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Abstract: Let R be aring and let M (R) stand for the multiplication ring of R. An idempotent
E in M(R) is called left semicentral if its range E(R) is a right ideal of R. In the case that
R is prime and centrally closed we give a description of the left semicentral idempotents in
M(R). As an application we prove that, if, in addition, M (R) is Baer (respectively, regular
or Rickart), then R is Baer (respectively, regular or Rickart). Similar results for %-rings are
also proved.

Key words: Prime ring, extended centroid, multiplication ring, semicentral idempotent, Baer
ring.

AMS Subject Class. (2010): 16N60, 16E50.

INTRODUCTION

Let R be a (unital associative) ring and let Endz(R) stand for the ring of
all endomorphisms of the additive group of R. For each a in R, let L, and R,
denote the left and right multiplications by a, respectively. The multiplication
ring of R is defined as the subring M (R) of Endz(R) generated by the set
{La4, Ry : a € R}. If for any a,b € R we define the two-sided multiplication
Mg,y € Endz(R) by M, p(x) = axb, it is clear that L, = My 1, Ry = My,
IdR = M1,1, and

M(R) = {ZR:MW neN, a,be R(1<i< n)}.
i=1

We say that an idempotent E in M (R) is left (respectively, right, or two-sided)
semicentral if its range E(R) is a right (respectively, left, or two-sided) ideal
of R.
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Our aim is to provide a description of the semicentral idempotents in the
multiplication ring of a centrally closed prime ring. While the general theory
of rings of quotients is developed in many books, we shall mostly follow [1].
Recall that a ring R is called prime if the product of two nonzero ideals of R is
always nonzero (equivalently, the condition aRb = 0, where a,b € R, implies
a=0orb=0), and R is called semiprime if it contains no nonzero nilpotent
ideals (equivalently, the condition aRa = 0, where a € R, implies a = 0). The
extended centroid C' of a semiprime ring R can be defined as the center of its
two-sided symmetric ring of quotients Q(R), and R is said to be centrally
closed whenever C coincides with the center of R. Moreover, R is prime if
and only if C is a field. We prove that the left semicentral idempotents in
M(R), for R centrally closed prime ring, are just of the form

n
E =L+ Z Mz, y;
i=1

for suitable e idempotent in R, n > 0, x;,y; € R satisfying ex; = x;, z;e = 0,
and x;z; = 0 for all 4,5 € {1,...,n}, and such that both sets {e,z1,...,2,}
and {1,y1,...,yn} are linearly C-independent.

As usual, for a subset S of a ring R, the left respectively right annihilator
of S will be defined by

Anny(S) :={a € R: aS =0} and Ann,(S) :={a € R: Sa =0}.

Clearly Anny(S) is a left ideal of R and Ann,(S5) is a right ideal of R. Recall
that a ring R is a Rickart ring if for each x in R there are idempotents e and f
in R such that Ann,(z) = eR and Anny(z) = Rf. A ring R is a regular ring if
for each z in R there exists an element y in R such that x = xyx (equivalently,
xR = eR for suitable idempotent e in R). A ring R is a Baer ring if for each
subset S of R there is an idempotent e in R such that Ann,(S) = eR. As an
application of the description of the semicentral idempotents in M (R), for R
centrally closed prime ring, we derive that if M(R) is a Rickart, regular, or
Baer ring, then R so is. Similar results for centrally closed *-prime *-rings are
also obtained. The classical books here are [2, 3, 6, 7].

1. THE MAIN RESULTS

We begin by stating some immediate characterizations of semicentral idem-
potents in the multiplication ring.
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PROPOSITION 1.1. Let R be a ring and let E be an idempotent in M (R).
Then the following conditions are equivalent:

(i) E is a left (respectively, right) semicentral idempotent in M (R).
(ii) E(E(a)b) = E(a)b (respectively, E(bE(a)) = bE(a)) for all a,b € R.
(ili) FR,E = R, F (respectively, EL,E = L,F) for every a € R.

COROLLARY 1.2. Let R be a ring and let E be an idempotent in M (R).
Then the following conditions are equivalent:

(i) E is a two-sided semicentral idempotent in M(R).
(ii) E(E(a)b) = E(a)b and E(bE(a)) = bE(a) for all a,b € R.
(ili) ETE =TE for every T € M(R).

