is symmetric (antisym-
metric) if ` is even (odd).

To summarize, the (antisymmetric) states of a two-electron system are

• Space (orbital) part of the wave function symmetric and spin state antisymmetric:

ψ+(~x1, ~x2) = ψ+(~x2, ~x1) (` even in CoM) and s = 0 : |00〉 . (6.51)

• Space (orbital) part of the wave function antisymmetric and spin state symmetric:

ψ−(~x1, ~x2) = −ψ−(~x2, ~x1) (` odd in CoM) and s = 1 : |1ms〉 . (6.52)
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6.5 Exchange correlation

Consider two free identical particles with momenta ~k and ~k′. The space part of the space
wave function of the system must be symmetric or antisymmetric under exchange,

ψ±(~x1, ~x2) ∼ 1√
2

(
ei~k· ~x1ei~k′· ~x2 ± ei~k· ~x2ei~k′· ~x1

)
=

1√
2

ei(~k+~k′)·~R
(

ei(~k−~k′)·~r/2 ± e−i(~k−~k′)·~r/2
)

(6.53)

with ~R = 1
2(~x1 + ~x2) and ~r = ~x1 − ~x2. Then the probability density to find a particle in a

space region is correlated with the position of the other one:

|ψ+(~x1, ~x2)|2 = 2 cos2 (~k − ~k′) · ~r
2

⇒ ~r = 0 favoured (6.54)

|ψ−(~x1, ~x2)|2 = 2 sin2 (~k − ~k′) · ~r
2

⇒ ~r = 0 impossible. (6.55)

Likewise, in a more general case of two particles with wave functions (space parts) ψ1(~x)
and ψ2(~x), the space part of the wave function of the system if they are identical must be

ψ±(~x1, ~x2) =
1√
2

[ψ(~x1, ~x2)± ψ(~x2, ~x1)] with ψ(~x1, ~x2) = ψ1(~x1)ψ2(~x2) (6.56)

and then

|ψ±(~x1, ~x2)|2 =
1

2

[
|ψ(~x1, ~x2)|2 + |ψ(~x2, ~x1)|2 ± 2Re (ψ(~x1, ~x2)ψ∗(~x2, ~x1))

]
=

1

2

[
|ψ1(~x1)|2|ψ2(~x2)|2 + |ψ1(~x2)|2|ψ2(~x1)|2

± 2Re (ψ1(~x1)ψ2(~x2)ψ∗1(~x2)ψ∗2(~x1))
]
. (6.57)

The last term is known as the exchange density.

If the wave functions ψ1(~x) and ψ2(~x) do not overlap (see figure), then the probability
density to find one particle at ~x = ~x1 ∼ 〈x1〉 and the other at ~x = ~x2 ∼ 〈x2〉 is

|ψ±(~x1, ~x2)|2 + |ψ±(~x2, ~x1)|2 = 2|ψ±(~x1, ~x2)|2 = |ψ1(~x1)|2|ψ2(~x2)|2 (6.58)

where we have used that

ψ1(x2) ∼ 0, ψ2(x1) ∼ 0. (6.59)

Therefore, in that case (not very dense systems of identical particles) the exchange-density
term is unimportant and there is no need to symmetrize or antisymmetrize the states.
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6.6 Creation and annihilation operators

6.6.1 Harmonic oscillator

Consider the simple harmonic oscillator, a particle of mass m in one dimension submitted
to an attractive force proportional to the distance. The Hamiltonian of the system is

H =
p2

2m
+

1

2
kx2, k ≡ mω2 (6.60)

and the classical trajectories of the particle (solutions of the equations of motion) are
oscillations of angular frequency ω = 2πν.

In QM, x and p become self-adjoint operators X and P with [X,P ] = i~I. An elegant
method introduced by Dirac that allows to find the energy eigenvalues and eigenvectors of
this quantum system consists of defining the operators a and a†:

a =

√
mω

2~

(
X + i

P

mω

)
, a† =

√
mω

2~

(
X − i

P

mω

)
(6.61)

⇒ X =

√
~

2mω
(a+ a†), P = −i

√
~mω

2
(a− a†), (6.62)

with

[X,P ] = i~I ⇒ [a, a†] = I. (6.63)

Then the Hamiltonian reads

H = ~ω(a†a+ 1
2) = ~ω(N + 1

2), (6.64)

where we have introduced the self-adjoint operator

N = a†a. (6.65)

Because H is just a linear function of N , both can be diagonalized simultaneously. We
denote the energy eigenstates |n〉 by the eigenvalues of N , so

N |n〉 = n |n〉 and H |n〉 = En |n〉 , En = (n+ 1
2)~ω. (6.66)

To appreciate the physical meaning of a, a† and N , notice that

[N, a] = [a†a, a] = a†[a, a] + [a†, a]a = −a, [N, a†] = a† (6.67)

and then

Na† |n〉 = ([N, a†] + a†N) |n〉 = (n+ 1)a† |n〉 (6.68)

Na |n〉 = ([N, a] + aN) |n〉 = (n− 1)a |n〉 . (6.69)

Therefore, a† |n〉 and a |n〉 are also eigenstates of N with eigenvalue n + 1 and n − 1,
respectively. That is why we call a† (a) the creation (annihilation) operators of oscillation
modes of energy ~ω. On the other hand,

a |n〉 = c |n− 1〉 , 〈n| a†a |n〉 = |c|2 = 〈n|N |n〉 = n ⇒ a |n〉 =
√
n |n− 1〉 (6.70)
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and from |n〉 =
1√
n+ 1

a |n+ 1〉,

a† |n〉 =
1√
n+ 1

a†a |n+ 1〉 ⇒ a† |n〉 =
√
n+ 1 |n+ 1〉 . (6.71)

If we apply a successively,

a2 |n〉 =
√
n(n− 1) |n− 2〉 , a3 |n〉 =

√
n(n− 1)(n− 2) |n− 3〉 , . . . (6.72)

we would find states with (unacceptable) negative energy and (also unacceptable) norm,
because

n = 〈n|N |n〉 = (〈n| a†)(a |n〉) > 0, (6.73)

unless n is a non-negative integer. Then the sequence terminates at n = 0 and the ground
state of the system |0〉 has a (non-zero!) energy

E0 = 1
2~ω. (6.74)

Hence, N = a†a is the number operator, the state |0〉 is called the vacuum (assumed
normalized, 〈0|0〉 = 1) because it has no modes, and |n〉 is the state of n modes that can
be obtained applying a† on the vacuum n times,

a† |0〉 = |1〉 ⇒ |1〉 = a† |0〉 (6.75)

a† |1〉 =
√

2 |2〉 ⇒ |2〉 =
1√
2
a† |1〉 =

1√
2

(a†)2 |0〉 (6.76)

a† |2〉 =
√

3 |3〉 ⇒ |3〉 =
1√
3
a† |2〉 =

1√
6

(a†)3 |0〉 (6.77)

. . . ⇒ |n〉 =
1√
n!

(a†)n |0〉 . (6.78)

We can now obtain the energy eigenfunctions in the position representation from

a =
1√
2

(αX +
i

~α
P ) with α ≡

√
mω

~
. (6.79)

Exchanging variables,

X̃ ≡ αX, X |x〉 = x |x〉 ⇒ X̃ |x〉 = αx |x〉 ≡ x̃ |x〉 (6.80)

the momentum operator in the position representation is

P
.
= −i~

d

dx
= −i~α

d

dx̃
(6.81)

and the wave function of vacuum follows from

a |0〉 = 0 ⇒ 1√
2

(
x̃+

d

dx̃

)
ψ0(x̃) = 0 (6.82)

whose (normalized) solution is

ψ0(x̃) = Ae−
x̃2

2 ⇒ ψ0(x) =

√
α√
π

e−
α2x2

2 . (6.83)
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Likewise, from

|n〉 =
1√
n!

(a†)n |0〉 ⇒ ψn(x̃) =
1√
n!

1√
2n

(
x̃− d

dx̃

)n
ψ0(x̃)

⇒ ψn(x) =

√
α√

π n! 2n
Hn(αx) e−

α2x2

2 (6.84)

where Hn(t) is the nth-order Hermite polynomial:

Hn(t) ≡ et
2/2

(
t− d

dt

)n
e−t

2/2. (6.85)

6.6.2 Identical bosons

The method of creation and annihilation operators introduced above to solve the harmonic
oscillator problem is very convenient to study the systems of identical particles.

Let us define |n〉 as the state of the system with n identical bosons, all of them in
the same quantum state |α〉 (for example: |α〉 the state of E = ~ω). We introduce the
annihilation operator a such that it gives the state with one particle less:

a |n〉 =
√
n |n− 1〉 (6.86)

The adjoint is the creation operator a†,

〈n| a† =
√
n 〈n− 1| ⇒ 〈n| a†a |n〉 = n ⇒ a†a |n〉 = n |n〉 . (6.87)

Hence, N = a†a is the number operator that counts the number of particles and a† is the
creation operator that adds one particle in the same state:

|n〉 =
1√
n+ 1

a |n+ 1〉 ⇒ a† |n〉 =
1√
n+ 1

a†a |n+ 1〉 =
√
n+ 1 |n+ 1〉 . (6.88)

Now we can derive the commutation relations:

aa† |n〉 =
√
n+ 1 a |n+ 1〉 = (n+ 1) |n〉

a†a |n〉 =
√
na† |n− 1〉 = n |n〉

}
⇒ [a, a†] = I. (6.89)

The state |0〉 with no particles (assumed normalized, 〈0|0〉 = 1) is called the vacuum, with
a |0〉 = 0. The state with n particles can be written as

|n〉 =
1√
n!

(a†)n |0〉 (6.90)

that is, of course, a symmetric state under the exchange.

Now let us generalize this formalism to the case of n identical bosons, with n1 at the
same state |α1〉, n2 at the same state |α2〉, etc. (for example: |αi〉 the states of Ei = ~ωi)

|n1, n2, · · · 〉 (6.91)

that is understood to be symmetrized (symmetric under the exchange of any pair). The ni
are the occupation numbers and n =

∑
i ni. We define the annihilation (ai) and creation

(a†i ) operators of particles in the state |αi〉 as

ai |n1, · · · , ni, · · · 〉 =
√
ni |n1, · · · , ni − 1, · · · 〉 (6.92)
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a†i |n1, · · · , ni, · · · 〉 =
√
ni + 1 |n1, · · · , ni + 1, · · · 〉 . (6.93)

The number operator Ni = a†iai gives the occupation of state |αi〉,

a†iai |n1, · · · , ni, · · · 〉 = ni |n1, · · · , ni, · · · 〉 . (6.94)

The annihilation and creation operators satisfy the commutation relations:

[ai, a
†
j ] = δijI, [ai, aj ] = [a†i , a

†
j ] = 0. (6.95)

Then any state of the system of n identical bosons can be written as:

|n1, n2, · · · 〉 =
1√

n1!n2! · · ·
(a†1)n1(a†2)n2 · · · |0〉 (6.96)

with |0〉 ≡ |0, 0, · · · 〉 the vacuum state (no bosons). This state is symmetric under the
exchange of any pair of particles.

The Hilbert space HB of a system of identical bosons is called Fock space of bosons,
whose states are symmetric under exchange and can be written in the occupation number
formalism described above,

HB = H0
S ⊕H1

S ⊕H2
S ⊕H3

S ⊕ · · · =
∞⊕
n=0

HnS (6.97)

where the basis of HnS is the set of symmetric states |n1n2 · · · 〉 with n =
∑

i ni. The states
of HnS could also be obtained by symmetrizing the tensors of Hn = H⊗H ⊗ · · · , n times
(HnS ⊂ Hn) where H is the Hilbert space of one particle.b H0

S is formed by just on state,

the vacuum. H1
S = H is the system of one particle. Hn≥2

S is the system of n identical
bosons, whose states are symmetric under exchange.

In particular, this formalism describes a system of oscillators with a discrete spectrum
of energies Ei = ~ωi ≡ αi. When there is a continuum of oscillator modes of energy E, we
have ai = a(ωi)→ a(ω = E/~) that defines a quantum field theory (bosonic fields).

6.6.3 Identical fermions

The occupation number formalism can also be adapted to describe a system of identical
fermions, whose states are antisymmetric under exchange. Then obviously

|n1, n2, . . . 〉 , ni = 0 or 1. (6.98)

To introduce annihilation (η) and creation (η†) operators of fermionic states we define

η |0〉 = 0, η |1〉 = |0〉 , η† |0〉 = |1〉 , η† |1〉 = 0 (6.99)

and

ηi |n1, · · ·ni, · · · 〉 = (−1)νini |n1, · · · , 1− ni, · · · 〉 (6.100)

η†i |n1, · · ·ni, · · · 〉 = (−1)νi(1− ni) |n1, · · · , ni + 1, · · · 〉 (6.101)

bNotice that every H can be the tensor product of other Hilbert spaces (e.g. Hspace ⊗Hspin ⊗ · · · ) but
this formalism is particularly useful when the states are labeled by the eigenvalues of just one observable,
like the energy.
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where

νi =
i−1∑
k=1

nk. (6.102)

Then the number operator Ni = η†i ηi gives the occupancy of state |αi〉,

η†i ηi |n1, · · ·ni, · · · 〉 = n2
i |n1, · · ·ni, · · · 〉 = ni |n1, · · ·ni, · · · 〉 . (6.103)

And one can easily derive the anticommutation relations:

{ηi, η†j} = δijI, {ηi, ηj} = {η†i , η
†
j} = 0. (6.104)

where {A,B} ≡ AB +BA. As expected,

{η†i , η
†
i } = 0 ⇒ (η†i )

2 = 0 (6.105)

and therefore two fermions cannot be in the same state (Pauli exclusion principle).

Any state of the system of identical fermions can be written as:

|n1, n2, · · · 〉 = (η†1)n1(η†2)n2 · · · |0〉 . (6.106)

These states span the Fock space of fermions.

This formalism of creation and annihilation operators for identical fermions is applied
in quantum field theory (fermionic fields), where fermions have a continuous spectrum of
energies.
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Chapter 7

Approximation methods

Few systems in quantum mechanics can be solved exactly. So we are forced to adopt
approximate solutions that can be obtained by different types of methods, numerical (with
the help of a computer) or analytical: perturbative, variational, WKB, etc. Here we will
discuss the perturbative approximations.

