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Abstract — Eye blinking classical conditioning is one of the 

most extensively studied paradigms related to the cerebellum. 

In this work we have defined a realistic cerebellar model 

through the use of artificial spiking neural networks, testing it 

in computational simulations reproducing the eye blinking 

classical conditioning in multiple sessions of acquisition and 

extinction. We used two models: one with only the cortical 

plasticity and another with three plasticity sites, one plasticity 

at cortical level and two at nuclear level. We have compared the 

behavioral outcome of the two different models and proved that 

the model with a distributed plasticity produces a faster and 

more stable acquisition of conditioned responses in the re-

acquisition phase with respect to the single plasticity model. 

This behavior is explained by the effect of the nuclear 

plasticities, which have a slow dynamics and can express 

memory consolidation and savings. 

I. INTRODUCTION 

The cerebellum is a fundamental processing unit for a 
large number of cognitive and motor tasks [1], one of the 
most studied paradigms in which the cerebellum is majorly 
involved is the Eye Blinking Classical Conditioning (EBCC) 
[2]. In the standard EBCC, a neutral Conditioned Stimulus 
(CS), e.g. a tone, precedes an attentive Unconditioned 
Stimulus (US), e.g. an electric stimulation of the periorbital 
area or an air-puff directed to the eye. The time interval 
between the onset of the CS and the onset of US is fixed and 
it is called Inter Stimulus Interval (ISI) [3]. At the beginning, 
the (animal or human) subjects show eyelid closures (blink) 
elicited by the US. After repeated presentations of CS and 
US paired during the acquisition phase, the subject learns to 
close his eyelids before the arrival of the US, this action is 
called Conditioned Response (CR). During the extinction 
phase, the subject continues to receive the CS only, without 
the presentation of US. At the beginning, the learned 
association leads to generate CRs still. At the end of the 
extinction phase, the subject does not show the previously 
acquired behavior.   
Several studies proved the importance of the cerebellum for 
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the acquisition and extinction of CRs in EBCC sessions. The 
signal pathways which are involved during the EBCC are 
clear (see Fig. 1): the CS is conveyed from the Pontine 
Nuclei to the Granular Cells (GRs) through the Mossy Fibers 
(MFs); the US is conveyed from the Inferior Olive cells 
(IOs) to the Purkinje Cells (PCs) through the Climbing 
Fibers (CFs), PCs also receive excitatory synapses from GRs 
through the Parallel Fibers (PFs); the eyelid closure is 
commanded by the Deep Cerebellar Nuclei cells (DCNs) 
which excite the related motor neurons. 
It is supposed that the learning capabilities of the cerebellum 
are related to the plasticity mechanisms which change the 
synaptic weights of the connections between different groups 
of cells. There are two well-known long term plasticities for 
the PF-PC connections: Long Term Potentiation (LTP) and 
Long Term Depression (LTD). They are assumed to be 
responsible of CR acquisition and extinction in EBCC 
protocol [4]. In the last years, other plasticity sites were 
hypothesized [5]–[7], both at cortical and nuclear level, in 
order to take into account the different time scales which can 
be identified in cerebellar adaptation. Specifically, the 
cerebellar learning can be separated into two components: a 
fast process related to the cortical plasticity and a slow 
process related to the nuclear plasticity. 
The simplicity of the EBCC and the timing nature of the 
protocol led to use this paradigm as a test bench for 
computational models of the cerebellum, which range from 
simplified analog versions [3], [8], [9] to more realistic 
models using artificial Spiking Neural Networks (SNN) [10], 
[11]. Different models implement also different plasticity 
mechanisms, the majority takes into account the cortical 
plasticity only. In [11], a large-scale SNN (more than 100k 
neurons) was used in a robotic Pavlovian task, reproducing 
learning mechanisms with PF-PC plasticity. Very recently, 
Casellato et al. developed and tested a SNN-based cerebellar 
model in different tasks, such as EBCC and Vestibulo-
Ocular Reflex both in computational simulations and 
embedded real robotic platforms [12]. This model has shown 
its effectiveness obtaining behaviors similar to 
neurophysiological experiments, exploiting only LTP and 
LTD plasticities at the PF-PC connections. Both Yamazaki 
and Casellato models did not implement nuclear plasticity 
mechanisms, in this work we aim to improve the second 
SNN model introducing two additional plasticities at the 
nuclear level, in particular LTP and LTD mechanisms at 
MF-DCN and PC-DCN synapses. We tested the models in 
computational simulations reproducing the EBCC protocol 
with two sessions, each made up of an acquisition phase and 
an extinction phase. Our aim is to highlight the behavioral 
differences between the SNN model equipped with the 
cortical plasticity only and with three plasticity sites. We 
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Figure 1.  Cerebellar Model 