Note that the two-sided semicentral idempotents in M (R) in our sense are
just the left semicentral idempotents in the ring M (R) in the sense of [4].
Clearly every central idempotent in M (R) is two-sided semicentral. The con-
verse is true whenever R is prime.

PROPOSITION 1.3. Let R be a prime ring. For E € M(R), the following
conditions are equivalent:

(i) E is a central idempotent.
(ii) E is a two-sided semicentral idempotent.

(iii) £ =0 orIdg.

Proof. The implications (iii) = (i) = (ii) are true in a general context.
(ii) = (iii). If F' is a two-sided semicentral idempotent in M (R), then

(Idg — E)M(R)E = 0.

Since M(R) is a prime ring [5, Proposition 4], it follows that E = 0
or Idg. 1

In order to obtain a description of the one-sided semicentral idempotents
in the multiplication ring of a centrally closed prime ring, we will make heavy
use of the following well-known fact [1, Corollary 6.1.3]:
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Let R be a centrally closed prime ring, and let a;,b; € R (1 < i < n)
be such that Z?:l a;xb; = 0 for every x € R. If ay,...,a, are linearly C'-
independent, then by = --- = b, = 0.

Given T € M(R)\{0}, we will say that the length of T is n € N if
T=>"" 1 M,,, for some a;,b; € R and T cannot be written also as > i~ M, 4,
for some m < n, ¢;,d; € R.

LEMMA 1.4. Let R be a centrally closed prime ring and let T' be a nonzero
element in M(R). Then T has length n if and only if T = %" | Mg, for
some a;,b; € R with ay,...,ay linearly C-independent and by, ..., by, linearly
C-independent.

Proof. Assume that T has length n. If T = """ | M, p,, then it is clear
that any linear C-dependence of the a;’s or the b;’s allows us to write 1" as a
sum of two-sided multiplications with less than n summands. Therefore, both
{a1,...,a,} and {by,...,b,} are linearly C-independent sets.

Conversely, assume that T = >, M, ;, and that both {ai,...,an}
and {b1,...,b,} are linearly C-independent sets. To obtain a contradic-
tion, we suppose that T = Z;”:l M, q; for some m < n, c1,...,¢p lin-
early C-independent and dy, ..., d,, linearly C-independent. Then, there ex-
ists k,¢ € {1,...,n} such that a is linearly C-independent of the ¢;’s and
ag is linearly C-dependent of the c¢;’s. By the incomplete basis theorem,
there exists a subset of {ay,...,a,}, which we will assume {ay,...,a,}, such
that {a1,...,ap,c1,...,cm} is a basis of the C-vector subspace generated by
{a1,...,an,c1,...,cm}. Soforeach k € {p+1,...,n} we can write

P m
ap = Zaﬁgai + Zﬁicj (o, Bl € C).
i=1 j=1

Therefore, the equality > 7 My, p, = > 72 Mc; q; yields to

J
p n m n

Zai:z (bi + Z af'cbk> = Z c;T (dj - Z ﬂibk>
i=1 k=p+1 j=1 k=p+1

for every z € R. Hence b + ZZ:p 11 a};bk = 0 -a contradiction. Thus 7" has
length n. |

Our main result is the following.
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THEOREM 1.5. Let R be a centrally closed prime ring, let E be in
M(R)\{0} and let n > 0. Then FE is a left semicentral idempotent in M(R)
of length n + 1 if and only if

n
E=Lc+ Z Mz,
=1

for suitable e idempotent in R, x;,y; € R satisfying ex; = x;, x;e = 0, and
ziz; = 0 for all 1,5 € {1,...,n}, and such that both sets {e,z1,...,z,} and
{1,91,...,yn} are linearly C-independent.

Proof. 1t is easy to see that, if £ is of the form just described in the
statement, then F is a left semicentral idempotent in M (R). Moreover, by
Lemma 1.4, F has length n + 1.