7.1 Stationary perturbations

7.1.1 Nondegenerate case

Let us consider a time-independent Hamiltonian, that can be separated into two parts:

H = H0 + λV (7.1)

where we know the eigenvalues and eigenstates of H0:

H0
∣∣∣ψ(0)
i

〉
= E

(0)
i

∣∣∣ψ(0)
i

〉
. (7.2)

H0 does not have to be the free Hamiltonian.
For example, we know the exact solutions of the hydrogen atom,

H0 =
p2

2m
− 1

4πε0

e2

r
(7.3)

and V could be the interaction with an external magnetic field. Then, we suppose that V
is a perturbation that changes a little the eigenvalues and eigenvectors of H. We assume the
analyticity of H around λ = 0, namely there is a smooth transition between the solutions
for λ = 0 and those we are looking for (λ = 1) so that

H |ψi(λ)〉 = Ei(λ) |ψi(λ)〉 . (7.4)

with

|ψi(λ)〉 =

∞∑
n=0

λn
∣∣∣ψ(n)
i

〉
, Ei(λ) =

∞∑
k=0

λkE
(k)
i (7.5)
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Inserting this into the Schrödinger equation above we have:a

(H0 + λV )
∞∑
n=0

λn
∣∣∣ψ(n)
i

〉
=
∞∑
n=0

∞∑
k=0

λn+kE
(n)
i

∣∣∣ψ(k)
i

〉
;

H0
∣∣∣ψ(0)
i

〉
+
∞∑
n=1

λn
(
H0
∣∣∣ψ(n)
i

〉
+ V

∣∣∣ψ(n−1)
i

〉)
= E

(0)
i

∣∣∣ψ(0)
i

〉
+
∞∑
n=1

λn
n∑
k=0

E
(k)
i

∣∣∣ψ(n−k)
i

〉
(7.6)

and hence, comparing powers of λ,(
H0 − E(0)

i

) ∣∣∣ψ(0)
i

〉
= 0 (this we knew already), (7.7)(

H0 − E(0)
i

) ∣∣∣ψ(n)
i

〉
= −V

∣∣∣ψ(n−1)
i

〉
+

n∑
k=1

E
(k)
i

∣∣∣ψ(n−k)
i

〉
, n ≥ 1. (7.8)

Remember that the states
∣∣∣ψ(0)
i

〉
are normalized,〈

ψ
(0)
i

∣∣∣ψ(0)
i

〉
= 1. (7.9)

To simplify the calculations, let us choose for the moment the normalization〈
ψ

(0)
i

∣∣∣ψi(λ)
〉

= 1 (7.10)

also for λ 6= 0, so that

1 =
〈
ψ

(0)
i

∣∣∣ψi(λ)
〉

=
〈
ψ

(0)
i

∣∣∣ψ(0)
i

〉
+

∞∑
n=1

λn
〈
ψ

(0)
i

∣∣∣ψ(n)
i

〉
⇒

〈
ψ

(0)
i

∣∣∣ψ(n)
i

〉
= 0, ∀n ≥ 1. (7.11)

Then muliplying the equation (7.8) by
〈
ψ

(0)
i

∣∣∣ we have that for n ≥ 1:

〈
ψ

(0)
i

∣∣∣ (H0 − E(0)
i

) ∣∣∣ψ(n)
i

〉
= −

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(n−1)
i

〉
+

n∑
k=1

E
(k)
i

〈
ψ

(0)
i

∣∣∣ψ(n−k)
i

〉
;

0 = −
〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(n−1)
i

〉
+

n∑
k=1

E
(k)
i δnk

⇒ E
(n)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(n−1)
i

〉
, n ≥ 1 (7.12)

And multiplying (7.8) by
〈
ψ

(0)
j

∣∣∣ with j 6= i we have:

〈
ψ

(0)
j

∣∣∣ (H0 − E(0)
i

) ∣∣∣ψ(n)
i

〉
= −

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(n−1)
i

〉
+

n∑
k=1

E
(k)
i

〈
ψ

(0)
j

∣∣∣ψ(n−k)
i

〉
;

(
E

(0)
j − E

(0)
i

)〈
ψ

(0)
j

∣∣∣ψ(n)
i

〉
= −

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(n−1)
i

〉
+
n−1∑
k=1

E
(k)
i

〈
ψ

(0)
j

∣∣∣ψ(n−k)
i

〉
aWe replace

∞∑
n=0

∞∑
k=0

λn+kE
(k)
i

∣∣∣ψ(n)
i

〉
=

∞∑
n=0

λn
n∑
k=0

E
(k)
i

∣∣∣ψ(n−k)
i

〉
.
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⇒
〈
ψ

(0)
j

∣∣∣ψ(n)
i

〉
=

1

E
(0)
i − E

(0)
j

[〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(n−1)
i

〉
−
n−1∑
k=1

E
(k)
i

〈
ψ

(0)
j

∣∣∣ψ(n−k)
i

〉]
(7.13)

and then (remember that
〈
ψ

(0)
i

∣∣∣ψ(n)
i

〉
= 0, ∀n ≥ 1):∣∣∣ψ(n)

i

〉
=
∑
j

∣∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣∣ψ(n)
i

〉

⇒
∣∣∣ψ(n)
i

〉
=
∑
j 6=i

1

E
(0)
i − E

(0)
j

∣∣∣ψ(0)
j

〉[〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(n−1)
i

〉
−
n−1∑
k=1

E
(k)
i

〈
ψ

(0)
j

∣∣∣ψ(n−k)
i

〉]
(7.14)

Therefore from (7.12) and (7.14) we have:

n = 1 : E
(1)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
i

〉
(7.15)

∣∣∣ψ(1)
i

〉
=
∑
j 6=i

∣∣∣ψ(0)
j

〉 〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
j

(7.16)

n = 2 : E
(2)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(1)
i

〉
=
∑
j 6=i

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
j

〉
E

(0)
i − E

(0)
j

=
∑
j 6=i

∣∣∣〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉∣∣∣2
E

(0)
i − E

(0)
j

(7.17)

etc.

One expects that taking just the first terms will be a good approximation as long as∣∣∣〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉∣∣∣∣∣∣E(0)
i − E

(0)
j

∣∣∣ � 1, j 6= i. (7.18)

Then, from (7.5) and for our case of interest (λ = 1) we have that up to first order :

Ei = E
(0)
i +

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
i

〉
+ . . . (7.19)

|ψi〉 =
∣∣∣ψ(0)
i

〉
+
∑
j 6=i

∣∣∣ψ(0)
j

〉 〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
j

+ . . . (7.20)

This was obtained with the normalization
〈
ψ

(0)
i

∣∣∣ψi(λ)
〉

= 1 that implies 〈ψi(λ))|ψi(λ)〉 6= 1.

However, we must normalize the states canonically:

|ψi(λ)〉 →
∣∣ψi(λ)

〉
= Z

1
2
i (λ) |ψi(λ)〉 (7.21)

with
〈
ψi(λ)

∣∣ψi(λ)
〉

= 1 ⇒ Zi(λ) = 〈ψi(λ)|ψi(λ)〉−1 . (7.22)
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From
〈
ψ

(0)
i

∣∣∣ψ(n)
i

〉
= 0 for n ≥ 1 (7.11) and the expression (7.16) for

∣∣∣ψ(1)
i

〉
above we have:

〈ψi(λ)|ψi(λ)〉 =
〈
ψ

(0)
i

∣∣∣ψ(0)
i

〉
+ λ

(〈
ψ

(0)
i

∣∣∣ψ(1)
i

〉
+
〈
ψ

(1)
i

∣∣∣ψ(0)
i

〉)
+ λ2

(〈
ψ

(0)
i

∣∣∣ψ(2)
i

〉
+
〈
ψ

(2)
i

∣∣∣ψ(0)
i

〉
+
〈
ψ

(1)
i

∣∣∣ψ(1)
i

〉)
+ . . .

= 1 + λ2
〈
ψ

(1)
i

∣∣∣ψ(1)
i

〉
+ . . .

= 1 + λ2
∑
j 6=i

∑
k 6=i

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉∗
E

(0)
i − E

(0)
j

〈
ψ

(0)
k

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
k

〈
ψ

(0)
j

∣∣∣ψ(0)
k

〉
+ . . .

= 1 + λ2
∑
j 6=i

∣∣∣〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉∣∣∣2(
E

(0)
i − E

(0)
j

)2 + . . . (7.23)

Therefore, one should replace:

|ψi(λ)〉 → Z
1
2
i (λ) |ψi(λ)〉 with Zi(λ) = 1− λ2

∑
j 6=i

∣∣∣〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉∣∣∣2(
E

(0)
i − E

(0)
j

)2 + . . . (7.24)

that will give O(λ2) order corrections to the perturbative series, beyond the first order
approximation we have shown in (7.19) and (7.20).

7.1.2 Degenerate case

If H0 has degenerate eigenvalues, namely same energies E
(0)
i = E

(0)
j for some eigenvectors∣∣∣ψ(0)

i

〉
6=
∣∣∣ψ(0)
j

〉
, then the expressions above are divergent and cannot be used. Notice that

any combination of those states has the same energy according to the unperturbed Hamil-
tonian but we assume the interaction V will break the degeneracy. So we must diagonalize

V in the degenerate subspace of H0 to find the appropriate combinations
{∣∣∣ψ(0)

i,a

〉}
that

will be the right basis to start our perturbation theory

Ei,a = E
(0)
i + E

(1)
i,a + . . . (7.25)

Then we separate the contributions of the degenerate eigenstates of H0 (E
(0)
j = E

(0)
i ) from

the rest, that were found before in (7.19) and (7.20):

Ei = E
(0)
i + E

(1)
i + . . . with E

(1)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
i

〉
(7.26)

|ψi〉 =
∣∣∣ψ(0)
i

〉
+

∑
j 6= i

E
(0)
j 6= E

(0)
i

∣∣∣ψ(0)
j

〉 〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
j

+
∑
j 6= i

E
(0)
j = E

(0)
i

∣∣∣ψ(0)
j

〉 1

E
(1)
i − E

(1)
j

∑
k 6= i

E
(0)
k 6= E

(0)
i

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
k

+ . . .

(7.27)
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Example: Calculate to first order in perturbation theory the energy eigenvalues and
eigenstates of a system described by the Hamiltonian H = H0 + V with

H0 .
=

∆ 0 0
0 0 0
0 0 ∆

 , V
.
=

0 0 ε
0 0 ε
ε ε 0

 (7.28)

in the basis {|e1〉 , |e2〉 , |e3〉} of H0 eigenstates. There is a degenerate eigenvalue, E
(0)
1 =

E
(0)
3 = ∆. We must diagonalize V in the the subspace H∆ : {|e1〉 , |e3〉}:

P∆ = |e1〉〈e1|+ |e3〉〈e3| , V = ε (|e1〉〈e3|+ |e2〉〈e3|+ |e3〉〈e1|+ |e3〉〈e2|) (7.29)

P∆H
0P∆ = ∆P∆

.
=

(
∆ 0
0 ∆

)
, P∆V P∆ = ε (|e1〉〈e3|+ |e3〉〈e1|)

.
=

(
0 ε
ε 0

)
. (7.30)

Diagonalization:∣∣∣∣ −λ ε
ε −λ

∣∣∣∣ = λ2 − ε2 = 0 ⇒

 λ = +ε : |u1〉 = 1√
2
(|e1〉+ |e3〉)

λ = −ε : |u3〉 = 1√
2
(|e1〉 − |e3〉)

(7.31)

So the right basis to start the perturbation theory is:

{|u1〉 , |e2〉 , |u3〉} ≡
{∣∣∣ψ(0)

1

〉
,
∣∣∣ψ(0)

2

〉
,
∣∣∣ψ(0)

3

〉}
(7.32)

with

|e1〉 =
1√
2

(∣∣∣ψ(0)
1

〉
+
∣∣∣ψ(0)

3

〉)
(7.33)

|e2〉 =
∣∣∣ψ(0)

2

〉
(7.34)

|e3〉 =
1√
2

(∣∣∣ψ(0)
1

〉
−
∣∣∣ψ(0)

3

〉)
(7.35)

In this new basis H0 has, of course, the same form and

V = ε (|e1〉〈e3|+ |e2〉〈e3|+ |e3〉〈e1|+ |e3〉〈e2|)
.
= ε

 1 1√
2

0
1√
2

0 − 1√
2

0 − 1√
2
−1

 (7.36)

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
j

〉
= Vij (7.37)

Now we can use the general expressions to obtain the energy eigenvalues:

E
(0)
i = E

(0)
i +E

(1)
i + . . . (7.38)

E
(1)
i =

〈
ψ

(0)
i

∣∣∣V ∣∣∣ψ(0)
i

〉
(7.39)

E
(0)
1 = ∆ E

(1)
1 = ε (7.40)

E
(0)
2 = 0 E

(1)
2 = 0 (7.41)

E
(0)
3 = ∆ E

(1)
3 = −ε (7.42)
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And the energy eigenstates:

|ψi〉 =
∣∣∣ψ(0)
i

〉
+
∣∣∣ψ(1)
i

〉
+ . . . (7.43)

∣∣∣ψ(1)
i

〉
=

∑
j 6= i

E
(0)
j 6= E

(0)
i

∣∣∣ψ(0)
j

〉 〈ψ(0)
j

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
j

(7.44)

+
∑
j 6= i

E
(0)
j = E

(0)
i

∣∣∣ψ(0)
j

〉 1

E
(1)
i − E

(1)
j

∑
k 6= i

E
(0)
k 6= E

(0)
i

〈
ψ

(0)
j

∣∣∣V ∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣V ∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
k

(7.45)∣∣∣ψ(0)
1

〉
=

1√
2

(|e1〉+ |e3〉) (7.46)∣∣∣ψ(0)
2

〉
= |e2〉 (7.47)∣∣∣ψ(0)

3

〉
=

1√
2

(|e1〉 − |e3〉) (7.48)

∣∣∣ψ(1)
1

〉
=
∣∣∣ψ(0)

2

〉 〈ψ(0)
2

∣∣∣V ∣∣∣ψ(0)
1

〉
E

(0)
1 − E(0)

2

+
∣∣∣ψ(0)

3

〉 1

E
(1)
1 − E(1)

3

〈
ψ

(0)
3

∣∣∣V ∣∣∣ψ(0)
2

〉〈
ψ

(0)
2

∣∣∣V ∣∣∣ψ(0)
1

〉
E

(0)
1 − E(0)

2

=
∣∣∣ψ(0)

2

〉 ε√
2

∆− 0
+
∣∣∣ψ(0)

3

〉 1

ε− (−ε)
− ε√

2
ε√
2

∆− 0

=
ε√
2∆

∣∣∣ψ(0)
2

〉
+

ε

4∆

∣∣∣ψ(0)
3

〉
(7.49)

∣∣∣ψ(1)
2

〉
=
∣∣∣ψ(0)

1

〉 〈ψ(0)
1

∣∣∣V ∣∣∣ψ(0)
2

〉
E

(0)
2 − E(0)

1

+
∣∣∣ψ(0)

3

〉 〈ψ(0)
3

∣∣∣V ∣∣∣ψ(0)
2

〉
E

(0)
2 − E(0)

3

=
∣∣∣ψ(0)

1

〉 ε√
2

0−∆
+
∣∣∣ψ(0)

3

〉 − ε√
2

0−∆

= − ε√
2∆

∣∣∣ψ(0)
1

〉
+

ε√
2∆

∣∣∣ψ(0)
3

〉
(7.50)

∣∣∣ψ(1)
3

〉
=
∣∣∣ψ(0)

2

〉 〈ψ(0)
2

∣∣∣V ∣∣∣ψ(0)
3

〉
E

(0)
3 − E(0)

2

+
∣∣∣ψ(0)

1

〉 1

E
(1)
3 − E(1)

1

〈
ψ

(0)
1

∣∣∣V ∣∣∣ψ(0)
2

〉〈
ψ

(0)
2

∣∣∣V ∣∣∣ψ(0)
3

〉
E

(0)
3 − E(0)

2

=
∣∣∣ψ(0)

2

〉 − ε√
2

∆− 0
+
∣∣∣ψ(0)

1

〉 1

−ε− ε
− ε√

2
ε√
2

∆− 0

= − ε√
2∆

∣∣∣ψ(0)
2

〉
+

ε

4∆

∣∣∣ψ(0)
1

〉
(7.51)
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7.2 Time-dependent perturbations

7.2.1 The interaction picture

Let us now discuss time-dependent perturbations. The typical situation is the following. Suppose
that the Hamiltonian is

H = H0 + V (t) with V (t < 0) = 0 (7.52)

and the system is initially (t = 0) in an eigenstate
∣∣i0〉 of H0. Once we switch on the perturbation

V (t ≥ 0) 6= 0 the state
∣∣i0〉 becomes non-stationary, it will change, and we are interested in the

probability that after a time t it goes to a final state
∣∣f0
〉

(transition probability). Notice that both
states are by definition eigenstates of H0.