Topology of the SNN models used, with connections between different 
groups of cells and input/output signals. Transparent areas indicate 
the three plasticity sites: for the one-plasticity model only the 1st 
plasticity is active, for the three-plasticity model also the 2nd and the 
3rd plasticity are active. The inhibitory connection from DCN to IO is 
dashed because there is an external inhibitory mechanism. 

 

expect that the addition of nuclear plasticities, which have a 
slow timescale, could introduce consolidation mechanisms, 
detectable mainly in the re-acquisition phase [13].  

II. MATERIALS AND METHODS 

A. Cerebellar topology 

We started from a well-tested cerebellar model, 
exploiting the Event-Driven simulator based on Look-Up-
Tables [14], a simulator of SNN which speeds up the 
simulation through the use of look-up-tables which reduces 
the computational load. 
The SNN (Fig. 1) is composed of 100 MFs, which receive 
the CS, 2000 GRs, 24 IO, which receive the US, 24 PCs and 
12 DCN, which produce the cerebellar output and therefore 
the CRs. 
MFs are randomly connected with GRs, each GR receives 4 
random connections, for a total of 8000 excitatory 
connections. The granular layer is a sparse representation of 
the input signal, due to the sparse coding each time sample 
(1 ms) corresponds to a different state of this layer. Each PC 
is randomly connected with the 80% of the GRs through the 
PFs, for a total of 38438 excitatory connections. Each IO is 
connected with one PC through one PF. Each DCN receives 
excitatory connections from all 100 MFs, for a total of 1200 
synapses, and 2 inhibitory connections from 2 PCs, for a 
total of 24 synapses. The DCN-IO inhibitory input is 
implemented as a mechanism that decreases the IOs firing 
rate, induced by the incoming US, if a CR is generated 
before the US onset. Indeed, the noxiousness of the US 
diminishes if the cornea is already protected by the eyelid. 
The inhibition mechanism of the IOs by the DCNs translates 
the motor command signal into a sensory modulation, thus a 
single cerebellar area simultaneously tackles both motor 
execution and sensory prediction [15]. 

B. Learning Rules 

The SNN models embed one or three plasticity sites, which 

follow different learning rules: 

1st learning rule: PF-PC 

 
where: 

 
 

and the Kernel function is: 

 
where β1 is the LTD1 constant (= -1.0); α1 is the LTP1 

constant (= 0.005); tIOspikej is the time when the corresponding 

CFj emits a spike; K is the integral kernel function, which 

has its peak at t0 before tIOspikej with t0 equals to 100 ms, as 

the physiological delay of the neural circuit dictated by 

biology. τ and A are constant factor to normalize the kernel, 

more detailed explanations about the rationale of the kernel 

function can be found in [14]. 

2nd learning rule: MF-DCN 

 
where: 

 
 

and the Kernel function is: 

            

where β2 is the LTD2 constant (= -2.2∙10-7), α2 is the LTP2 

constant (= 3.2∙10-6); tPCspikej is the time when one of the two 

corresponding PCj emits a spike; K is the integral kernel 

function and τ is used in order to normalize the arguments in 

the learning rule. 

