Some progress towards Wilf's conjecture

Shalom Eliahou

Université du Littoral Côte d'Opale

AMS-EMS-SPM International Meeting 2015
June 10-13, Porto

Commutative Monoids

Numerical semigroups are easy-to-define, yet very challenging objects.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

• 0 ∈ S

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S + S \subseteq S$

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S + S \subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S + S \subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S+S\subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

Let $S \subseteq \mathbb{N}$ be a numerical semigroup.

• Its genus is $g(S) = card(\mathbb{N} \setminus S)$.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S+S\subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

- Its genus is $g(S) = card(\mathbb{N} \setminus S)$.
- Its Frobenius number is the largest gap: $Frob(S) = \max(\mathbb{N} \setminus S)$.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S + S \subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

- Its genus is $g(S) = card(\mathbb{N} \setminus S)$.
- Its Frobenius number is the largest gap: $Frob(S) = \max(\mathbb{N} \setminus S)$.
- Its conductor is c = Frob(S) + 1.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S+S\subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

- Its genus is $g(S) = card(\mathbb{N} \setminus S)$.
- Its Frobenius number is the largest gap: $Frob(S) = \max(\mathbb{N} \setminus S)$.
- Its conductor is c = Frob(S) + 1. Thus $[c, \infty] \subseteq S$ with c minimal.

Numerical semigroups are easy-to-define, yet very challenging objects.

Definition

A **numerical semigroup** is a subset $S \subseteq \mathbb{N}$ such that

- 0 ∈ S
- S is stable under addition, i.e. $S + S \subseteq S$
- $\mathbb{N} \setminus S$ is finite.

Definition

- Its genus is $g(S) = card(\mathbb{N} \setminus S)$.
- Its Frobenius number is the largest gap: $Frob(S) = \max(\mathbb{N} \setminus S)$.
- Its conductor is c = Frob(S) + 1. Thus $[c, \infty] \subseteq S$ with c minimal.

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $gcd(a_1, \ldots, a_n) = 1$,

Let
$$a_1, \ldots, a_n \in \mathbb{N}$$
 with $\gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Then S is a numerical semigroup.

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Then S is a numerical semigroup.

Proposition

Every numerical semigroup $S \subseteq \mathbb{N}$ arises this way.

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $\gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Then S is a numerical semigroup.

Proposition

Every numerical semigroup $S \subseteq \mathbb{N}$ arises this way.

Proof.

Take as generators the set P of primitive elements in S, i.e.

$$P = S^* \setminus (S^* + S^*),$$

where $S^* = S \setminus \{0\}$.

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $\gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Then S is a numerical semigroup.

Proposition

Every numerical semigroup $S \subseteq \mathbb{N}$ arises this way.

Proof.

Take as generators the set P of primitive elements in S, i.e.

$$P = S^* \setminus (S^* + S^*),$$

where $S^* = S \setminus \{0\}$. Then $|P| \le m$, where $m = \min S^*$.

Let $a_1, \ldots, a_n \in \mathbb{N}$ with $\gcd(a_1, \ldots, a_n) = 1$, and let

$$S = \langle a_1, \ldots, a_n \rangle = a_1 \mathbb{N} + \cdots + a_n \mathbb{N}.$$

Then S is a numerical semigroup.

Proposition

Every numerical semigroup $S \subseteq \mathbb{N}$ arises this way.

Proof.

Take as generators the set P of primitive elements in S, i.e.

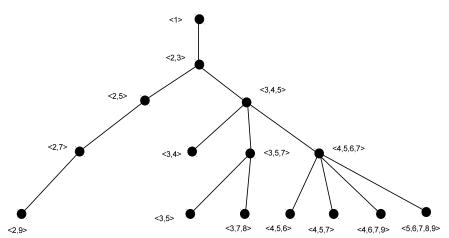
$$P = S^* \setminus (S^* + S^*),$$

where $S^* = S \setminus \{0\}$. Then $|P| \le m$, where $m = \min S^*$.

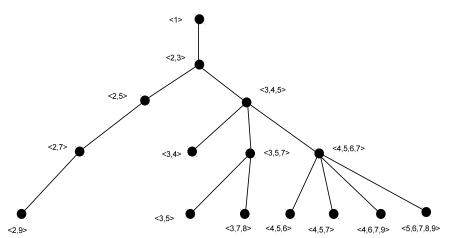
The set of all numerical semigroups may be arranged in a tree, by increasing genus.

The set of all numerical semigroups may be arranged in a tree, by increasing genus. **Recipe:** the parent of S is $S \cup \{Frob(S)\}$.