The problem is usually formulated in the so called interaction picture (or Dirac picture), half
the way between the Schrödinger and the Heisenberg pictures. Remember that in the Schrödinger
picture the operators remain constant but the states evolve with time:

O ≡ OS = const, i~
d

dt
|α(t)〉S = H |α(t)〉S ⇒ |α(t)〉S = e−

i
~Ht |α(0)〉S (7.53)

whereas in the Heisenberg picture the states remain constant but the operators evolve with time:

|α〉H = const, OH(t) = e
i
~HtOH(0)e−

i
~Ht (7.54)

so that the expectation values are independent of the time evolution picture:

H〈α| OH(t) |β〉H = S〈α(t)| O |β(t)〉S , with O = OH(0), |α〉H = |α(0)〉S . (7.55)

The interaction picture is useful when the spectrum of eigenvalues and eigenvectors of the unper-
turbed system described by H0 is known. In that case one can subtract from a state the part of the
evolution due to H0. In particular, in the interaction picture we define

|α(t)〉I ≡ e
i
~H

0t |α(t)〉S . (7.56)

Let us see how |α(t)〉I evolves with time:

i~
d

dt
|α(t)〉I = i~

d

dt

(
e

i
~H

0t |α(t)〉S
)

= −H0e
i
~H

0t |α(t)〉S + i~ e
i
~H

0t d

dt
|α(t)〉S

= −H0e
i
~H

0t |α(t)〉S + e
i
~H

0t (H0 + V )︸ ︷︷ ︸
H

|α(t)〉S

= e
i
~H

0tV |α(t)〉S
= e

i
~H

0tV e−
i
~H

0t︸ ︷︷ ︸
VI(t)

e
i
~H

0t |α(t)〉S︸ ︷︷ ︸
|α(t)〉I

. (7.57)

Therefore in the interaction picture the states evolve according to the perturbation:

i~
d

dt
|α(t)〉I = VI(t) |α(t)〉I (7.58)

(Schrödinger equation in the interaction picture) and the operators, including V , evolve according
to the unperturbed Hamiltonian:

OI(t) ≡ e
i
~H

0tOe− i
~H

0t (O in the interaction picture) (7.59)

⇒ d

dt
OI = − i

~
[OI , H0]. (7.60)

If V = 0 we recover the Heisenberg picture.
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7.2.2 Dyson series

Our next objective is to solve the Schrödinger equation in the interaction picture in terms of a
time-evolution linear operator Ũ(t):

|α(t)〉I ≡ Ũ(t) |α(0)〉I . (7.61)

Substituting this in (7.58) we have

i~
dŨ(t)

dt
= VI(t) Ũ(t) (7.62)

with the boundary condition Ũ(0) = I whose solution is

i~
ˆ t

0

dt1
dŨ(t1)

dt1
=

ˆ t

0

dt1 VI(t1) Ũ(t1)

⇒ Ũ(t) = I − i

~

ˆ t

0

dt1 VI(t1) Ũ(t1). (7.63)

This is the integral version of the Schrödinger equation for the time-evolution operator Ũ(t).

If V is “small” we can solve this equation by iterations. At the zeroth order Ũ(t) = I, so

Ũ(t) = I − i

~

ˆ t

0

dt1 VI(t1) +O(V 2). (7.64)

Inserting now

Ũ(t1) = I − i

~

ˆ t1

0

dt2 VI(t2) (7.65)

in (7.63) we have

Ũ(t) = I − i

~

ˆ t

0

dt1 VI(t1) +

(
− i

~

)2 ˆ t

0

dt1

ˆ t1

0

dt2 VI(t1)VI(t2) +O(V 3). (7.66)

Then it is straightforward that the term of order n of the Dyson series is:(
− i

~

)n ˆ t

0

dt1

ˆ t1

0

dt2 · · ·
ˆ tn−1

0

dtn VI(t1)VI(t2) · · ·VI(tn). (7.67)

The Dyson series can be expressed in a more compact form using the time-ordered product of
operators defined as:

T{A(t1)B(t2)} =

{
A(t1)B(t2) if t1 ≥ t2
B(t2)A(t1) if t1 < t2

(7.68)

that puts first the latter operator. Using T it is easy to see that:(
− i

~

)2 ˆ t

0

dt1

ˆ t1

0

dt2 VI(t1)VI(t2) =
1

2

(
− i

~

)2 ˆ t

0

dt1

ˆ t

0

dt2 T{VI(t1)VI(t2)} (7.69)

and for the order n:(
− i

~

)n ˆ t

0

dt1

ˆ t1

0

dt2 · · ·
ˆ tn−1

0

dtn VI(t1)VI(t2) · · ·VI(tn)

=
1

n!

(
− i

~

)n ˆ t

0

dt1

ˆ t

0

dt2 · · ·
ˆ t

0

dtn T{VI(t1)VI(t2) · · ·VI(tn)}. (7.70)

Hence the Dyson series can be written as the following time-ordered exponential:

Ũ(t) = T

{
exp

[
− i

~

ˆ t

0

dt′ V (t′)

]}
(7.71)
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Figure 7.1: Pictorial view of the transition amplitude from the Dyson series.

7.2.3 Transition probability

The time-evolution operator in the interaction picture Ũ is related to the the time-evolution operator
in the Schrödinger picture by

U(t) = e−
i
~H

0tŨ(t) (7.72)

since it satisfies the equation

i~
dU(t)

dt
= H0e−

i
~H

0tŨ(t) + e−
i
~H

0tVI(t)Ũ(t)

= H0e−
i
~H

0tŨ(t) + e−
i
~H

0te
i
~H

0tV e−
i
~H

0tŨ(t)

= (H0 + V )U(t)

= H U(t) (7.73)

Notice that Ũ(t) = e
i
~H

0tU(t) is not the same as “UI” (U in the interaction picture)!

Therefore, the probability amplitude that a state
∣∣i0〉 at t = 0 goes to a final state

∣∣f0
〉

after a
time t due to a perturbation V is given by

A(i→ f ; t) =
〈
f0
∣∣U(t)

∣∣i0〉 = 〈f | e− i
~H

0tŨ(t) |i〉 = e−
i
~Ef t 〈f | Ũ(t) |i〉 . (7.74)

Here and in the following superindices 0 are dropped to alleviate the notation. The matrix elements
〈f | Ũ(t) |i〉 can be calculated perturbatively using the Dyson series:

A(i→ f ; t) =

∞∑
n=0

A(n)(i→ f ; t) (7.75)

A(n)(i→ f ; t) = e−
i
~Ef t

(
− i

~

)n ˆ t

0

dtn

ˆ tn

0

dtn−1 · · ·
ˆ t2

0

dt1 〈f |VI(tn)VI(tn−1) · · ·VI(t1) |i〉

= e−
i
~Ef t

(
− i

~

)n ∑
kn−1

∑
kn−2

· · ·
∑
k1

ˆ t

0

dtn

ˆ tn

0

dtn−1 · · ·
ˆ t2

0

dt1

× e
i
~ (Ef−Ekn−1

)tn 〈f |V (tn)
∣∣ψkn−1

〉
× e

i
~ (Ekn−1

−Ekn−2
)tn−1

〈
ψkn−1

∣∣V (tn−1)
∣∣ψkn−2

〉
. . .

× e
i
~ (Ek1−Ei)t1 〈ψk1 |V (t1) |i〉 (7.76)

where we have redefined the integration variables so that t > tn > tn−1 > · · · > t2 > t1 > 0, we
have inserted n− 1 times the resolution of the identity:

I =
∑
k

|ψk〉〈ψk| with H0 |ψk〉 = Ek |ψk〉 (7.77)
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and we have substituted:

VI(tk) = e
i
~H

0tkV (tk)e−
i
~H

0tk . (7.78)

The amplitude can be represented pictorially as in Fig. 7.1 with ti = 0, tf = t.

The transition probability is then:

wi→f (t) = |A(i→ f ; t)|2 = | 〈f | Ũ(t) |i〉 |2. (7.79)

that can be calculated order by order in perturbation theory using the Dyson series.

7.2.4 Constant perturbation: Fermi’s golden rule

This is the simplest example,

V (t) = V θ(t) =

{
0 if t < 0
V if t ≥ 0.

(7.80)

where V is independent of t but may depend on ~x, ~p and ~s. Then at first order we have, for f 6= i,

〈f | Ũ(t) |i〉 = − i

~

ˆ t

0

dt′ 〈f | e i
~H

0t′V e−
i
~H

0t′ |i〉 = − i

~
〈f |V |i〉

ˆ t

0

dt′ e
i
~ (Ef−Ei)t′

=


− i

~
Vfi t ; if ∆E = 0

Vfi
∆E

(
1− e

i
~ ∆E t

)
; if ∆E 6= 0

(7.81)

with

Vfi = 〈f |V |i〉 , ∆E = Ef − Ei. (7.82)

Hence, for ∆E 6= 0, the (first order) Born approximation is:

wi→f 6=i(t) =
4|Vfi|2

(∆E)2
sin2 ∆E t

2~
, wi→i(t) = 1−

∑
f

wi→f 6=i(t). (7.83)

This transition probability (Fig. 7.2) oscillates for ∆E 6= 0, grows with t2 when ∆E → 0,

lim
∆E→0

wi→f (t) =
|Vfi|2

~2
t2 (7.84)

and is negligible when ∆E > 2π~/t. Of course the probability must be wi→f < 1, so the Born
approximation fails when t is too large.

On the other hand, if we call ∆t the interval during which the perturbation has been turned
on, a transition with appreciable probability is possible only if

∆E ∼ ~
∆t

⇔ ∆E∆t ∼ ~ (7.85)

where by ∆E we mean the energy change involved in a transition. If ∆t is small we can tolerate
a good amount of energy non-conservation. If ∆t is large only transitions with very approximate
energy conservation are most likely to occur. This provides a kind of time-energy uncertainty
relation.

The fact that the transition probability for i → f it not linear but grows quadratically with
time when Ef ≈ Ei may look unreasonable. We will see that this is actually not the case.

In realistic situations final states that are so close form a continuous spectrum in the neigh-
bourhood of Ei. This may happen in the scattering of a plane wave by a finite range potential
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Figure 7.2: Transition probability for i→ f 6= i as a function of ∆E = Ef − Ei at fixed t.

(the final state has a continuum of possible scattering angles; see next chapter), or in the ionization
of an atom (see example at the end of this chapter). In such cases we are interested in the sum
(integration) of transition probabilities over final states with E ≈ Ei.

Let us represent by ν the set of variables describing the final state that take values in the
continuum, including the energy E (with respect to H0) and perhaps other variables α. We are
interested in the transition probability from an initial state |i〉 of the discrete spectrum of H0 to
a continuous set of states [f ] characterized by ∆ν, with normalization 〈ν |ν′〉 = δ(ν − ν′). The
projector into this set of final states is:

P∆ν =

ˆ
∆ν

dν |ν〉〈ν| =
ˆ

∆α

dα

ˆ
∆E

dE |α,E〉 ρ(E,α) 〈α,E| (7.86)

where ρ(E,α) is the density of states with generalized eigenvalues α and E. Then the relevant
transition probability is

wi→[f ](t) =

ˆ
∆ν

dν 〈i| Ũ†(t) |ν〉〈ν| Ũ(t) |i〉

=

ˆ
∆α

dα

ˆ
∆E

dE 〈i| Ũ†(t) |α,E〉 ρ(E,α) 〈α,E| Ũ(t) |i〉

≡
ˆ

∆α

dα

ˆ
∆E

dE wi→α,E(t) (7.87)

where

wi→α,E(t) = ρ(E,α) | 〈α,E| Ũ(t) |i〉 |2 (7.88)

is a probability density.

Let us calculate it at first order after a long t:

wi→α,E(t) = ρ(E,α) lim
t→∞

4|Vα,E i|2

(∆E)2
sin2 ∆E t

2~
= ρ(E,α)

|Vα,E i|2

~2
lim
t→∞

sin2 ∆E t

2~(
∆E

2~

)2

= ρ(E,α)
|Vα,E i|2

~2
πt δ

(
∆E

2~

)
=

2π

~
|Vα,E i|2ρ(E,α)δ(E − Ei) t (7.89)

where we have used the following representation of the Dirac delta:

δ(x) = lim
t→∞

1

π

sin2 xt

x2t
. (7.90)

We see that the total transition probability actually grows linearly with t for large times (it is
proportional to the area of the curve in Fig. 7.2, that is proportional to height of the peak ∼ t2
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times the width ∼ t−1). We also confirm that after a “long” time there will only be transitions
that preserve the energy.

It is therefore convenient to define the (differential) transition rate or transition probability
per unit time for large times,

Γ(i→ α,E) = lim
t→∞

wi→α,E(t)

t
(7.91)

that results in the (second) Fermi’s golden rule (actually due to Dirac):

Γ(i→ α,E) =
2π

~
|Vα,E i|2ρ(E,α)δ(E − Ei) (7.92)

Notice that the delta function selects final states with the same energy as the initial one. And,
of course, this rule is only applicable for large times and within the range of validity of the Born
approximation. Integrating now the set of final states |f〉 over ∆α and ∆E:

Γ(i→ [f ]) =
2π

~
|V fi|2ρ(E = Ei) (7.93)

where |V fi|2 is the average of |Vα,E i|2 and ρ(E) the number density of final states with E ≈ Ei.