3rd learning rule: PC-DCN  

This learning rule is implemented as a standard Spike-

Timing Dependent Plasticity (STDP): when one of the two 

PCs (pre-synaptic) fires and soon after the corresponding 

DCN fires (within a pre-defined LTP-time window = 10 ms), 

the two inhibitory synapses from PCs to that DCN are 

increased, depending also on the distance between PC and 

DCN spikes (max LTP change: α3 = 4.0∙10-4 ); otherwise, if 

the opposite chronological order occurs (within a pre-defined 

LTD-time window = 50 ms), the synapses undergo LTD 

(max LTD change β3  = 9.0∙10-6). 
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Figure 2.  Cerebellar output RMS and behavioral outcome 

RMS cerebellar output computed within each trial (A) and percentage 
of CRs (B) with ISI2. In black the results with one-plasticity model, in 
red the results with three-plasticity model. 

The used LTP and LTD constants for the three learning rules 

come from a parameter optimization as explained in [12]. 

C. Protocol 

We used the “delayed EBCC” protocol (CS and US co-
terminate) in order to test the models capability to acquire 
and extinguish the CRs. The protocol is divided in two 
sessions (session1 and session2), each session is composed of 
an acquisition phase, with the presentation of CS-US pairs 
for 400 trials, and an extinction phase, with the presentation 
of CS only for 200 trials. We used 3 different ISIs to test the 
robustness of the models: 300 ms (ISI1), 400 ms (ISI2) and 
500 ms (ISI3). The CS lasts a time equal to the sum of ISI 
and the duration of US (100 ms). 
During the CS, the MFs randomly fire with a firing rate of 
about 40 Hz. During the US, IOs fire with a mean firing rate 
of 1 Hz and maximum firing rate of 10 Hz [10]. The DCNs 
spiking activity is decoded into the “cerebellar output” by a 
firing rate approach. A CR is identified when the cerebellar 
output overcomes a predefined threshold equal to 20. When 
a CR is identified, during the following US the IOs activity is 
reduced of 50%, due to the DCN-IO inhibitory loop. 

D. Data Analysis 

For each of the two models and for each ISI, we 
measured the percentage of acquired CRs during the whole 
test, with a mobile window of 10 trials, the Root Mean 
Square (RMS) cerebellar output within each trial and the 
latency of CRs, defined as the time difference between the 
US and CR onsets. We computed the mean and standard 
deviation for CRs percentage, RMS cerebellar output and 
latency, both in the acquisition phase of session1 (trials 51-
400) and in session2 (trials 651-1000). We analyzed the 
synaptic weights evolution for the connection strengths 
modified by the learning rules: PF-PC, MF-DCN and PC-
DCN.  

III. RESULTS 

For the one-plasticity model, the outcome is summarized 

in Table I. 

TABLE I.  ONE-PLASTICITY MODEL OUTPUT 

 CRs percentage 

[%] 

RMS output 

 

Latency 

[ms] 

ISI1 session1 93.2 ± 5.0 11.3 ± 1.4 173 ± 12 

ISI1 session2 90.6 ± 4.1 10.5 ± 0.7 164 ± 8 

ISI2 session1 91.4 ± 6.3 8.8 ± 0.6 134 ± 8 

ISI2 session2 89.8 ± 4.9 8.6 ± 0.5 139 ± 5 

ISI3 session1 88.1 ± 6.2 8.6 ± 0.7 129 ± 8 

ISI3 session2 86.3 ± 7.2 7.9 ± 0.4 122 ± 7 

It is clear that there are no significant differences between 

the outcomes of the model in session2 with respect to 

session1. Therefore, the single cortical plasticity could 

reflects a fast process and cannot consolidate the learning 

into more stable memory. 

For the three-plasticity model the outcome is summarized 

in Table II. 