The set of all numerical semigroups may be arranged in a tree, by increasing genus. **Recipe:** the parent of S is $S \cup \{Frob(S)\}$.



The set of all numerical semigroups may be arranged in a tree, by increasing genus. **Recipe:** the parent of S is $S \cup \{Frob(S)\}$.



Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c,

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of *L* inside [0, c-1]?

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq$$

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq \frac{1}{n}$$
.

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq \frac{1}{n}$$
. Equivalently, $|P||L| \geq c$.

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq \frac{1}{n}$$
. Equivalently, $|P||L| \geq c$.

Notation

$$W(S) = |P||L| - c.$$

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq \frac{1}{n}$$
. Equivalently, $|P||L| \geq c$.

Notation

$$W(S) = |P||L| - c.$$

Wilf's conjecture : $W(S) \ge 0$.

Wilf's conjecture

Let $S = \langle a_1, \dots, a_n \rangle$ be a numerical semigroup with conductor c, and let $L = S \cap [0, c-1]$ be the left part of S.

Question. What is the density of L inside [0, c-1]? Since S is stable under addition, this density cannot be too small.

Conjecture (Wilf, 1978)

$$\frac{|L|}{c} \geq \frac{1}{n}$$
. Equivalently, $|P||L| \geq c$.

Notation

$$W(S) = |P||L| - c.$$

Wilf's conjecture : $W(S) \ge 0$.

Some cases where Wilf's conjecture is known to hold:

• for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \leq 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Some cases where Wilf's conjecture is known to hold:

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Theorem (E., work in progress)

If either $|L| \leq 10$ or $c \leq 3m$, then Wilf's conjecture holds for S.

Some cases where Wilf's conjecture is known to hold:

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Theorem (E., work in progress)

If either $|L| \leq 10$ or $c \leq 3m$, then Wilf's conjecture holds for S.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Some cases where Wilf's conjecture is known to hold:

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \leq 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Theorem (E., work in progress)

If either $|L| \leq 10$ or $c \leq 3m$, then Wilf's conjecture holds for S.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Note. As $g(S) \to \infty$, the proportion of those S satisfying $c \le 3m$ tends to 1 [Zhai 2013].

Some cases where Wilf's conjecture is known to hold:

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Theorem (E., work in progress)

If either $|L| \leq 10$ or $c \leq 3m$, then Wilf's conjecture holds for S.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Note. As $g(S) \to \infty$, the proportion of those S satisfying $c \le 3m$ tends to 1 [Zhai 2013]. Combining both results, Wilf is asymptotically true.

Some cases where Wilf's conjecture is known to hold:

- for $|P| \le 3$ [Sylvester 1884, Fröberg *et al.* 1987]
- for $g \le 60$ [Fromentin-Hivert 2015]
- for $|P| \ge m/2$ [Sammartano 2012]
- for $|L| \le 4$ [Dobbs and Matthews 2006]
- for $c \leq 2m$ [Kaplan 2012]

Theorem (E., work in progress)

If either $|L| \leq 10$ or $c \leq 3m$, then Wilf's conjecture holds for S.

Main tool in proof: Macaulay's theorem on Hilbert functions (1927).

Note. As $g(S) \to \infty$, the proportion of those S satisfying $c \le 3m$ tends to 1 [Zhai 2013]. Combining both results, Wilf is asymptotically true.

Definition

• A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_i \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

The Hilbert function of R is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \geq 0$.

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

The Hilbert function of R is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \geq 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable R.

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_j \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

The Hilbert function of R is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \geq 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable R.

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$.

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_i \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

The Hilbert function of R is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \geq 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable R.

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$. Therefore,

$$h_1 = \binom{n}{1} \implies h_2 \leq \binom{n+1}{2}.$$

Definition

- A standard graded algebra is a commutative algebra $R = \bigoplus_{i \geq 0} R_i$ over the field $\mathbb{K} = R_0$, with $R_i R_i \subseteq R_{i+j}$ for all i, j, finitely generated by R_1 .
- Equivalently, $R = \mathbb{K}[X_1, ..., X_n]/J$ where deg $X_i = 1$ for all i, and where J is a homogeneous ideal.

Definition

The Hilbert function of R is the map $i \mapsto h_i = \dim_{\mathbb{K}} R_i \quad \forall i \geq 0$.

Macaulay's theorem characterizes those numerical functions $i \mapsto h_i$ which arise as the Hilbert function of a suitable R.