7.2.5 Harmonic perturbation

Consider now the following time-dependent perturbation

V (t) = Veiωt + V†e−iωt (7.94)

where V is independent of t but may depend on ~x, ~p and ~s. Then at first order, for i 6= f ,

〈f | Ũ(t) |i〉 = − i

~

ˆ t

0

dt′ 〈f | e i
~H

0t′V (t′)e−
i
~H

0t′ |i〉

= − i

~

ˆ t

0

dt′ e
i
~ (Ef−Ei)t 〈f |V (t′) |i〉

=
Vfi

Ef − Ei + ~ω

(
1− e

i
~ (Ef−Ei+~ω)t

)
+

V†fi
Ef − Ei − ~ω

(
1− e

i
~ (Ef−Ei−~ω)t

)
(7.95)

with

Vfi = 〈f | V |i〉 , V†fi = 〈f | V† |i〉 . (7.96)

This is similar to the constant perturbation case with the change

∆E → Ef − Ei ± ~ω. (7.97)

So as t→∞ the transition probability density is given by the Fermi’s golden rule:

wi→α,E(t) =
2π

~
ρ(E,α)

[
|Vfi|2 δ(E − Ei + ~ω) + |Vif |2 δ(E − Ei − ~ω)

]
t (7.98)

and the transition rate is

Γ(i→ [f ]) =


2π

~
|Vfi|2ρ(E = Ei − ~ω)

2π

~
|Vif |2ρ(E = Ei + ~ω)

(7.99)

where we have used that |V†fi| = |V∗if | = |Vif |, that is different from zero only when the final energy
E = Ei − ~ω (stimulated emission) or E = Ei + ~ω (absorption), as illustrated in Fig. 7.3. In the
first case the system emits energy ~ω, what is only possible when the initial state is excited. In the
second case the system absorbs energy ~ω becoming an excited state (or ionizes).

To summarize:
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Figure 7.3: (a) Stimulated emission (possible only if initial state is excited). (b) Absorption.

– For a constant perturbation we obtain an appreciable transition probability for |i〉 → |f〉
when Ef ≈ Ei.

– For a harmonic perturbation we obtain an appreciable transition probability for |i〉 → |f〉
when Ef ≈ Ei − ~ω (stimulated emission) or Ef ≈ Ei + ~ω (absorption).

Example: Consider a hydrogen atom in the ground state at t = 0. We then apply a uniform and
periodic electric field ~E = ~E0 sinωt.

– Find the minimum frequency ω0 of the field in order to ionize the atom.

– Determine to first order in perturbation theory the probability to ionize the atom per unit
time.

The hydrogen atom has a discrete energy spectrum En of bound electrons plus a continuum of

free electrons of momentum ~p and energy E = p2

2m :

The energy and wave function of the ground state are:

E1 = −α
2mc2

2
= −13.6 eV (7.100)

ψ1(~x) = ψ1(r) =
1√
πa3

0

e−
r
a0 (7.101)

with a0 =
~

mcα
= 0.0529 nm (Bohr radius) and α =

e2

4πε0~c
≈ 1

137
.

The periodic electric field is a harmonic perturbation:

∇V = −e ~E, ~E = ~E0 sinωt

⇒ V = −e ~E0 · ~x
eiωt − e−iωt

2i

⇒ V = Veiωt + V†e−iωt with V(~x) = i
e ~E0 · ~x

2
(7.102)

From Fermi’s golden rule, the transition rate to a free state with energy Ef is

Γ(i→ [f ]) =
2π

~
|Vfi|2ρ(Ef = Ei + ~ω) (7.103)

To get a free electron with energy Ef we need a frequency ω such that

Ei = E1 ⇒ Ef = −α
2mc2

2
+ ~ω (7.104)
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Hence the minimum frequency is ω0 =
α2mc2

2~
.

To calculate the transition rate we need first:

• The density of final states ρ(E).

• The matrix element Vfi = 〈~p| V |i〉 between the initial state 〈~x|i〉 = ψ1(r)

and a final state given by the plane wave 〈~x|~p〉 with E = p2

2m .

Density of final states: Suppose the free electron of momentum ~p confined within a cube of size
L (we will take L→∞ only at the end). Then inside the cube,

〈~x|~p〉 =
1√
V

e
i
~ ~p·~x with V = L3 so that 1 = 〈~p|~p〉 =

ˆ
V

d3x 〈~p|~x〉 〈~x|~p〉 (7.105)

and its momentum is quantized (periodic boundary conditions with period L):

~p =
2π~
L

(nx, ny, nz) ⇒ dn =
V

(2π~)3
d3p =

V

(2π~)3
p2dp dΩ (7.106)

So the number of states per interval of momentum [p, p+ dp] and solid angle is:

ρ(p,Ω) =
dn

dp dΩ
=

V

(2π~)3
p2, E =

p2

2m
⇒ p =

√
2mE (7.107)

and the number of states per interval of energy [E,E + dE] and solid angle is:

dE =
p

m
dp⇒ dn

dE dΩ
=
m

p

dn

dp dΩ
= ρ(E,Ω) =

V

(2π~)3

√
2m3E (7.108)

Matrix element: In spherical coordinates: ~E0 · ~x = E0r [sin θ sin θ0 cos(ϕ− ϕ0) + cos θ cos θ0]
where the first terms vanishes after integration over ϕ and

Vfi =

ˆ
d3x 〈~p|~x〉 V(~x) 〈~x|i〉

=
1√
V

1√
πa3

0

i
e

2

ˆ
d3x ~E0 · ~x e−

i
~ ~p·~x−

r
a0

=
1√
V

1√
πa3

0

i
e

2
E0

ˆ 2π

0

dϕ

ˆ 1

−1

d cos θ

ˆ ∞
0

dr r3 cos θ cos θ0 e−
i
~pr cos θ− r

a0

=
1√
V

1√
πa3

0

i
e

2
E0 2π cos θ0

ˆ 1

−1

d cos θ cos θ

ˆ ∞
0

dr r3 e−
i
~pr cos θ− r

a0

=
1√
V

1√
πa3

0

i
e

2
E0 2π cos θ0 (−i)

16a5
0p

~
(

1 +
p2a20
~2

)3 (7.109)

Transition rate:

Γ(i→ [f ]) =
2π

~

ˆ
dΩ

ˆ
dEf ρ(Ef ,Ω)|Vfi|2δ(Ef − Ei − ~ω) (7.110)

with

ˆ
dΩ = 2π

ˆ 1

−1

dcos θ0. Therefore the volume factors drop and

Γ(i→ [f ]) =
2π

~
2π

2

3

1

πa3
0

e2

4
E2

04π2 (16a5
0p)

2

~2
(

1 +
p2a20
~2

)6

√
2m3E

2π~3

∣∣∣∣∣∣∣
E= p2

2m=Ei+~ω
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=
1024π2

3~6

e2E2
0a

7
0mp

3(
1 +

p2a20
~2

)6

∣∣∣∣∣∣∣
p2=2m(Ei+~ω)

(7.111)
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Chapter 8

Scattering theory

8.1 Scattering in Classical and Quantum Mechanics

Scattering theory is a complex subject that must be treated in more detail in a course on quantum
field theory. Here we will describe just the main concepts, in a non relativistic framework.

In a first approximation, a collision or scattering is a process where two particles initially very
far from each other (and hence free) approach, interact (exchanging energy and momentum) and
finally move apart (becoming free again). We will discuss just elastic collisions, where the number
and nature of initial and final particles is preserved. In contrast, energy can be converted into mass
and viceversa in inelastic collisions, that can can only be studied in the context of a relativistic
quantum field theory.

Usually we will consider the simpler case where one particle, the target, is fixed and does
not move during the process, which is a good enough approximation if it is much heavier than the
incoming particle, the projectile. Then we have the interaction of one particle with a static potential
created by the target and the process is called scattering (Fig. 8.1). One can reduce the first to the
second case going to the center of mass frame.

For the quantum treatment of the scattering process we will consider in more detail the time-
dependent formalism where one finds the time evolution of the state |ψ(t)〉 of the projectile. This
is conceptually closer to the description of the classical scattering and also to the formalism in
quantum field theory. At the end of this chapter there will be a brief summary of the time-
independent formalism.

Classically, the scattering of a particle by a fixed target could be divided in three phases
depicted in Fig. 8.2 (left). In microscopical processes the interaction region (zone where the potential
is relevant) is tiny, so is the interaction time for projectiles that travel usually at close to the speed

Figure 8.1: Collision of two particles viewed as a scattering by a potential.
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114 Chapter 8: Scattering theory

Figure 8.2: Sketch of a scattering process (left) and a bound state (right).

of light,

d ∼ Å = 10−10 m, v ∼ c = 3× 108 m/s ⇒ t ∼ d

v
∼ 10−18 s. (8.1)

The classical trajectory is given by Newton’s law,

m~̈x = −~∇V. (8.2)

If the interaction takes place at t ∼ 0, the trajectory x(t) must be asymptotically a straight line for
t→ ∓∞ when the particle moves almost freely (V ≈ 0),

~xin(t) = ~ain + ~vint ←−−−−−
t→−∞

~x(t) −−−−−→
t→+∞

~xout(t) = ~aout + ~voutt (8.3)

where ~xin(t) and ~xout(t) are the in and out asymptotes. The real trajectory at t → ∓∞ coincides
with the asymptotic one. If a particle approaches the target following an in-asymptote the classical
scattering trajectory is completely determined. But not all trajectories define an out asymptote,
because there are also bound states, whose trajectories are captured in the interaction region.

In quantum mechanics the scattering trajectory is replaced by a ket |ψ(t)〉 that evolves
according to the Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 . (8.4)

We will assume a time-independent Hamiltonian,

H =
p2

2m
+ V (~x) = H0 + V (~x). (8.5)

Then, taking |ψ〉 = |ψ(t = 0)〉, we can write

|ψ(t)〉 = U(t) |ψ〉 , U(t) = e−
i
~Ht. (8.6)

Suppose that the interaction takes place at t ∼ 0. Then at t→ ∓∞ the state |ψ(t)〉must correspond
to a free particle if it represents a scattering state,

|ψin(t)〉 ←−−−−−
t→−∞

|ψ(t)〉 −−−−−→
t→+∞

|ψout(t)〉 (8.7)

where the asymptotic in and out states evolve like a free particle,

|ψin(t)〉 = U0(t) |ψin〉 , |ψout(t)〉 = U0(t) |ψout〉 , U0(t) = e−
i
~H

0t. (8.8)

The kets |ψin〉 (|ψout〉) are asymptotic states at t = 0 that evolve freely to t→ −∞ (t→ +∞) when
they coincide with the scattering state |ψ(t)〉 (see Fig. 8.3).
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Figure 8.3: Sketch of the scattering and asymptotic states.

8.2 Asymptotic conditions. The scattering operator or S-
matrix

To have a well defined scattering theory the potential must satisfy some asymptotic conditions,
that are difficult to prove and are not known with full generality. In the simpler case of a spherical
potential, V (r), the following three conditions must be satisfied:a

1. The potential must go to zero faster than r−3 at large r, or otherwise the particle would never
approach an asymptote (that would result in infinite total cross sections as we will see),

V (r)
1
r3

−−−−→
r→∞

0. (8.9)

2. The potential must diverge slower than r−3/2 at r → 0, or otherwise the particle will be
captured,

V (r)
1

r3/2

−−−→
r→0

0. (8.10)

3. The potential must be continuous at 0 < r <∞, except perhaps at a finite number of finite
discontinuities.

Under these conditions, for every |ψin〉 there is a unique scattering state |ψ〉 such that

|ψ(t)〉 − |ψin(t)〉 = U(t) |ψ〉 − U0(t) |ψin〉 −−−−−→
t→−∞

0

or |ψ〉 = lim
t→−∞

U†(t)U0(t) |ψin〉 ≡ Ω+ |ψin〉 . (8.11)

And analogously, for every |ψout〉 there is a unique scattering state |ψ〉 such that

|ψ(t)〉 − |ψout(t)〉 = U(t) |ψ〉 − U0(t) |ψout〉 −−−−−→
t→+∞

0

or |ψ〉 = lim
t→+∞

U†(t)U0(t) |ψout〉 ≡ Ω− |ψout〉 . (8.12)

The Ω± are called Møller operators, that relate the in and out asymptotic states at t = 0 with the
scattering state also at t = 0 (see Fig 8.3):

|ψ〉 = Ω+ |ψin〉 = Ω− |ψout〉 (8.13)

Notice that any state of the Hilbert space can represent an in (or out) asymptote. Hence the
domain of the operator Ω+ is the whole Hilbert space H. However, not all the states have an

aThe Coulomb potential V (r) ∼ r−1 does not fulfill the first condition, but this is not a problem because
a target generating such a potential is always screened at large distance in physical situations.
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in-asymptote, i.e. not all are scattering states. The rest are the bound states.b Therefore, the
scattering states belong to R+ = R(Ω+), the range or image of Ω+,

∀ |ψin〉 ∈ H, Ω+ |ψin〉 ∈ R+ (8.14)

and B contains the bound states of H. One can see that

H = R+ ⊕ B. (8.15)

And the same with the asymptotic states |ψout〉. The domain of Ω− is H and its range R− = R(Ω−)
is also orthogonal to the subspace of bound states,

∀ |ψout〉 ∈ H, Ω− |ψout〉 ∈ R− ⇒ H = R− ⊕ B. (8.16)

In fact, one can prove that R+ = R− ≡ R. The Møller operators

Ω± = lim
t→∓∞

U†(t)U0(t) (8.17)

are isometric (not unitary) because Ω−1
± = Ω†± but the domain of Ω†± is not H but R:

Ω†+ (Ω+ |ψin〉)︸ ︷︷ ︸
∈R

= |ψin〉 , Ω†− (Ω− |ψout〉)︸ ︷︷ ︸
∈R

= |ψout〉 . (8.18)

Therefore, we can write

|ψ〉 = Ω− |ψout〉 ⇒ |ψout〉 = Ω†− |ψ〉 = Ω†−Ω+ |ψin〉 (8.19)

which defines the scattering operator or S-matrix,

S = Ω†−Ω+ with |ψout〉 = S |ψin〉 (8.20)

The operator S establishes a one-to-one correspondence between the in and the out asymptotic
states. For every |ψin〉 there is a |ψout〉 and viceversa. The operator S is unitary and it is all we
need to know to describe a scattering process: we send a state |ψin〉 and after the collision we have
a state |ψout〉 = S |ψin〉. The probability that the state |ψin〉 becomes whatever state |φout〉 is

w(ψin → φout) = | 〈φout |ψout〉 |2 = | 〈φout|S |ψin〉 |2. (8.21)

8.3 Energy conservation

The Hamiltonian H = H0 + V (~x) is time-independent. Therefore the expectation value of the
energy in a scattering state |ψ(t)〉 is constant,

d

dt
〈ψ(t)|H |ψ(t)〉 = 〈ψ(t)| [H,H] |ψ(t)〉 = 0, (8.22)

and hence the energy of the in and out states must be the same,

Ein = 〈ψin|H0 |ψin〉
= Eout = 〈ψout|H0 |ψout〉 = 〈ψin|S†H0S |ψin〉

⇒ S†H0S = H0 ⇒ [S,H0] = 0. (8.23)

In the momentum representation,

ψout(~p
′) = 〈~p′ |ψout〉 = 〈~p′|S |ψin〉 =

ˆ
d3p 〈~p′|S |~p〉 〈~p|ψin〉

bFor instance, the harmonic oscillator potential has no scattering states, it has only bound states.
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=

ˆ
d3p 〈~p′|S |~p〉ψin(~p). (8.24)

The S-matrix element 〈~p′|S |~p〉 is the probability amplitude to have an out-state with momentum
~p′ if the in-state has momentum ~p,

|ψin〉 = |~p〉 ⇒ ψout(~p
′) = 〈~p′|S |~p〉 . (8.25)

Note: Remember that states with well defined momentum cannot represent scattering states be-
cause they are stationary (they do not evolve with time). In fact, they are unphysical (not normal-
izable). Consequently, in physical situations, this matrix element between states with well defined
momenta will always appear within an integral (see above). We will come back to this discussion
at the beginning of the Section on the time-independent formalism.