In order to prove the converse, assume that F is a left semicentral idem-
potent in M (R) of length n+1. Write E = )" M,, 5, for suitable a;,b; € R,
and take into account that, by Lemma 1.4, {ag, a1, ...,a,} and {by, b1,...,b,}
are each linearly C-independent sets. Set a;; = a;aj. Then the equality
E(E(x)y) = E(z)y can be rewritten as follows

n n
Z a; jxbjyb; = Z apxbry. (1.1)
i,j=0 k=0
First assume that {ag, a1, ...,a,} is a C-basis of the vector subspace generated
by the set S := {a;j,a; : 0 <i,j,k < n} and that for each i, j

aij = Zai’]ak (7 € C).

k=0
Then (1.1) gives that
n n o
arT (bky — Z az,’]bjybi> =0,
k=0 i,j=0

and consequently, for each k we have

n
bry — Z azjbjybi =0.
i,j=0
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Writing this equality in the form

bry (1 — zn:afc’kbi> — Zn:bjy <z": aZ’jbi> =0,
=0 j=0 =0
J#k

we see that

1—2@2”“1)1:0 and Zaf{’jbi:() (J #k).

i=0 =0

These equalities together with the linear' C-independence of by, by, ..., b, give
that a}" = apF for all i, k, k' and o}/ = 0 for all 4, j, k with j # k. Set

ik
o = a;g’ . Then, we have

n
E Oéibi =1 and am = aiaj.
=0

By suitable reordering of the summands appearing in E we can assume the
existence of m with 0 < m < n such that o; # 0 for ¢+ < m and oy = 0
otherwise. Now consider e = aalag, T, = ai_lai—aglao, yi = qibiif 1 <i<m
and z; = a;, y; = b; otherwise. It is easy to check that £ = L. + Z?Zl My, .
e is an idempotent in R, and x;,y; € R satisfy ex; = x;, ;e = 0, and z;z; = 0
for all 4,7, and both sets {e,z1,...,2,} and {1,y1,...,y,} are linearly C-
independent.

Finally suppose, towards a contradiction, that {ag, a1,...,a,} is not a C-
basis of the vector subspace generated by S. If S is a linearly C-independent
set, then it follows from (1.1) that bgy = 0 for every y € R, hence by =0
-a contradiction. Therefore there exists a nonempty proper subset I' of
{0,1,...,n} x{0,1,...,n} such that

{aij,a : (i,5) €T, 0<k <n}

is a C-basis of the vector subspace generated by S. Accordingly, for each
(p,q) € T, we may write

n

_ b,q _ . D,q b,q D,q

ap,q = Z a;iaq g+ E :Bk ar (ag;, 8" € O).
(,4)€l k=0
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Now, from (1.1) we see that

Z ai,j1'<bjybi+ Z quqyb> akx<bky— Z ﬁi’qbqybp)
k=0 (

(i,5)er (p,q)gT p,q) T

As a consequence, for a fixed (ig, jo) € I', we have

bjoWbio + D, ah baybp =0,
(p,9)gT

hence

]0y<b10 + Z afojjoo >+ ijy< Z O[fojjob> 0,

(p.jo)gT J#jo (p,J) gl

and so
b+ Y ablb,=0,
( 7]0)€F
which is a contradiction. |

Let R be a ring, and let R stand for the opposite ring of R. Since the
additive groups of R and R agree, we can identify their endomorphism rings
Endz(R) = Endz(RP), as well as their multiplication rings M (R) = M (RP).
More precisely, if MZ’% denote the two-sided multiplication determined by the
elements a and b in the opposite ring R°P, then note that M;ﬁ) = Mpy,.

COROLLARY 1.6. Let R be a centrally closed prime ring, let E be in
M(R)\{0} and let n > 0. Then FE is a right semicentral idempotent in M (R)
of length n + 1 if and only if

n
E=R.+ Z Mz, y,;
i=1
for suitable e idempotent in R, x;,y; € R satisfying y;e = vy;, ey; = 0, and
yiy; = 0 for all i,j € {1,...,n}, and such that both sets {1,z1,...,x,} and
{e,y1,...,yn} are linearly C-independent.

Proof. Note that R°P is a centrally closed prime ring. It is clear that
E € M(R) is a right semicentral idempotent in M (R) of length n + 1 if and
only if E € M(R°P) is a left semicentral idempotent in M (RP) of length n+1.
Now, the result follows straightforwardly from Theorem 1.5 applied to RP.
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COROLLARY 1.7. Let R be a centrally closed prime ring. We have:

(1) If E is a left semicentral idempotent in M(R), then there exists an
idempotent e in R such that EL, = L. and L.E = E. In particular,
E(R) = eR.

(2) If E is a right semicentral idempotent in M(R), then there exists an
idempotent e in R such that ER. = R, and R.FE = E. In particular,
E(R) = Re.