For instance, if dim $R_1 = n$, then dim $R_2 \le (n+1)n/2$. Therefore,

$$h_1 = \binom{n}{1} \implies h_2 \leq \binom{n+1}{2}.$$

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \cdots > a_1 \in \mathbb{N}$,

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \dots > a_1 \in \mathbb{N}$, let $\mathbf{a}^{\langle i \rangle} = \sum_{j=1}^{i} \binom{a_j+1}{j+1}$.

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \dots > a_1 \in \mathbb{N}$, let $\mathbf{a}^{\langle i \rangle} = \sum_{j=1}^{i} \binom{a_j+1}{j+1}$.

Theorem (Macaulay, 1927)

The function $i \mapsto h_i$ is the Hilbert function of a standard graded algebra if and only if $h_0 = 1$ and $h_{i+1} \leq h_i^{\langle i \rangle}$ for all $i \geq 0$.

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \dots > a_1 \in \mathbb{N}$, let $\mathbf{a}^{\langle i \rangle} = \sum_{j=1}^{i} \binom{a_j+1}{j+1}$.

Theorem (Macaulay, 1927)

The function $i \mapsto h_i$ is the Hilbert function of a standard graded algebra if and only if $h_0 = 1$ and $h_{i+1} \le h_i^{\langle i \rangle}$ for all $i \ge 0$.

Corollary (E., a condensed version)

Let R be a standard graded algebra. Let $i \ge 1$. Let $x \ge i-1$ be the unique real number such that $h_i = \binom{x}{i}$.

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \dots > a_1 \in \mathbb{N}$, let $\mathbf{a}^{\langle i \rangle} = \sum_{j=1}^{i} \binom{a_j+1}{j+1}$.

Theorem (Macaulay, 1927)

The function $i \mapsto h_i$ is the Hilbert function of a standard graded algebra if and only if $h_0 = 1$ and $h_{i+1} \le h_i^{\langle i \rangle}$ for all $i \ge 0$.

Corollary (E., a condensed version)

Let R be a standard graded algebra. Let $i \ge 1$. Let $x \ge i-1$ be the unique real number such that $h_i = \binom{x}{i}$. Then $h_{i+1} \le \binom{x+1}{i+1}$.

Definition

If
$$\mathbf{a} = \sum_{j=1}^{i} \binom{a_j}{j}$$
 with $a_i > a_{i-1} > \dots > a_1 \in \mathbb{N}$, let $\mathbf{a}^{\langle i \rangle} = \sum_{j=1}^{i} \binom{a_j+1}{j+1}$.

Theorem (Macaulay, 1927)

The function $i \mapsto h_i$ is the Hilbert function of a standard graded algebra if and only if $h_0 = 1$ and $h_{i+1} \le h_i^{\langle i \rangle}$ for all $i \ge 0$.

Corollary (E., a condensed version)

Let R be a standard graded algebra. Let $i \ge 1$. Let $x \ge i-1$ be the unique real number such that $h_i = \binom{x}{i}$. Then $h_{i+1} \le \binom{x+1}{i+1}$.

Notation

For $x, y \in \mathbb{N} \cup \{\infty\}$, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

We have $P \subseteq [m, 4m[$. We slice this interval as follows:

$$I_1 = [m, 2m[,$$

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

We have $P \subseteq [m, 4m[$. We slice this interval as follows:

$$I_1 = [m, 2m[, I_2 = [2m, 3m[,$$

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

We have $P \subseteq [m, 4m[$. We slice this interval as follows:

$$I_1 = [m, 2m[, I_2 = [2m, 3m[, I_3 = [3m, 4m[.$$

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

We have $P \subseteq [m, 4m[$. We slice this interval as follows:

$$I_1 = [m, 2m[, I_2 = [2m, 3m[, I_3 = [3m, 4m[.$$

Definition

Let
$$P_j = P \cap I_j$$
 and $p_j = |P_j|$ for $1 \le i \le 3$. The profile of S is $(p_1, p_2) \in \mathbb{N}^2$.

Notation

For
$$x, y \in \mathbb{N} \cup \{\infty\}$$
, let $[x, y] = \{n \in \mathbb{N} \mid x \le n < y\}$.

For simplicity, we now assume c = 3m.

We have $P \subseteq [m, 4m[$. We slice this interval as follows:

$$I_1 = [m, 2m[, I_2 = [2m, 3m[, I_3 = [3m, 4m[.$$

Definition

Let
$$P_j = P \cap I_j$$
 and $p_j = |P_j|$ for $1 \le i \le 3$. The profile of S is $(p_1, p_2) \in \mathbb{N}^2$.

Notation

• $X = S \setminus (m+S)$, the set of Apery elements in S.