8.4 On-shell T-matrix and scattering amplitude

The states with well defined momentum are energy eigenstates of the free Hamiltonian:

H0 |~p〉 = E~p |~p〉 , E~p =
p2

2m
. (8.26)

Since S and H0 commute, the energy is conserved in the collision:

0 = 〈~p′| [H0, S] |~p〉 = 〈~p′| (H0S − SH0) |~p〉 = (E~p′ − E~p) 〈~p′|S |~p〉 (8.27)

and therefore

〈~p′|S |~p〉 = 0 if E~p 6= E~p′ . (8.28)

This means that ~p may go to ~p′ 6= ~p but |~p| = |~p′|. We can redefine the S matrix as follows:

S ≡ I +R (8.29)

where S = I would correspond to ~p = ~p′, the case when V = 0 (absence of interactions) and R is
the remainder. Then the S-matrix elements read

〈~p′|S |~p〉 ≡ δ3(~p′ − ~p)− 2πi δ(E~p′ − E~p) t(~p′ ← ~p) (8.30)

where we have introduced the on-shell T-matrix element t(~p′ ← ~p) that really contains the effect of
the collision.

Notice that the on-shell T -matrix is only defined “on the energy-shell”, that is for E~p = E~p′ or
|~p| = |~p′|. The off-shell T -matrix, whose elements would be 〈~p′|T |~p〉 for arbitrary ~p and ~p′, coincides

with t(~p′ ← ~p) when |~p| = |~p′|. Although only the on-shell T -matrix elements are relevant for the
observations related to scattering processes, we will see that the off-shell T -matrix is a useful tool
in calculations (in particular, it satisfies the Lippmann-Schwinger equation).

In addition, we define the scattering amplitude f(~p′ ← ~p) from the on-shell T -matrix element
as

f(~p′ ← ~p) ≡ −(2π)2 ~mt(~p′ ← ~p). (8.31)

It has dimensions of a length. We will see next that the (differential) cross section of a scattering
process is just |f(~p′ ← ~p)|2. In terms of the scattering amplitude we have:

〈~p′|S |~p〉 = δ3(~p′ − ~p) +
i

2π~m
δ(E~p′ − E~p)f(~p′ ← ~p) (8.32)

and

ψout(~p
′) =

ˆ
d3p 〈~p′|S |~p〉ψin(~p)

= ψin(~p′) +
i

2π~m

ˆ
d3p δ(E~p′ − E~p)f(~p′ ← ~p)ψin(~p). (8.33)
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Figure 8.4: Classical scattering of a pointlike particle by a fixed rigid body. The cross section
σ is the projection of the rigid body on the plane normal to ~p0.

Figure 8.5: A solid angle Ω in steradians (sr) is the area of a patch of a unit sphere (r = 1),
in the same way a planar angle θ in radians (rad) is the length of an arc of a unit circle.

8.5 Cross section

8.5.1 The classical cross section

Suppose the scattering of a pointlike particle by a fixed rigid body (Fig. 8.4). Assume we know
the momentum ~p0 of the projectile but we ignore its impact parameter ~ρ, defined as the distance
(vector) between a chosen axis and the incident trajectory.

We would learn very little about the target from a single passage of the projectile: if it emerges
with a momentum different from ~p0 we know that it must have “hit” the target; otherwise, it must
have “missed” it. We rather repeat the experiment many times with the same incoming momentum
but with random impact parameters. If we send ninc = Ninc/A particles per unit area (normal to
~p0) then Nsc will scatter with

Nsc

Ninc
=
σ

A
⇒ Nsc = ninc σ (8.34)

where σ is the cross-sectional area of the target, the scattering cross section.

And we can get even more information if we count the number of scattered particles in a
given direction. Let us denote by ∆Nsc the number of particles scattered into the solid angle ∆Ω
(Fig. 8.5). Then

∆Nsc = ninc ∆σ. (8.35)

Dividing by ∆Ω and taking the limit ∆Ω→ 0,

dNsc

dΩ
= ninc

dσ

dΩ
, dΩ = d cos θdϕ. (8.36)

The differential cross section dσ/dΩ is the cross section of the part of the target that scatters into
dΩ. Integrating over all directions one gets the total cross section σ:

σ =

ˆ
dΩ

dσ

dΩ
=

ˆ 1

−1

d cos θ

ˆ 2π

0

dϕ
dσ

dΩ
(θ, ϕ). (8.37)
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Figure 8.6: Two incoming wave packets with ~p ≈ ~p0 differing by an impact parameter ~ρ
perpendicular to ~p0.

If instead of a fixed rigid body the particle is scattered by the potential created by a target,
the cross section is a measure of the effective area of the target as seen by the projectile.

8.5.2 The quantum cross section

In QM we have an in asymptotic state |ψin〉 going against the target with wave function

ψin(~p) = 〈~p|ψin〉 . (8.38)

After the interaction we have the state |ψout〉 with wave function

ψout(~p
′) = 〈~p′ |ψout〉 . (8.39)

The probability to find the out state within a cone of directions dΩ~p′ is:

w(ψin → dΩ~p′) = dΩ~p′

ˆ ∞
0

p′2dp′ |ψout(~p
′)|2. (8.40)

Suppose you send a beam of particles, that is, many particles with wave functions of momentum
~p ≈ ~p0 and random impact parameters ~ρ, such that we have ninc particles per unit area normal to
~p0. We must assume that the interaction among the particles in the beam is negligible. Then, we
define the differential cross section from

dNsc

dΩ~p′
= ninc

dσ

dΩ~p′
. (8.41)

On the other hand, the number of interactions is the number of incoming particles per unit area
times the probability of an interaction integrated over all the impact parameters:

dNsc =

ˆ
d2ρninc w̃(φ~ρ → dΩ~p′), (8.42)

where in w̃ we must restrict ourselves to the scattered wave function ψ̃out(~p
′), subtracting from the

outgoing wave function ψout(~p
′) the contribution from the incoming (unscattered) part ψin(~p), that

has not interacted,

ψ̃out(~p
′) =

ˆ
d3p 〈~p′|R |~p〉ψin(~p) (8.43)

and φ~ρ(~p) is a wave packet traveling along the axis, that is obtained by a translation ~ρ of the φ(~p)
(see Fig. 8.6):

|φ~ρ〉 = T (~ρ) |φ〉 = e−
i
~
~P ·~ρ |φ〉 (8.44)

φ(~p) = 〈~p|φ〉 , φ~ρ(~p) = 〈~p|φ~ρ〉 = e−
i
~ ~p·~ρφ(~p). (8.45)
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Therefore, from (8.36), (8.40) and (8.42),

dσ =
dσ

dΩ~p′
dΩ~p′ =

ˆ
d2ρ w̃(φ~ρ → dΩ~p′) =

ˆ
d2ρdΩ~p′

ˆ ∞
0

p′2dp′ |ψ̃out(~p
′)|2. (8.46)

Remember that outgoing is not the same as scattered. Therefore in ψ̃out(~p
′) we have subtracted

from the outgoing wave function the contribution from the unscattered part ψin(~p) = φ~ρ(~p), that is
unrelated to the collision:

ψ̃out(~p
′) =

ˆ
d3p 〈~p′|R |~p〉ψin(~p) =

i

2π~m

ˆ
d3p δ(E~p′ − E~p)f(~p′ ← ~p)φ~ρ(~p). (8.47)

In this way, the cross section σ = 0 if |ψout〉 = |ψin〉. Substituting (8.47) in (8.46):

dσ =
dΩ~p′

(2π~m)2

ˆ
d2ρ

ˆ ∞
0

p′2dp′
ˆ

d3p1 δ(E~p′ − E~p1)f(~p′ ← ~p1) e−
i
~ ~p1·~ρφ(~p1)

×
ˆ

d3p2 δ(E~p′ − E~p2)f∗(~p′ ← ~p2) e+ i
~ ~p2·~ρφ∗(~p2). (8.48)

Since E~p′ = E~p1 and E~p′ = E~p2 we have E~p1 = E~p2 , and we can replace δ(E~p′−E~p2) by δ(E~p1−E~p2).
Besides,

ˆ
d2ρ e−

i
~ (~p1−~p2)·~ρ = (2π~)2δ2(~p1⊥ − ~p2⊥). (8.49)

And because 0 = E~p1−E~p2 = (p2
1−p2

2)/(2m) we have p1‖ = ±p2‖ but p1‖ = −p2‖ does not contribute
to the integral for sufficiently narrow wave functions: φ(~p1) and φ(~p2) would not overlap. Hence

δ2(~p1⊥ − ~p2⊥)δ(E~p1 − E~p2) =
m

p1‖
δ3(~p1 − ~p2). (8.50)

Collecting terms and reintroducing the dummy variable ~p = ~p1:

dσ =
dΩ~p′

m

ˆ ∞
0

p′2dp′
ˆ

d3p
1

p‖
δ(E~p′ − E~p)|f(~p′ ← ~p)φ(~p)|2. (8.51)

Finally, since φ(~p) 6= 0 only at ~p ≈ ~p0 we have:

f(~p′ ← ~p) ≈ f(~p′ ← ~p0) (8.52)

E~p′ − E~p ≈ E~p′ − E~p0 = (p′2 − p2
0)/(2m)
p‖ ≈ p0

}
⇒ δ(E~p′ − E~p) =

m

p0
δ(p′ − p0) (8.53)

ˆ
d3p |φ(~p)|2 = 1. (8.54)

Therefore the differential cross section is

dσ =
dΩ~p′

m
p2

0

1

p0

m

p0
|f(~p′ ← ~p0)|2 ⇒ dσ

dΩ~p′
= |f(~p′ ← ~p0)|2 (8.55)

and the total cross section is

σ(~p0) =

ˆ
dΩ~p′ |f(~p′ ← ~p0)|2 (8.56)

So, the scattering amplitude is all we need to know to calculate the cross section of a scattering
process.
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8.6 Optical theorem

The optical theorem is a consequence of the unitarity of the S matrix:

S†S = I; (8.57)

(I +R)†(I +R) = I; (8.58)

R+R† = −R†R; (8.59)

〈~p′|R |~p〉+ 〈~p′|R† |~p〉 = −
ˆ

d3p′′ 〈~p′|R† |~p′′〉〈~p′′|R |~p〉 ; (8.60)

〈~p′|R |~p〉+ 〈~p|R |~p′〉∗ = −
ˆ

d3p′′ 〈~p′′|R |~p′〉∗ 〈~p′′|R |~p〉 . (8.61)

Then

�
�
�i

2π~m������
δ(E~p′ − E~p) [f(~p′ ← ~p)− f∗(~p← ~p′)]

=

(
i

2π~m

)62 ˆ
d3p′′������

δ(E~p′ − E~p)δ(E~p′′ − E~p)f∗(~p′′ ← ~p′)f(~p′′ ← ~p) (8.62)

where we have used δ(E~p′′ − E~p′)δ(E~p′′ − E~p) = δ(E~p′ − E~p)δ(E~p′′ − E~p) and hence

f(~p′ ← ~p)− f∗(~p← ~p′) =
i

2π~m

ˆ
p′′2 dp′′ dΩ~p′′ δ(E~p′′ − E~p)f∗(~p′′ ← ~p′)f(~p′′ ← ~p). (8.63)

Finally, doing the integral over p′′

ˆ
dp′′ δ(E~p′′ − E~p)g(p′′) =

∣∣∣∣dEp′′

dp′′

∣∣∣∣−1

p′′=p

g(p) =
m

p
g(p), (8.64)

we have

f(~p′ ← ~p)− f∗(~p← ~p′) =
i

2π~
p

ˆ
dΩ~p′′ f

∗(~p′′ ← ~p′)f(~p′′ ← ~p) (8.65)

with p = |~p| = |~p′| = |~p′′|. And taking ~p′ = ~p:

Im f(~p← ~p) =
p

4π~

ˆ
dΩ~p′′ |f(~p′′ ← ~p)|2. (8.66)

Recalling the definition of total cross section (8.56),

σ(~p) =

ˆ
dΩ~p′′ |f(~p′′ ← ~p)|2, (8.67)

the previous expression can be written as

Im f(~p← ~p) =
p

4π~
σ(~p) (8.68)

This is the optical theorem: the imaginary part of the forward scattering amplitude f(~p← ~p)
is proportional to the total cross section. It is remarkable that unitarity forces the scattering
amplitude to be complex in the forward direction (~p′ = ~p) and the size of its imaginary part fixes
the total cross section, that comes from integrating over all ~p′ with |~p′| = |~p|.

Next we will find the expression of the scattering amplitude for a given potential. But first, we
need to introduce the Green’s operator G and the T operator.
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8.7 The Green’s operator G

The Green’s operator of the Hamiltonians H0 =
p2

2m
and H = H0 + V is defined, respectively, as:

G0(z) ≡ 1

z −H0
(8.69)

G(z) ≡ 1

z −H
with z ∈ C. (8.70)

Then

(z −H0)G0(z) = I ⇒ 〈~x| (z −H0)G0(z) |~x′〉 = δ3(~x− ~x′). (8.71)

The left hand side can be written as

〈~x| (z −H0)G0(z) |~x′〉 =

ˆ
d3x′′ 〈~x| (z −H0) |~x′′〉 〈~x′′|G0(z) |~x′〉

=

ˆ
d3x′′ δ3(~x− ~x′′)

(
~2∇2

2m
+ z

)
〈~x′′|G0(z) |~x′〉

=

(
~2∇2

2m
+ z

)
〈~x|G0(z) |~x′〉 . (8.72)

Therefore 〈~x|G0(z) |~x′〉 is the Green’s function of the differential operator
~2∇2

2m
+ z:(

~2∇2

2m
+ z

)
〈~x|G0(z) |~x′〉 = δ3(~x− ~x′). (8.73)

Analogously 〈~x|G(z) |~x′〉 is the Green’s function of
~2∇2

2m
− V (~x) + z:(

~2∇2

2m
− V (~x) + z

)
〈~x|G(z) |~x′〉 = δ3(~x− ~x′). (8.74)

Notice that the Green’s operator is not defined for z = En (energy eigenvalues), since

H |n〉 = En |n〉 ⇒ 1

z −H
|n〉 =

1

z − En
|n〉 diverges for z = En. (8.75)

In the basis of energy eigenvectors we have:

G(z) =
1

z −H
∑
n

|n〉〈n| =
∑
n

|n〉〈n|
z − En

(8.76)

or for a continuous energy spectrum:

G(z) =

ˆ
dE
|E〉〈E|
z − E

. (8.77)

In particular, the free Green’s operator in the momentum representation is

G0(z) |~p〉 = (z −H0)−1 |~p〉 =
1

z − E~p
|~p〉 ⇒ G0(z)

.
=

1

z − E~p
. (8.78)

We can relate G(z) and G0(z) using the simple expression:

A−1 = B−1 +B−1(B −A)A−1. (8.79)

Taking A = z −H and B = z −H0, where B −A = V , we have

G(z) = G0(z) +G0(z)V G(z) (8.80)

Or, exchanging B and A:

G(z) = G0(z) +G(z)V G0(z) (8.81)

These are the Lippmann-Schwinger equations for the operator G(z).
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8.8 The T operator

The T operator is defined from the Green’s operator as

T (z) ≡ V + V G(z)V. (8.82)

It is analytic in the complex plane except in the energy eigenvalues (z = En).