Proof. (1) We may assume that E # 0. By Theorem 1.5, we have

n
Ber ey M,

i=1
for suitable e idempotent in R, n > 0, x;,y; € R such that ex; = x;, ;e =0,
and x;z; = 0 for all 4,5 € {1,...,n}. Note that these conditions imply that
EL.= L. and L.E = E, and therefore E(R) = eR.

(2) This assertion can be proved similarly, taking into account Corol-

lary 1.6. 1

A x-ring is a ring R endowed with an involution, that is a map *: R — R
satisfying

(a+b)"=a"+0b", (ab)* =0%a", and (a*)* =a.

LEMMA 1.8. Let R be a centrally closed prime ring. Then M(R) is a
x-ring for the involution o defined by

n n
T=> My, — T°:=> Mg,
i=1 i=1

Proof. In order to prove the map T +— T° is well-defined, we show
that > | My, o, = 0 whenever Y " | M, 5, = 0. This is clear whenever
a; = -+- = a, = 0. Assume that some a; is nonzero. By suitable reordering
of the summands we may assume the existence of m with 1 < m < n such
that {a1,...,a,} is a C-basis of the vector subspace generated by the set
{a1,...,a,}. For each j with m < j < n, write a; = > 1o Ma; (A} € C).
Then, we have

n m

= M, . = M n i

0 Z a;,b; ai,bi.ﬁ_zj:mﬂ Nbj
i=1 =1
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hence, for every i with 1 < ¢ < m, we obtain that b; + Z?:m_u )\gbj =0, and

SO
n

m
0= ZMbﬁ- " Nbja; — Z My, a;,
=1

G
j=m () i—1
as required. The proofs of the remaining assertions are straightforward. |

Note that the involution o on M (R) given by Lemma 1.8 is not linked to
any involution on R. Therefore, when R is actually a *-ring, the involution
on M(R) given by Proposition 1.9 below becomes more useful in order to
relate R and M (R) as -rings.

Let R be a #-ring with involution *. For each T" € Endz(R), let T stand
for the endomorphism of the additive group of R defined by T"(z) := T'(z*)*
for every x € R. It is clear that the map T +— T’ becomes an involutive
automorphism of the ring Endz(R).

PROPOSITION 1.9. Let R be a centrally closed prime x-ring. Then M (R)
is a x-ring for the involution defined by

n n
T=2 Map = T =3 Mus;.
i=1 i=1

Proof. Note that if Te M(R)andT =Y ;" | Mg, p,, then T =" | My o
belongs also to M(R). Therefore, we can regard the map 7' — 7" as an in-
volutive automorphism of M (R). By considering the involution o on M (R)
provided by Lemma 1.8, and noticing that ’ and o commute, we find that
the map T — T* := (T°)" becomes an involution on M (R), and the proof is
complete. |

If R is a centrally closed prime x-ring, then the involution * on M (R)
given by the above proposition will hereafter be referred to as the involution
associated to the involution * on R.

The self-adjoint idempotents in a x-ring are called projections.

COROLLARY 1.10. Let R be a centrally closed prime x-ring and let E be
in M(R). Consider M(R) as a *-ring for the involution associated to the
involution * on R. Then:

(1) E is a left semicentral projection of M (R) if and only if E = L, for some
projection e of R.
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(2) E is a right semicentral projection of M(R) if and only if E = R, for
some projection e of R.

Proof. (1) For a projection e of R, it is clear that L. is a left semicentral
projection of M (R). Let E be a left semicentral projection in M (R). We may
assume that £ # 0. If £ has length 1, then, by Theorem 1.5, £ = L. for
suitable idempotent e in R. Therefore

e=Lo(1) = E(1) = B*(1) = L+ (1) = ¢*,

hence e is a projection in R, and so the proof is concluded in this case. Sup-
pose, to derive a contradiction, that F has length n + 1 for n € N. Then,
by Theorem 1.5, E = L.+ Y . M,,, for suitable e idempotent in R,
xi,y; € R satisfying ex; = x4, ;e = 0, and x;2; = 0 for all 4,5 € {1,...,n},
and such that the sets {e,z1,...,2,} and {1,y1,...,yn} are both linearly
C-independent. Therefore

n
Lewe+ Y Meoayy, = Lee B = LyE = (EL.)" = L} = Ler,

i=1
and hence .
Le*(e—l) + Z Me*xi,yi =0.
i=1
Since 1,41, - . ., yn are linearly C-independent, we see that e* = e*e and e*x; =0

for all . Thus e* = e and x; = ex; = 0 for all 4, which is a contradiction.
(2) This assertion can be deduced from (1) in the standard way. |