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_i = X \cap I_j$ for $j \leq 3$.

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\alpha_0 = |X_0| = 1$, $\alpha_1 = |X_1|$, $\alpha_2 = |X_2|$,

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_i = X \cap I_j$ for $j \leq 3$.
- $\alpha_0 = |X_0| = 1$, $\alpha_1 = |X_1|$, $\alpha_2 = |X_2|$, $\alpha_3 = |X_3 \setminus P|$.

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\alpha_0 = |X_0| = 1$, $\alpha_1 = |X_1|$, $\alpha_2 = |X_2|$, $\alpha_3 = |X_3 \setminus P|$.

Proposition

We have

$$|L| = 3 + 2\alpha_1 + \alpha_2$$

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\bullet \ \alpha_0 = |X_0| = 1, \ \alpha_1 = |X_1|, \ \alpha_2 = |X_2|, \ \alpha_3 = |X_3 \setminus P|.$

Proposition

We have

$$|L| = 3 + 2\alpha_1 + \alpha_2$$

 $|P| = 1 + \alpha_1 + p_2 + p_3$

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\alpha_0 = |X_0| = 1$, $\alpha_1 = |X_1|$, $\alpha_2 = |X_2|$, $\alpha_3 = |X_3 \setminus P|$.

Proposition

We have

$$|L| = 3 + 2\alpha_1 + \alpha_2$$

 $|P| = 1 + \alpha_1 + p_2 + p_3$
 $m = 1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3$.

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\bullet \ \alpha_0 = |X_0| = 1, \ \alpha_1 = |X_1|, \ \alpha_2 = |X_2|, \ \alpha_3 = |X_3 \setminus P|.$

Proposition

We have

$$|L| = 3 + 2\alpha_1 + \alpha_2$$

 $|P| = 1 + \alpha_1 + p_2 + p_3$
 $m = 1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3$.

Proof.

Straightforward from the definitions, including m = |X|.

Notation

- $X = S \setminus (m+S)$, the set of Apery elements in S.
- $X_j = X \cap I_j$ for $j \leq 3$.
- $\bullet \ \alpha_0 = |X_0| = 1, \ \alpha_1 = |X_1|, \ \alpha_2 = |X_2|, \ \alpha_3 = |X_3 \setminus P|.$

Proposition

We have

$$|L| = 3 + 2\alpha_1 + \alpha_2$$

 $|P| = 1 + \alpha_1 + p_2 + p_3$
 $m = 1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3$.

Proof.

Straightforward from the definitions, including m = |X|.

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

• Reduction from profile (p_1, p_2) to profile $(p_1, 0)$.

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

- Reduction from profile (p_1, p_2) to profile $(p_1, 0)$.
- For profile $(p_1,0)$, use condensed Macaulay on a suitable standard graded algebra to show:

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

- Reduction from profile (p_1, p_2) to profile $(p_1, 0)$.
- For profile $(p_1,0)$, use condensed Macaulay on a suitable standard graded algebra to show:

$$|2X_1 \cap X_2| = {x \choose 2} \implies |3X_1 \cap X_3| \le {x+1 \choose 3}.$$

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

- Reduction from profile (p_1, p_2) to profile $(p_1, 0)$.
- For profile $(p_1,0)$, use condensed Macaulay on a suitable standard graded algebra to show:

$$|2X_1 \cap X_2| = {x \choose 2} \implies |3X_1 \cap X_3| \le {x+1 \choose 3}.$$

Hence, if α_3 is large, then α_2 must be large as well, yielding $W(S) \ge 0$ after some calculation on the above formula.

$$W(S) = (1 + \alpha_1 + p_2 + p_3)(3 + 2\alpha_1 + \alpha_2) - 3(1 + \alpha_1 + \alpha_2 + \alpha_3 + p_3)$$

= $p_3(2\alpha_1 + \alpha_2) + (1 + \alpha_1 + p_2)(3 + 2\alpha_1 + \alpha_2)$
 $-3(1 + \alpha_1 + \alpha_2 + \alpha_3).$

Sketch of proof of $W(S) \ge 0$ for c = 3m.

- Reduction from profile (p_1, p_2) to profile $(p_1, 0)$.
- For profile $(p_1,0)$, use condensed Macaulay on a suitable standard graded algebra to show:

$$|2X_1 \cap X_2| = {x \choose 2} \implies |3X_1 \cap X_3| \le {x+1 \choose 3}.$$

Hence, if α_3 is large, then α_2 must be large as well, yielding $W(S) \ge 0$ after some calculation on the above formula.

Thank you for your attention :-)