Multiplying the definition of T by G0(z) and applying the LS equations above we find:

G0(z)T (z) = G0(z)V +G0(z)V G(z)V ⇒ G0(z)T (z) = G(z)V (8.83)

T (z)G0(z) = V G0(z) + V G(z)V G0(z) ⇒ T (z)G0(z) = V G(z) (8.84)

Multiplying now the first one by V on the left and using the definition of T :

V G0(z)T (z) = V G(z)V = −V + V + V G(z)V = −V + T (z) (8.85)

we get

T (z) = V + V G0(z)T (z) (8.86)

This is the Lippmann-Schwinger equation for the operator T (z), the starting point for the calculation
of the scattering amplitudes applying perturbative methods as we will see.

8.9 The S operator in terms of T and G

Remember that the Møller operators relate the asymptotic in and out states with the scattering
state at t = 0,

|ψ〉 = Ω− |ψout〉 = Ω+ |ψin〉 (8.87)

with

Ω∓ = lim
t→±∞

U†(t)U0(t). (8.88)

The time evolution operators satisfy the following relation that we will use afterwards:

d

dt
U†(t)U0(t) =

d

dt

(
e

i
~Hte−

i
~H

0t
)

=
i

~
e

i
~Ht(H −H0)e−

i
~H

0t

=
i

~
U†(t)V U0(t). (8.89)

Now use the following trick. Write f(t) = U†(t)U0(t) as the integral of its derivative:

ˆ t

0

dτ
df(τ)

dτ
= f(t)− f(0) ⇒ f(t) = f(0) +

ˆ t

0

dτ
df(τ)

dτ
. (8.90)

Then

U†(t)U0(t) = I +
i

~

ˆ t

0

dτ U†(τ)V U0(τ) (8.91)

and

|ψ〉 = Ω− |ψout〉 = lim
t→∞

U†(t)U0(t) |ψout〉
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= |ψout〉+
i

~

ˆ ∞
0

dt U†(t)V U0(t) |ψout〉 . (8.92)

Analogously,

|ψ〉 = Ω+ |ψin〉 = lim
t→−∞

U†(t)U0(t) |ψin〉

= |ψin〉+
i

~

ˆ −∞
0

dt U†(t)V U0(t) |ψin〉 . (8.93)

Both integrals must be convergent if the potential satisfies the asymptotic conditions. Next we use
another trick: ˆ ∞

0

dt g(t) convergent ⇒
ˆ ∞

0

dt g(t) = lim
ε→0+

ˆ ∞
0

dt e−
εt
~ g(t). (8.94)

The damping factor e−
εt
~ ≈ 1 for small t, and it is < 1 for t → ∞, in the region where V must be

irrelevant. For t→ −∞ the appropriate damping factor is e+ εt
~ . The fact that we can do scattering

theory replacing V by V e−ε|t|/hbar is known as the adiabatic theorem. Therefore we may write:

|ψ〉 = |ψout〉+
i

~
lim
ε→0+

ˆ ∞
0

dt e−
εt
~ U†(t)V U0(t) |ψout〉 (8.95)

|ψ〉 = |ψin〉+
i

~
lim
ε→0+

ˆ −∞
0

dt e+ εt
~ U†(t)V U0(t) |ψin〉 . (8.96)

In the momentum representation:

i

~
lim
ε→0+

ˆ
d3p

ˆ ∞
0

dt e−
εt
~ U†(t)V U0(t) |~p〉 〈~p|ψout〉

=
i

~
lim
ε→0+

ˆ
d3p

ˆ ∞
0

dt e−
i
~ (E~p−iε−H)tV |~p〉 〈~p|ψout〉

= − lim
ε→0+

ˆ
d3p

[
e−

i
~ (E~p−iε−H)t

E~p − iε−H

]∞
0

V |~p〉 〈~p|ψout〉

= lim
ε→0+

ˆ
d3p

1

E~p − iε−H
V |~p〉 〈~p|ψout〉

= lim
ε→0+

ˆ
d3pG(E~p − iε)V |~p〉 〈~p|ψout〉 (8.97)

where the integral over t is convergent thanks to the damping factor. Hence

|ψ〉 = Ω− |ψout〉 = |ψout〉+ lim
ε→0+

ˆ
d3pG(E~p − iε)V |~p〉 〈~p|ψout〉 (8.98)

and analogously,

|ψ〉 = Ω+ |ψin〉 = |ψin〉+ lim
ε→0+

ˆ
d3pG(E~p + iε)V |~p〉 〈~p|ψin〉 . (8.99)

This gives us the relation between the Møller operators and the Green’s operator:

Ω± = I + lim
ε→0+

ˆ
d3pG(E~p ± iε)V |~p〉〈~p| . (8.100)

Now we understand the reason for the choice of the subscripts: the ±iε in G(E~p± iε) are the same as
the ± in Ω±. And from G(z)V = G0(z)T (z) we also have the relation between the Møller operators
and the T operator.

But we are mostly interested in the relation between S and T . We start by

〈~p′|S |~p〉 = 〈~p′|Ω†−Ω+ |~p〉 = lim
t→ +∞
t′ → −∞

〈~p′|
(

e
i
~H

0te−
i
~Ht
)(

e
i
~Ht

′
e−

i
~H

0t′
)
|~p〉
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= lim
t→∞

〈~p′|
(

e
i
~H

0te−
i
~Ht
)(

e−
i
~Hte

i
~H

0t
)
|~p〉 , (8.101)

where we have taken the limit with t′ = −t. Now write the operator f(t) in the braket as the
derivative of its integral:

df(t)

dt
=

i

~

{(
e

i
~H

0t(H0 −H)e−
i
~Ht
)(

e−
i
~Hte

i
~H

0t
)
−
(

e
i
~H

0te−
i
~Ht
)(

e−
i
~Ht(H −H0)e

i
~H

0t
)}

= − i

~

{
e

i
~H

0tV e−2 i
~Hte

i
~H

0t + e
i
~H

0te−2 i
~HtV e

i
~H

0t
}

(8.102)

and

lim
t→∞

f(t) = f(0) +

ˆ ∞
0

dt
df(t)

dt

= f(0) + lim
ε→0+

ˆ ∞
0

dt e−
εt
~

df(t)

dt
, (8.103)

where in the last line we have introduced a damping factor as we did before. Then

〈~p′|S |~p〉 = 〈~p′ |~p〉 − i

~
lim
ε→0+

ˆ ∞
0

dt 〈~p′|
{
V e

i
~ (E~p′+E~p+iε−2H)t + e

i
~ (E~p′+E~p+iε−2H)tV

}
|~p〉

= δ3(~p′ − ~p) + lim
ε→0+

〈~p′|
{
V

1

E~p′ + E~p + iε− 2H
+

1

E~p′ + E~p + iε− 2H
V

}
|~p〉

= δ3(~p′ − ~p) +
1

2
lim
ε→0+

〈~p′|
{
V G

(
E~p′ + E~p + iε

2

)
+G

(
E~p′ + E~p + iε

2

)
V

}
|~p〉

= δ3(~p′ − ~p) +
1

2
lim
ε→0+

(
2

E~p′ − E~p + iε
+

2

E~p − E~p′ + iε

)
〈~p′|T

(
E~p′ + E~p + iε

2

)
|~p〉

= δ3(~p′ − ~p)− 2i lim
ε→0+

ε

(E~p′ − E~p′)2 + ε2
〈~p′|T

(
E~p′ + E~p + iε

2

)
|~p〉 (8.104)

where we have performed the integral over t, introduced the definition of G(z), replaced

V G(z) = T (z)G0(z), G(z)V = G0(z)T (z) (8.105)

and substituted

G0(z) |~p〉 =
1

z − E~p
|~p〉, 〈~p′|G0(z) =

1

z − E~p′
〈~p′| (8.106)

E~p′ + E~p
2

− E~p =
E~p′ − E~p

2
(8.107)

E~p′ + E~p
2

− E~p′ =
E~p − E~p′

2
. (8.108)

We recognize the prefactor of the T -matrix element as one of the representations of the Dirac delta,

δ(x) = lim
ε→0+

ε/π

x2 + ε2
. (8.109)

So (redefining ε to 2ε, a small positive parameter anyway) we have:

〈~p′|S |~p〉 = δ3(~p′ − ~p)− 2πi δ(E~p′ − E~p) 〈~p′|T (E~p + iε) |~p〉 (8.110)

[From here on, T (E~p + iε) means take the limit ε → 0+ to the matrix element.] The expression
above implies, from the definitions of the on-shell T -matix t and the scattering amplitude f , that
on the energy-shell (E~p′ = E~p):

t(~p′ ← ~p) = 〈~p′|T (E~p + iε) |~p〉 = − 1

(2π)2~m
f(~p′ ← ~p) (8.111)
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8.10 The Born series

We want to find 〈~p′|T (E~p + iε) |~p〉 solving the Lippmann-Schwinger equation for T (z),

T (z) = V + V G0(z)T (z), z = E~p + iε. (8.112)

This is a transcendental equation (of a similar type as ex = x) whose solution can only be obtained
by numerical methods or perturbatively. To understand the perturbative solution, let us rescale
the potential V by a dimensionless factor λ, that can be taken as a “coupling constant”. If λ = 0
we have the free theory (no collisions), and if λ is small the interaction is weak. We can organize
the different contributions to T (z) as an expansion in powers of λ:

T =

∞∑
n=0

λnT (n) = T (0) + λT (1) + λ2T (2) + . . . (8.113)

Then the Lippmann-Schwinger equation for T (z) reads:

T = λV + λV G0T (8.114)

T (0) + λT (1) + λ2T (2) + . . . = λV + λV G0(T (0) + λT (1) + λ2T (2) + . . . ) (8.115)

Solving for each power of λ we obtain:

T (0) = 0 (8.116)

T (1) = V + V G0T (0) = V (8.117)

T (2) = V G0T (1) = V G0V (8.118)

T (3) = V G0T (2) = (V G0)2V (8.119)

...

T (n) = (V G0)n−1V. (8.120)

And inserting the coupling constant in the potential (λV → V ) we get:

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + . . . (8.121)

This is the Born series, an expansion in powers of
V

z −H0
with z = E~p + iε.

The first order approximation is the so called Born approximation:

T = V. (8.122)

This is a good approximation when (i) the coupling λ is small (weak interaction) or (ii) the kinetic
energy is large (E~p � V ). In this domain,

f(~p′ ← ~p) ≈ f (1)(~p′ ← ~p) = −(2π)2~m 〈~p′|V |~p〉 (8.123)

= −(2π)2~m
ˆ

d3x′d3x 〈~p′ |~x′〉 〈~x′ |~x〉V (~x) 〈~p|~x〉∗

= − (2π)2~m
(2π~)3

ˆ
d3x e−

i
~ ~p
′·~xV (~x)e

i
~ ~p·~x

⇒ f (1)(~p′ ← ~p) = − m

2π~2

ˆ
d3xV (~x)e−

i
~~q·~x (8.124)

where ~q = ~p′ − ~p is the momentum transfer in the collision with

q = |~p′ − ~p| =
√

2p2(1− cos θ) = 2p sin
θ

2
(8.125)
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and θ is the scattering angle.

For a central potential (spherically symmetric) V (~x) = V (r),

f(~p′ ← ~p) ≈ f (1)(~p′ ← ~p) = f(p, θ)

= − m

2π~2

ˆ ∞
0

dr r2V (r)

ˆ 2π

0

dϕ̃

ˆ 1

−1

d cos θ̃ e−
i
~ qr cos θ̃

= −2m

~2

ˆ ∞
0

dr r2V (r)
sin qr

~
qr
~

= −2m

q~

ˆ ∞
0

dr rV (r) sin
qr

~
with q = 2p sin

θ

2
. (8.126)

Notice that:

• If ~p′ = ~p, that is q = 0 (forward scattering) we have:

f (1)(~p← ~p) = −2m

~2

ˆ ∞
0

dr r2 V (r). (8.127)

Thus, the Born forward amplitude is energy-independent, it does not depend on p.

• At high energy (large p) the Born amplitude goes to zero like p−1, except forward, since at
fixed θ 6= 0 we have q ∝ p.

• The Born approximation violates the optical theorem since the forward amplitude is real but
the total cross section does not vanish:

Im f(~p← ~p) = 0 (8.128)

p

4π~
σ(p) =

p

4π~

ˆ
dΩ |f(p, θ)|2 =

p

2~

ˆ 1

−1

d cos θ |f(p, θ)|2 6= 0. (8.129)

This is because the imaginary part of f is of order λ while σ is of order λ2.