2. PRIME RINGS WITH BAER MULTIPLICATION RING.

Let R be a ring. Note that, for each left ideal I of R,

n
M],R = {ZMZE«;,M neN, x, €1, a4 ER}
=1

is the left ideal of M (R) generated by the set {L, : « € I}. Analogously, for
each right ideal I of R,

n
MRJ = {ZMC%,%' : nGN, aiGR, .Z‘Z'GI}
=1

is the left ideal of M (R) generated by the set {R, : = € I}.
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LEMMA 2.1. Let R be a ring. We have:

(1) If I is a left ideal of R such that Ann,(M;g) = EM(R) for suitable
idempotent E of M(R), then Ann,(I) = E(R).

(2) If I is a right ideal of R such that Ann,(Mpg ) = EM(R) for suitable
idempotent E of M(R), then Anny(I) = E(R).

Proof. Assume that [ is a left ideal of R such that Ann,(M;r) = EM(R)
for suitable idempotent E in M(R). If a € Ann,(I), then L, € Ann, (M r),
hence L, = ET for suitable T' € M(R), and so

a=L.(1) = E(T(1)) € E(R).

Therefore Ann,(I) C E(R). Conversely, since L,FE = 0 for every x € I, it
follows that IE(R) = 0, and so E(R) C Ann, (). Thus Ann,(/) = E(R), and
the proof of assertion (1) is complete. The proof of assertion (2) is similar.

THEOREM 2.2. Let R be a centrally closed prime ring. We have:
(1) If M(R) is Rickart, then R is Rickart.
(2) If M(R) is regular, then R is regular.
(3) If M(R) is Baer, then R is Baer.

Proof. (1) Assume that M(R) is Rickart. For a given x € R, there
exist idempotents E and F' in M(R) such that Ann,(L,) = EM(R) and
Ann,(R;) = FM(R). Since M(R)L, = Mps g and M(R)R, = Mg g, and
hence Ann,(L,) = Ann,(Mp, gr) and Ann,(R;) = Ann,(Mp,g), it follows
from Lemma 2.1 that Ann,(Rz) = F(R) and Anny(xR) = F(R). Therefore E
and F' are left (resp. right) semicentral idempotents in M (R). Now, by Corol-
lary 1.7, we can confirm the existence of idempotents e and f in R such that
Ann,(Rx) = eR and Anny(xR) = Rf. Thus R is Rickart.

(2) Assume that M(R) is regular. For a given z € R, there exists an
idempotent E in M (R) such that LM (R) = EM(R), hence xR = E(R), and
so E is left semicentral. Now, by Corollary 1.7.(1), we conclude that xR = eR
for suitable idempotent e in R. Thus R is regular.

(3) Assume that M(R) is Baer. Let I be a left ideal of R. Then, there
exists an idempotent E of M(R) such that Ann,(M; g) = EM(R). Arguing
as in the proof of assertion (1) we can assert that Ann,(I) = eR for suitable
idempotent e in R. Thus R is a Baer ring. |
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We recall that a *-ring R is said to be x-prime if UV # 0 whenever U
and V are nonzero *x-ideals of R. Every x-prime *-ring R is semiprime, and
hence its involution can be extended uniquely to an involution on Q4(R) [1,
Proposition 2.5.4]. Clearly every prime x-ring is *-prime. However, there exist
nonprime *-prime *-rings. Indeed, if R is a prime ring, then R ® R°? endowed
with the exchange involution is a nonprime *-prime *-ring. The next result
shows that every centrally closed nonprime *-prime *-ring is of this type.

PROPOSITION 2.3. For every x-ring R, the following assertions are equiv-
alent:

(i) R is a centrally closed nonprime x-prime *-ring.

(ii) There exists an ideal I of R, which is a centrally closed prime ring, such
that R=1&® I*.