TABLE II.  THREE-PLASTICITY MODEL OUTPUT 

 CRs percentage 

[%] 

RMS output 

 

Latency 

[ms] 

ISI1 session1 93.7 ± 5.7 11.7 ± 1.1 166 ± 15 

ISI1 session2 100.0 ± 0.0 15.8 ± 0.8 192 ± 4 

ISI2 session1 93.0 ± 4.7 9.6 ± 0.8 149 ± 10 

ISI2 session2 100.0 ± 0.0 13.9 ± 1.2 174 ± 8 

ISI3 session1 90.3 ± 5.0 8.7 ± 0.7 123 ± 14 

ISI3 session2 100.0 ± 0.0 12.3 ± 0.8 170 ± 4 

Using this model, the cerebellar outcome in session2 is 

higher with respect to session1 (Fig. 2) and the latencies are 

greater (i.e. the CRs are more anticipated with respect to the 

incoming US onset). Therefore, the additional plasticity sites 

are supposed to consolidate the learning due to their slower 

dynamics. If we compare the results of the three-plasticity 

model with the one-plasticity model, the learning in the 

second session of acquisition is higher and faster in the 

model with multiple plasticities: in session2 the three-

plasticity model produces CRs 10 trials faster for ISI1, 18 

trials for ISI2 and 20 trials for ISI3 with respect to the other 

model. Analyzing the weights evolution along the three tests, 

it is possible to discover that with the multiple plasticity 

model there is a memory transfer from the cerebellar cortex 

(1st plasticity) to the deep nuclei (2nd and 3rd plasticities). It is 

demonstrated by the number of near low-saturated (<1 nS) 

weights of PF-PC synapses at the end of acquisition in 

session1 (trial 400) and in session2 (trial 1000) in Table III. 

 
TABLE III.  PERCENTAGE OF SATURATED  PF-PC WEIGHTS 

 1-plasticity model 3-plasticity model 

ISI1 session1 20.7 % 20.5 % 

ISI1 session2 21.8 % 15.3 % 

ISI2 session1 17.8 % 16.9 % 

ISI2 session2 18.7 % 12.9 % 

ISI3 session1 18.0 % 17.1 % 

ISI3 session2 18.3 % 12.6 % 

A 
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Figure 3.  Synaptic weights evolution in the three plasticity sites 

 
(A) Synaptic weights evolution with ISI2 using the three-plasticity 
model. All connection weights are expressed in nS. 
Histograms of PC-PC weights at the end of acquisition in session1 (B) 
and in session2 (C). 

It is clear that for the one-plasticity model the number of 

saturated PF-PC weights is about the same in both sessions, 

instead for the three-plasticity model the number of saturated 

PC-PC weights decreases from session1 to session2. It is due 

to the memory transfer: in fact the main phenomenon driving 

acquisition is the development of LTD at the PF-PC 

synapses, but in the three-plasticity model, with a slower 

rate, plasticity at the MF-DCN and PC–DCN synapses 

occurs (Fig. 3). In session1, this transfer does not change any 

overall learning performances and the network is able to 

rapidly extinct the stimuli association by fast PF-PC LTP, 

without canceling the slower nuclear plastic changes 

occurred. Thus, session2 controlled by the three-plasticity 

model starts with the cerebellar synapses in a different state 

than when controlled by the one-plasticity model: the 

distributed plasticity dynamics, able to store information, is 

responsible for the higher learning rate in session2 and the 

more effective acquisition. 

CONCLUSION 

In this work, we have demonstrated that a realistic 

cerebellar model which embeds a distributed plasticity shows 

different timescales of learning and improves its 

performance with respect to the same model with the cortical 

plasticity only. Through the designed EBCC protocol, we 

validated the models robustness in learning associative 

responses with different ISIs and we have shed light on 

acquisition, extinction and consolidation mechanisms, 

associable to the different active plasticity sites [16]. This 

model, eventually equipped with more realistic neuron 

dynamics, could represent a useful clinical tool. Indeed, the 

SNN with modified parameters so as to reproduce cerebellar 

abnormalities, such as lesions or cellular disruption, could 

predict the expected and correlated behavioral outcomes. On 

the other hand, by fitting the model on specific patients' 

misbehaviors, it could suggest the underlying parameters 

modifications. 
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