8.11 Plane waves and spherical waves

We have just studied the effect of the scattering potential on states with well defined momenta
(plane waves). When the potential is V (~x) = V (r) the effect on spherical waves is simpler. A plane

wave of momentum ~p is an eigenfunction of the free Hamiltonian H0 =
P 2

2m
:

|~p〉 (plane wave). (8.130)

In the position representation:

〈~x|~p〉 =
1

(2π~)3/2
e

i
~ ~p·~x (plane wave function). (8.131)

However, H0 (not ~P ) also commutes with L2 and Lz. Hence we can define a basis of common

eigenstates of H0, L2 and Lz (not a basis of ~P ):

|E`m〉 (spherical wave) [this m should not be confused with the mass m] (8.132)
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Spherical waves are an othonormal basis of H:

〈E′`′m′ |E`m〉 = δ(E′ − E) δ`′` δm′m. (8.133)

The spherical waves do not have a well defined momentum ~p. In fact, they are a linear combination
of all momentum eigenstates:

|E`m〉 =

ˆ
d3p |~p〉 1

√
mp

δ

(
p2

2m
− E

)
Y m` (p̂) (8.134)

because

〈E′`′m′ |E`m〉 =

ˆ
d3p′′ 〈E′`′m′ |~p′′〉 〈~p′′ |E`m〉

=

ˆ
d3p′′

1√
mp′′

δ

(
p′′2

2m
− E′

)
Y m

′∗
`′ (p̂′′)

1√
mp′′

δ

(
p′′2

2m
− E

)
Y m` (p̂′′)

= δ(E′ − E)

ˆ ∞
0

dp′′ p′′2
1

mp′′
δ

(
p′′2

2m
− E

)
×
ˆ 1

−1

d cos θ

ˆ 2π

0

dϕY m
′∗

`′ (θ, ϕ)Y m` (θ, ϕ)

= δ(E′ − E)δ`′`δm′m

ˆ ∞
0

dp′′p′′2
1

mp′′
m

p′′
δ
(
p′′ − p =

√
2mE

)
= δ(E′ − E) δ`′` δm′m. (8.135)

Then,

〈~p|E`m〉 =
1
√
mp

δ

(
p2

2m
− E

)
Y m` (p̂) (8.136)

and the plane wave |~p〉 is the following linear combination of spherical waves (a plane wave contains
all angular momenta):

|~p〉 =

ˆ
dE

∞∑
`=0

∑̀
m=−`

|E`m〉 〈E`m|~p〉 =

ˆ
dE

∞∑
`=0

∑̀
m=−`

|E`m〉 1
√
mp

δ

(
p2

2m
− E

)
Y m∗` (p̂)

|~p〉 =

∞∑
`=0

∑̀
m=−`

|E`m〉

∣∣∣∣∣
E= p2

2m

1
√
mp

Y m∗` (p̂) (8.137)

In order to find the spherical waves in the position representation (spherical wave functions)
〈~x|E`m〉, we will use

〈~x|P 2 |E`m〉 = −~2

[
∂2

∂r2
+

2

r

∂

∂r
− `(`+ 1)

r2

]
〈~x|E`m〉

= p2 〈~x|E`m〉 with E =
p2

2m
. (8.138)

This implies that the radial part of 〈~x|E`m〉 defined by

〈~x|E`m〉 ≡ 1

r
y`(r)Y

m
` (x̂), ~x = rx̂, (8.139)

verifies the following differential equation:

−~2

[
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2

]
1

r
y`(r) =

p2

r
y`(r) (8.140)
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or [
d2

dr2
− `(`+ 1)

r2
+
p2

~2

]
y`(r) = 0. (8.141)

The solutions of the standard differential equation[
d2

dx2
− `(`+ 1)

x2
+ 1

]
y`(x) = 0

(
x =

pr

~

)
(8.142)

are linear combinations of

̃`(x) = xj`(x) (Ricati-Bessel functions) (8.143)

ñ`(x) = xn`(x) (Ricati-Neumann functions) (8.144)

where j`(x) and n`(x) are, respectively, the spherical Bessel and Neumann functions of order `. But
only ̃`(x) is regular at the origin, because

j`(x) −−−→
x→0

x`

(2`+ 1)!!
(8.145)

n`(x) −−−→
x→0

− (2`− 1)!!

x`+1
(8.146)

with the double factorial defined as

n!! =

[n2 ]−1∏
k=0

(n− 2k) = n(n− 2)(n− 4) · · · , [x] = integer part of x. (8.147)

Since 〈~x|E`m〉 ∝ y`(r)/r must be well defined at the origin, the function y`(r) must go to zero at
r → 0 and hence

y`(r) = C ̃`(
pr
~ ) (8.148)

where the normalization constant C is fixed by

〈~x|E`m〉 =
C

r
̃`(

pr
~ )Y m` (x̂) (8.149)

δ(E′ − E) δ`′` δm′m =

ˆ
d3x 〈E′`′m′ |~x〉 〈~x|E`m〉

= |C|2
ˆ ∞

0

dr r2 1

r2
̃`(

p′r
~ )̃`(

pr
~ )

ˆ
dΩY m

′∗
`′ (x̂)Y m` (x̂)

= δ`′` δm′m|C|2
ˆ ∞

0

dr ̃`(
p′r
~ )̃`(

pr
~ ) (8.150)

using that

ˆ ∞
0

dr ̃`(
p′r
~ )̃`(

pr
~ ) =

π~
2
δ(p′ − p) =

π~p
2m

δ(E′ − E). (8.151)

Therefore

|C|2 =
2m

π~p
⇒ C ≡ i`

√
2m

π~p
(8.152)

where a conventional phase i` has been introduced. Then

〈~x|E`m〉 =
i`

~

√
2mp

π~
j`(

pr
~ )Y m` (x̂) (spherical wave function). (8.153)

129 © www.ugr.es/local/jillana



130 Chapter 8: Scattering theory

Finally, from (8.137) we can write the plane wave functions in terms of spherical waves:

〈~x|~p〉 =

∞∑
`=0

∑̀
m=−`

〈~x|E`m〉 1
√
mp

Y m∗` (p̂)

=

∞∑
`=0

∑̀
m=−`

i`

~

√
2

π~
j`(

pr
~ )Y m` (x̂)Y m∗` (p̂). (8.154)

Using the following relation between spherical harmonics and Legendre polynomials:

∑̀
m=−`

Y m` (x̂)Y m∗` (p̂) =
2`+ 1

4π
P`(p̂ · x̂) (8.155)

we have

1

(2π~)3/2
e

i
~ ~p·~x =

1

(2π~)3/2

∞∑
`=0

(2`+ 1)i`j`(
pr
~ )P`(p̂ · x̂) (8.156)

In the limit of large distances, appropriate for asymptotic states, we can use

j`(x) −−−−→
x→∞

1

x
sin
(
x− `π

2

)
(8.157)

⇒ i`j`(
pr
~ ) −−−→

r→∞

1

2

[
e

i
~pr

i
~pr

+ (−1)`+1 e−
i
~pr

i
~pr

]
(8.158)

(that justifies the introduction of i` = ei`π2 before) and write the plane wave as the following
combination of spherical waves

1

(2π~)3/2
e

i
~ ~p·~x −−−→

r→∞

1

(2π~)3/2

∞∑
`=0

(`+ 1
2 )

[
e

i
~pr

i
~pr

+ (−1)`+1 e−
i
~pr

i
~pr

]
P`(p̂ · x̂). (8.159)

8.12 Partial-wave S-matrix

Isolated systems are invariant under rotations, [H, ~J ] = 0. Therefore the Møller operators and

the scattering operator S must be rotationally invariant, [S, ~J ] = 0. For the scattering of spinless

particles, ~J = ~L, we have [S, ~L] = 0. And remember that [S,H0] = 0. Then |E`m〉 is an eigenstate
of S:

〈E′`′m′|S |E`m〉 = δ(E′ − E)δ`′`δm′ms`(E). (8.160)

That the number s`(E) is actually independent of m is a consequence of the Wigner-Eckart theorem
(because S is a scalar operator) but it can also be checked explicitly:

L± |`m〉 = ~
√
`(`+ 1)−m(m± 1) |`m± 1〉 ;

L∓L± |`m〉 = ~2[`(`+ 1)−m(m± 1)] |`m〉 ;
[S,L±] = 0 ⇒ SL±L∓ = L±SL∓

⇒ 〈`m|SL±L∓ |`m〉 = 〈`m|L±SL∓ |`m〉
⇒ 〈`m|S |`m〉 = 〈`m∓ 1|S |`m∓ 1〉 . (8.161)

Since S is unitary, its eigenvalues must have modulus 1 and can be written as

S |E`m〉 = s`(E) |E`m〉 ≡ e2iδ`(E) |E`m〉 , (8.162)

where δ`(E) is called the phase shift (defined modulo π).
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Remember that

〈~p′| (S − I) |~p〉 =
i

2π~m
δ(E~p′ − E~p)f(~p′ − ~p) (8.163)

that can be now written as follows:

〈~p′| (S − I) |~p〉 = 〈~p′| (S − I)
∑
`m

ˆ
dE |E`m〉 〈E`m|~p〉

=
∑
`m

ˆ
dE 〈~p′ |E`m〉 [s`(E)− 1] 〈E`m|~p〉

=
∑
`m

ˆ
dE

1√
mp′

δ(E~p′ − E)Y m` (p̂′)[s`(E)− 1]
1
√
mp

δ(E~p − E)Y m∗` (p̂)

=
δ(E~p′ − E~p)

mp

∑
`m

Y m` (p̂′)Y m∗` (p̂)

ˆ
dE δ(E~p − E)[s`(E)− 1]

=
δ(E~p′ − E~p)

mp

∞∑
`=0

[s`(E~p)− 1]
∑̀
m=−`

Y m` (p̂′)Y m∗` (p̂)

=
δ(E~p′ − E~p)

mp

∞∑
`=0

[s`(E~p)− 1]
2`+ 1

4π
P`(cos θ)

= δ(E~p′ − E~p)
1

4πmp

∞∑
`=0

(2`+ 1)[e2iδ`(E~p) − 1]P`(cos θ) (8.164)

where we have introduced the definition of the phase shift δ`, the relation between spherical har-
monics and Legendre polynomials, and the scattering angle in p̂ · p̂′ = cos θ. Hence,

f(E~p, θ) ≡ f(~p′ ← ~p) =
~

2ip

∞∑
`=0

(2`+ 1)[e2iδ`(E~p) − 1]P`(cos θ). (8.165)

It is useful to define the scattering amplitude in the partial wave `:

f`(E) ≡ ~
p

e2iδ`(E) − 1

2i
=

~
p

eiδ`(E) sin δ`(E) with p =
√

2mE (8.166)

so that we can write the partial-wave expansion of the scattering amplitude as:

f(E, θ) =

∞∑
`=0

(2`+ 1)f`(E)P`(cos θ) (8.167)

Using the orthogonality of the Legendre polynomials,

ˆ 1

−1

dxPm(x)Pn(x) =
2

2n+ 1
δmn (8.168)

we can obtain, in turn, every partial wave from the scattering amplitude by

f`(E) =
1

2

ˆ 1

−1

d cos θ f(E, θ)P`(cos θ). (8.169)

The total cross section can also be expanded in terms of partial-wave contributions:

σ(E) =

ˆ 2π

0

dϕ

ˆ 1

−1

d cos θ |f(E, θ)|2
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= 2π

∞∑
`=0

∞∑
`′=0

(2`+ 1)(2`′ + 1)f`(E)f∗`′(E)

ˆ 1

−1

d cos θ P`(cos θ)P`′(cos θ)

= 4π

∞∑
`=0

(2`+ 1)|f`(E)|2

⇒ σ(E) =
∑
`

σ`(E) with σ`(E) = 4π(2`+ 1)|f`(E)|2 (8.170)

or, in terms of the phase shifts,

σ`(E) =
4π~2

p2
(2`+ 1) sin2 δ`(E) (8.171)

Since | sin δ`| ≤ 1, the contribution of each partial wave to the total cross section cannot exceed the
so called unitarity bound (because it has to do with the unitarity of S):

σ` ≤
4π~2

p2
(2`+ 1). (8.172)

Note that partial waves fulfill the optical theorem:

f(p, θ) =

∞∑
`=0

(2`+ 1)
~
p

eiδ` sin δ`P`(cos θ)

σ =

∞∑
`=0

(2`+ 1)
4π~2

p2
sin2 δ`

⇒ Imf(p, 0) =
p

4π~
σ =

∞∑
`=0

(2`+ 1)
~
p

sin2 δ`

(8.173)

where we have used that P`(1) = 1.

8.13 Time-independent formalism: stationary states

An asymptotic state of well-defined momentum |~p〉 is actually unphysical, since it is not normal-
ized. In addition, it does not make much sense to say that in a collision a momentum eigenstate
approaches or leaves the target, because it is stationary: it does not evolve with time (it has always
been there). We can call |~p〉 an improper state.

However, by combining states |~p〉 with well-defined momentum (plane waves) one can build
physical states (wave packets) with momentum around (but not exactly) ~p0, that are not stationary
but evolve and can therefore approach and leave the target in a scattering process:

|φ〉 =

ˆ
d3p φ(~p) |~p〉 , 〈φ|φ〉 =

ˆ
d3p |φ(~p)|2 = 1. (8.174)

It is only in this context that plane waves are related to asymptotic states. Let us see this.

Consider the scattering state |ψ〉 ≡ |~p+〉 “associated” to an in-state |ψin〉 ≡ |~p〉:

|~p+〉 = Ω+ |~p〉 (8.175)

The state |~p+〉 is not a physical state either, but it is a basis vector of the physical stattering states
|φ+〉:

|φ+〉 = Ω+ |φ〉 =

ˆ
d3p φ(~p) Ω+ |~p〉 =

ˆ
d3p φ(~p) |~p+〉 . (8.176)

We see that the scattering state |φ+〉 has the same expansion in the basis {|~p+〉} as its asymptotic
state |φ〉 in the basis {|~p〉}.
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We expect that the states |~p〉 and |~p+〉 have the same energy E~p = p2

2m since

e
i
~HtΩ+ = e

i
~Ht lim

t′→−∞
e

i
~Ht

′
e−

i
~H

0t′ = lim
t′→−∞

e
i
~H(t+t′)e−

i
~H

0(t+t′)e
i
~H

0t = Ω+e
i
~H

0t (8.177)

and taking an infinitesimal time δt:

(I +
i

~
Hδt) Ω+ = Ω+ (I +

i

~
H0δt) ⇒ HΩ+ = Ω+H

0 (8.178)

⇒ H |~p+〉 = HΩ+ |~p〉 = Ω+H
0 |~p〉 =

p2

2m
Ω+ |~p〉 =

p2

2m
|~p+〉 = E~p |~p+〉 . (8.179)

Therefore:

|~p+〉 is an eigenvector of H with same eigenvalue E~p as that of H0 acting on |~p〉

This means that |~p〉 and |~p+〉 are stationary states, not evolving with time:

U(t) |~p+〉 = e−
i
~E~pt |~p+〉 (8.180)

U0(t) |~p〉 = e−
i
~E~pt |~p〉 . (8.181)

Hence it is impossible to satisfy U(t) |~p+〉 − U0(t) |~p〉 −−−−→
t→−∞

0. This is not surprising since, as

mentioned before, none of these states are physical.

But if we slightly localize in space the initial position of the particle by smearing ~p, we ob-
tain physical states that do evolve with time (they are no longer stationary) and may satisfy the
asymptotic condition:

U(t) |φ+〉 =

ˆ
d3p φ(~p)[U(t) |~p+〉] (8.182)

U0(t) |φ〉 =

ˆ
d3p φ(~p)[U0(t) |~p〉] (8.183)

U(t) |φ+〉 − U0(t) |φ〉 −−−−→
t→−∞

0 ⇒ |φ+〉 = lim
t→−∞

U†(t)U0(t) |φ〉 ≡ Ω+ |φ〉 . (8.184)

The same applies to the scattering states |φ−〉 = Ω− |φ〉 =

ˆ
d3p φ(~p) |~p−〉.