Proof. (i) = (ii). By the nonprimeness of R there are nonzero ideals J, K
of R such that JK = 0, hence (JNJ*)(K NK*) =0, and so either JNJ* =0
or K N K* = 0. Assume, for example, that J N J* = 0, so that JJ* = 0.
Let Anng(J) denote the annihilator of J in C, and let e be the idempotent
in C associated to J; that is, e is the unique idempotent in C such that
Anng(J) = (1 —e)C (cf. [1, Theorem 2.3.9.(ii)]). Since

Annc(J*) = Annc(J)* = ((1 —¢)C)" = (1 — e*)C,

it follows that e* is the idempotent in C' associated to J*. Moreover, the
condition JJ* = 0 implies that ee* = 0 (by [1, Lemma 2.3.10]). On the other
hand, the *-primeness of R implies that J & J* is an essential ideal of R,
hence J & J* has zero annihilator in R, and in particular Anng(J & J*) = 0.
Since (1 —e)(1 —e*) € Anng(J) N Anng(J*) € Anne(J & J*), it follows that
(1 —e)(1 —e*) =0. Therefore e* = 1 — e, and hence R = eR & e*R. It is
easy to verify that eR is a prime ring. Moreover, since eQs(R) N R = eR, it
follows from [1, Proposition 2.3.14] that Qs(eR) = eQs(R), hence the extended
centroid of eR is eC, and so eR is centrally closed. Summarizing, I := eR is
an ideal of R, which is a centrally closed prime ring, and R =1 & I*.

(ii) = (i). It is clear that R is a nonprime *-prime *-ring. The fact that R
is centrally closed follows from the obvious equality

QS(R) = QS(I) ©® QS(I)*'
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The involution of a *-ring R is called proper whenever the condition
a*a = 0, for a € R, implies that a = 0.

PROPOSITION 2.4. Let R be a centrally closed nonprime x-prime *-ring.
Then M (R) is a *-ring for the involution defined by

n n
T=) My =T =) M,
=1

=1

which is not proper.

Proof. By Proposition 2.3, there exists an ideal I of R, which is a centrally
closed prime ring, such that R = I & I*. Suppose that a1,...,an,01,...,bn
are elements in R satisfying Y ;" | Mg, 5, = 0. By writing a; = x; ® y and
b = z; ©t] for x;,y;, zi,t; € I, we see that

n n n n
0= § :Maubi = E MIiGByZ‘,ZiEBtf = E :Mzmzi + E :Myfytfv
=1 =1 =1 =1

and consequently > " | My, ., = > ;' My+;» = 0. For each z,y in I, let
us denote by M:£7y the two-sided multiplication determined by x and y in
the ring I. It follows from the above that Y1 Ml =" M} =0
Hence, by Lemma 1.8, we have also Y7y ML = >" M] =0, and so
Yoy My e =30 My, 4. = 0. Therefore

%

n n n n
Y Mazpr = Y Mooy, zran, = Y Mazor + > My, = 0.
=1 =1 =1 =1

Thus the correspondence T' — T is a well-defined map. It is routine to verify
that this map is an involution on M (R). Finally, note that for z,y € I\ {0}
we have M, , # 0, but M3 My, = 0, and hence * is not proper. |

Putting together Propositions 1.9 and 2.4 we have the following result: If
R is a centrally closed x-prime x-ring, then M (R) is a x-ring for the involution
defined by

n n
T = ZMai,bi = T* = ZMQW.
i=1 =1

This involution will be referred to as the involution on M (R) associated to
the involution * on R.
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Recall that a x-ring R is a Rickart x-ring if for each x in R there is a
projection e in R such that Ann,(z) = eR. A x-ring R is a *-regular ring if
for each x in R there is a projection e in R such that xR = eR. A *ring R
is a Baer x-ring if for each left ideal I of R there is a projection e in R such
that Ann,(I) = eR.

THEOREM 2.5. Let R be a centrally closed x-prime x-ring. Consider M (R)
endowed with the involution associated to the involution of R. We have:

(1) If M(R) is a Rickart -ring, then R is a Rickart x-ring.
(2) If M(R) is a x-regular ring, then R is a x-regular ring.
(3) If M(R) is a Baer x-ring, then R is a Baer *-ring.

Proof. If R is nonprime, then the involution on M (R) associated to the
involution on R is not proper (cf. Proposition 2.4), and hence M (R) is not
a Rickart #-ring [3, 1.10]. Since x-regular rings and Baer *-rings are Rickart
«-rings [3, Propositions 1.13 and 1.24], in order to prove the statement we may
assume that R is prime. Now, we can argue as in the proof of Theorem 2.2
with Corollary 1.10 instead of Corollary 1.7. §
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