We see that plane waves {|~p〉} form an orthonormal basis of our Hilbert space H, made of
eigenvectors of H0. Since Ω± map H onto the subspace R of scattering states, we expect that
{|~p+〉} (or {|~p−〉}) should span R. In fact, from

|φ+〉 =

ˆ
d3p φ(~p) |~p+〉 (8.185)

⇒ 〈~p′ + |~p+ 〉 = 〈~p′|Ω†+Ω+ |~p〉 = 〈~p′ |~p〉 = δ3(~p′ − ~p) (8.186)

that is, the vectors {|~p+〉} are an orthonormal basis of R. The same holds for {|~p−〉}. Remember
that

H = R⊕ B (8.187)

where the subspace B of bound states is spanned by {|n〉}, say. Therefore we have

I =

ˆ
d3p |~p〉〈~p| (8.188)

=

ˆ
d3p |~p+ 〉〈~p+ |+

∑
n

|n〉〈n| (8.189)

=

ˆ
d3p |~p− 〉〈~p− |+

∑
n

|n〉〈n| . (8.190)
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We know that given a proper (physical) asymptotic state |φ〉 one can find the scattering state
|φ±〉 = Ω± |φ〉 in terms of the Green’s operator as:

|φ±〉 = |φ〉+

ˆ
d3p′G(E~p′ ± iε)V |~p′〉 〈~p′ |φ〉 . (8.191)

Then, in terms of improper states (understood as the basis on which |φ±〉 and |φ〉 can be expanded):

|~p±〉 = |~p〉+

ˆ
d3p′G(E~p′ ± iε)V |~p′〉 〈~p′ |~p〉

= [I +G(E~p ± iε)V ] |~p〉 . (8.192)

Since the T operator was defined as T (z) = V + V G(z)V the expression above implies:

T (E~p ± iε) |~p〉 = V [I +G(E~p ± iε)V ] |~p〉 = V |~p±〉 . (8.193)

From G(z)V = G0(z)T (z) we obtain the Lippmann-Schwinger equation for |~p±〉:

|~p±〉 = |~p〉+G(E~p ± iε)V |~p〉
G(E~p ± iε)V |~p〉 = G0(E~p ± iε)T (E~p ± iε) |~p〉
T (E~p ± iε) |~p〉 = V |~p±〉

⇒ |~p±〉 = |~p〉+G0(E~p ± iε)V |~p±〉 (8.194)

And from this equation it follows that the stationary wave functions 〈~x|~p± 〉 are the solutions of
the integral equation:

〈~x|~p± 〉 = 〈~x|~p〉+

ˆ
d3x′ 〈~x|G0(E~p ± iε) |~x′〉V (~x′) 〈~x′ |~p± 〉 . (8.195)

Before solving it, we have to calculate the Green’s function 〈~x|G0(E~p ± iε) |~x′〉:

〈~x|G0(z) |~x′〉 =

ˆ
d3p 〈~x|G0(z) |~p〉 〈~p|~x′〉

=

ˆ
d3p 〈~x|~p〉 1

z − E~p
〈~p|~x′〉

=
1

(2π~)3

ˆ
d3p

e
i
~ ~p·(~x−~x

′)

z − E~p

=
1

(2π~)3

ˆ ∞
0

dp p2

ˆ 2π

0

dϕ̃

ˆ 1

−1

d cos θ̃
e

i
~p|~x−~x

′| cos θ̃

z − E~p

=
2π

(2π~)3

ˆ ∞
0

dp p2 1
i
~p|~x− ~x′|

(
e

i
~p|~x−~x

′| − e−
i
~p|~x−~x

′|

z − E~p

)

=
i2m

(2π~)2

1

|~x− ~x′|

ˆ ∞
0

dp p

(
e

i
~p|~x−~x

′| − e−
i
~p|~x−~x

′|

p2 − 2mz

)

=
im

2π2~2

1

|~x− ~x′|

ˆ ∞
−∞

dp p
e

i
~p|~x−~x

′|

p2 − 2mz
(8.196)

where in the last step we have changed p′ = −p in the second term:

−
ˆ −∞

0

dp′ p′
e

i
~p
′|~x−~x′|

p′2 − 2mz
=

ˆ 0

−∞
dp p

e
i
~p|~x−~x

′|

p2 − 2mz
. (8.197)

Now we can calculate the integral (suppose the case of z = E~p + iε):

ˆ ∞
−∞

dp p
e

i
~p|~x−~x

′|

p2 − 2mz
=

˛
dp p

e
i
~p|~x−~x

′|

p2 − 2mz
(8.198)
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in the p complex plane by choosing the closed contour in the figure with |p| → ∞ that contains one
pole at p = +

√
2mz (remember that ε→ 0+). Then, applying Cauchy’s residue theorem:

˛
dp p

e
i
~p|~x−~x

′|

p2 − 2mz
= 2πiRes(

√
2mz) = 2πi lim

p→
√

2mz

(
p−
√

2mz
) pe i

~p|~x−~x
′|

p2 − 2mz

= πi e
i
~p|~x−~x

′| with p =
√

2mE. (8.199)

Therefore,

〈~x|G0(E~p + iε) |~x′〉 =
im

2π2~2

1

|~x− ~x|
πi e

i
~p|~x−~x

′| = − m

2π~2|~x− ~x′|
e

i
~p|~x−~x

′|. (8.200)

Analogously, for z = E~p − iε one finds

〈~x|G0(E~p − iε) |~x′〉 = − m

2π~2|~x− ~x′|
e−

i
~p|~x−~x

′|. (8.201)

Hence, the stationary wave functions satisfy the equation

〈~x|~p± 〉 = 〈~x|~p〉 − m

2π~2

ˆ
d3x′

e±
i
~p|~x−~x

′|

|~x− ~x′|
V (~x′) 〈~x′ |~p± 〉 . (8.202)

We will focus in the solutions for 〈~x|~p+ 〉.

At large distances r = |~x|, and with the integration variable within the range a of the potential,
r′ = |~x′| ∼< a� r, we can approximate

|~x− ~x′| =
√
r2 + r′2 − 2~x · ~x′ ≈ r

(
1− ~x · ~x′

r2

)
⇒ e

i
~p|~x−~x

′|

|~x− ~x′|
≈ e

i
~pre−

i
~px̂·~x

′

r
(8.203)

and we have

− m

2π~2

ˆ
d3x′

e
i
~p|~x−~x

′|

|~x− ~x′|
V (~x′) 〈~x′ |~p+ 〉 −−−→

r→∞
− m

2π~2

e
i
~pr

r

ˆ
d3x′ e−

i
~px̂·~x

′
〈~x′|V |~p+〉

=− m

2π~2
(2π~)3/2 e

i
~pr

r
〈px̂|V |~p+〉 (8.204)

because

|px̂〉 =

ˆ
d3x′ |~x′〉 〈~x′ |px̂〉 =

1

(2π~)3/2

ˆ
d3x′ |~x′〉 e i

~px̂·~x
′
. (8.205)

Now we will take the Born approximation, that is the first order approximation of the Born series
obtained solving perturbatively the Lippmann-Schwinger equation for |~p+〉:

|~p+〉 = |~p〉+G0(z)V |~p+〉 , z = E~p + iε

= |~p〉+G0(z)V |~p〉+G0(z)V G0(z)V |~p〉+ . . . (8.206)

So, the Born approximation is just |~p+〉 = |~p〉. Then,

− m

2π~2

ˆ
d3x′

e
i
~p|~x−~x

′|

|~x− ~x′|
V (~x′) 〈~x′ |~p+ 〉 −−−→

r→∞
− m

2π~2
(2π~)3/2 e

i
~pr

r
〈px̂|V |~p〉

=
1

(2π~)3/2

e
i
~pr

r
f(px̂← ~p) (8.207)

where we have used the definition of the scattering amplitude in the Born approximation:

f(~p′ ← ~p) = −(2π)2~m 〈~p′|V |~p〉 . (8.208)
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Therefore, we conclude that

〈~x|~p± 〉 = 〈~x|~p〉+

ˆ
dx′ 〈~x|G0(E~p ± iε) |~x′〉V (~x′) 〈~x′ |~p± 〉

−−−→
r→∞

〈~x|~p〉+
1

(2π~)3/2

e
i
~pr

r
f(px̂← ~p). (8.209)

Namely:

〈~x|~p+ 〉 −−−→
r→∞

1

(2π~)3/2

[
e

i
~ ~p·~x + f(px̂← ~p)

e
i
~pr

r

]
(8.210)

This is an important result: the improper scattering state |~p+〉 includes the incident plane wave
plus a spherical outgoing wave modulated by the scattering amplitude f(px̂← ~p).

The effect of the scattering is more transparent in terms of partial waves. Remember that in
spherical coordinates:

f(~p′ ← ~p) =
~

2ip

∞∑
`=0

(2`+ 1)[e2iδ`(E~p) − 1]P`(cos θ)

=

∞∑
`=0

(`+ 1
2 )

e2iδ`(E~p) − 1
i
~p

P`(cos θ) (8.211)

and the expansion of the plane wave at large distances in spherical waves is:

1

(2π~)3/2
e

i
~ ~p·~x −−−→

r→∞

1

(2π~)3/2

∞∑
`=0

(`+ 1
2 )

[
e

i
~pr

i
~pr

+ (−1)`+1 e−
i
~pr

i
~pr

]
P`(p̂ · x̂). (8.212)

For ~p′ = px̂ we have cos θ = p̂ · p̂′ = p̂ · x̂ and 〈~x|~p+ 〉 can be written as:

〈~x|~p+ 〉 −−−→
r→∞

1

(2π~)3/2

∞∑
`=0

(`+ 1
2 )

[
e2iδ`(E~p) e

i
~pr

i
~pr

+ (−1)`+1 e−
i
~pr

i
~pr

]
P`(cos θ) (8.213)

So the scattering modifies each outgoing spherical wave by a phase-shift factor e2iδ` .

Now we have the ingredients of the time-independent scattering theory. We need to find the

stationary wave functions, eigenfunctions of H = H0 + V with eigenvalue E~p = p2

2m . They are
the solutions of the Schrödinger equation for a given potential. Taking the appropriate asymptotic
limits one can extract the phase shifts.

But before doing that, let us study the validity of the Born approximation. We have seen
that it consists on replacing 〈~x|~p+ 〉 by 〈~x|~p〉 in the right hand side of

〈~x|~p+ 〉 = 〈~x|~p〉 − m

2π~2

ˆ
d3x′

e
i
~p|~x−~x

′|

|~x− ~x′|
V (~x′) 〈~x′ |~p+ 〉 . (8.214)

The difference between these two wave functions will be larger within the interaction region, |~x| ∼< a.
Since usually the potential is largest at the origin, we can obtain a criterion for the goodness of the
approximation by imposing that at ~x = 0 the second term is small with respect to the first one:

m

2π~2

∣∣∣∣∣
ˆ

d3x′
e

i
~pr
′

r′
V (~x′)e

i
~ ~p·~x

′

∣∣∣∣∣� 1. (8.215)

For a central potential, after doing the angular integration, the condition becomes:

m

~p

∣∣∣∣ˆ ∞
0

dr′ V (r′)
(

1− e2 i
~pr
′
− 1
)∣∣∣∣� 1. (8.216)
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Finally, let us calculate the phase shifts from the Schrödinger equation for a central potential
by finding the (improper) stationary solutions of[

− ~2

2m
∇2 + V (r)

]
ψ(~x) = Eψ(~x) (8.217)

The solutions are spherical waves that can be written as

〈~x|E`m+ 〉 = A`(r)Y
m
` (x̂), A`(r) ≡

y`(r)

r
(8.218)

where the radial part satisfies the differential equation:

− ~2

2m

[
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2
− 2m

~2
V (r)

]
A`(r) =

p2

2m
A`(r)

⇒
[

d2

dr2
− `(`+ 1)

r2
+
p2

~2
− 2m

~2
V (r)

]
y`(r) = 0. (8.219)

We have seen that if there was no interaction, V (r) = 0, the general solution compatible with A`(r)
being regular at the origin would be

V (r) = 0 ∀r : A0
`(r) =

i`

~

√
2mp

π~
j`(

pr
~ ) (8.220)

that gives the normalized state 〈~x|E`m〉.

If there is interaction by a potential with a finite range a, the general solution for r > a, where
V (r) = 0, is

V (r) = 0 for r > a : A`(r) =
y`(r)

r
=

i`

~

√
2mp

π~

[
c
(1)
` h

(1)
` (pr~ ) + c

(2)
` h

(2)
` (pr~ )

]
(8.221)

where h(1)(x) and h(2)(x) are the spherical Hanckel functions of the first and the second kind,
respectively, that are combinations of the spherical Bessel and Neumann functions:

h
(1)
` (x) ≡ j`(x) + in`(x) −−−−→

x→∞

ei(x−`π2 )

ix
(8.222)

h
(2)
` (x) ≡ j`(x)− in`(x) −−−−→

x→∞
−e−i(x−`π2 )

ix
. (8.223)

It is convenient to introduce these combinations because then the coefficients are directly related
to the phase shifts:

〈~x|~p+ 〉 =

∞∑
`=0

∑̀
m=−`

〈~x|E`m+ 〉 1
√
mp

Y m∗` (p̂)

=

∞∑
`=0

∑̀
m=−`

i`

~
√

2π~
[
c
(1)
` h

(1)
` (pr~ ) + c

(2)
` h

(2)
` (pr~ )

]
Y m` (x̂)Y m∗` (p̂)

=
1

(2π~)3/2

∞∑
`=0

(2`+ 1)i`
[
c
(1)
` h

(1)
` (pr~ ) + c

(2)
` h

(2)
` (pr~ )

]
P`(p̂ · x̂)

−−−→
r→∞

1

(2π~)3/2

∞∑
`=0

(2`+ 1)

[
c
(1)
`

e
i
~pr

i
~pr

+ (−1)`+1c
(2)
`

e−
i
~pr

i
~pr

]
P`(cos θ) (8.224)

to be compared with equation (8.213):

〈~x|~p+ 〉 −−−→
r→∞

1

(2π~)3/2

∞∑
`=0

(`+ 1
2 )

[
e2iδ`(E~p) e

i
~pr

i
~pr

+ (−1)`+1 e−
i
~pr

i
~pr

]
P`(cos θ). (8.225)
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Therefore:

c
(1)
` = 1

2e2iδ` , c
(2)
` = 1

2 (8.226)

and hence

for r > a : A`(r) =
y`(r)

r
=

i`

~

√
2mp

π~
1

2

[
e2iδ`h

(1)
` (pr~ ) + h

(2)
` (pr~ )

]
=

i`

~

√
2mp

π~
eiδ`

[
eiδ` + e−iδ`

2
j`(

pr
~ )− eiδ` − e−iδ`

2i
n`(

pr
~ )

]
=

i`

~

√
2mp

π~
eiδ` [cos δ` j`(

pr
~ )− sin δ` n`(

pr
~ )] (8.227)

and remember that

for r < a : y`(r) satisfies

[
d2

dr2
− `(`+ 1)

r2
+
p2

~2
− 2m

~2
V (r)

]
y`(r) = 0. (8.228)

Both radial functions must coincide at r = a. This way we have a method to find the phase
shifts: match the solutions for y(r) out and inside the range of the potential just at r = a. It is
convenient to equate the logarithmic derivatives to avoid the normalization of the solutions:

1

y`(r)

dy`(r)

dr
(r = a)

∣∣∣∣
outside

=
1

y`(r)

dy`(r)

dr
(r = a)

∣∣∣∣
inside

(8.229)

And if the potential has infinite range then it will only vanish at r →∞ and one has to match the
log of the solution of the Schrödinger equation in that limit with

lim
r→∞

1

y`(r)

dy`(r)

dr
=
p

~
cot
(
pr
~ − `

π
2 + δ`

)
(8.230)

since

A`(r) =
y`(r)

r
∝ 1

2

[
e2iδ`h

(1)
` (pr~ ) + h

(2)
` (pr~ )

]
−−−→
r→∞

eiδ`

i
~pr

sin
(
pr
~ − `

π
2 + δ`

)
. (8.231)
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