The generalized Gorenstein property and numerical semigroup rings obtained by gluing

Naoyuki Matsuoka

Meiji University

September 6, 2018

Joint work with Shiro Goto

12 N 4 12 N

< 4 → <

Setting

- $H_1 = \langle a_1, a_2, \dots, a_\ell \rangle$, $H_2 = \langle b_1, b_2, \dots, b_m \rangle$, gcd(a) = gcd(b) = 1.
- $\alpha_1 \in H_1 \setminus \{a_1, \ldots, a_\ell\}$, $\alpha_2 \in H_2 \setminus \{b_1, \ldots, b_m\}$, $gcd(\alpha_1, \alpha_2) = 1$.
- $H = \alpha_2 H_1 + \alpha_1 H_2 = \langle \alpha_2 a_1, \dots, \alpha_2 a_\ell, \alpha_1 b_1, \dots, \alpha_1 b_m \rangle$ a gluing of H_1 and H_2 .
- V = k[[t]] the formal power series ring over a field k.

•
$$R = k[[H]] = k[[t^h | h \in H]] \subseteq V$$
,
 $R_1 = k[[H_1]] = k[[t^h | h \in H_1]] \subseteq V$, and
 $R_2 = k[[H_2]] = k[[t^h | h \in H_2]] \subseteq V$.

- 3

(日) (周) (三) (三)

Setting

- $H_1 = \langle a_1, a_2, \dots, a_\ell \rangle$, $H_2 = \langle b_1, b_2, \dots, b_m \rangle$, gcd(a) = gcd(b) = 1.
- $\alpha_1 \in H_1 \setminus \{a_1, \ldots, a_\ell\}$, $\alpha_2 \in H_2 \setminus \{b_1, \ldots, b_m\}$, $gcd(\alpha_1, \alpha_2) = 1$.
- $H = \alpha_2 H_1 + \alpha_1 H_2 = \langle \alpha_2 a_1, \dots, \alpha_2 a_\ell, \alpha_1 b_1, \dots, \alpha_1 b_m \rangle$ a gluing of H_1 and H_2 .
- V = k[[t]] the formal power series ring over a field k.

•
$$R = k[[H]] = k[[t^h | h \in H]] \subseteq V$$
,
 $R_1 = k[[H_1]] = k[[t^h | h \in H_1]] \subseteq V$, and
 $R_2 = k[[H_2]] = k[[t^h | h \in H_2]] \subseteq V$.

Problem 1

Explore the relation between the structure of H (resp. R) and the structures of H_1 and H_2 (resp. R_1 and R_2).

- 3

イロン 不聞と 不同と 不同と

Motivation

Fact 2 (Delorme, Rosales)

- R is complete intersection \Leftrightarrow R₁ and R₂ are complete intersection
- R is Gorenstein (i.e. H is symmetric) \Leftrightarrow R₁ and R₂ are Gorenstein

Reamrk

It is also well-known that a numerical semigroup $H \neq \mathbb{N}$ is complete intersection if and only if H is a gluing of two complete intersection numerical semigroups.

- 3

(日) (周) (三) (三)

Motivation

Fact 2 (Delorme, Rosales)

- R is complete intersection \Leftrightarrow R₁ and R₂ are complete intersection
- R is Gorenstein (i.e. H is symmetric) \Leftrightarrow R₁ and R₂ are Gorenstein

Reamrk

It is also well-known that a numerical semigroup $H \neq \mathbb{N}$ is complete intersection if and only if H is a gluing of two complete intersection numerical semigroups.

(Starting point of this study, cf. Nari, Numata)

How about the almost Gorenstein property?

- 3

イロト イポト イヨト イヨト

Theorem 3 (Nari)

R can not be almost Gorenstein, if R is not Gorenstein.

Example 4

- Let $H_1 = \langle 3, 4, 5 \rangle$, $H_2 = \langle 2, 3 \rangle$, $\alpha_1 = 6$, $\alpha_2 = 5$.
- Then $H = \langle 15, 20, 25, 12, 18 \rangle$ and this is not almost symmetric, because $PF(H) = \{41, 46\}$.

However, this H is still "good".

(日) (周) (三) (三)

Theorem 3 (Nari)

R can not be almost Gorenstein, if R is not Gorenstein.

Example 4

• Let
$$H_1 = \langle 3, 4, 5 \rangle$$
, $H_2 = \langle 2, 3 \rangle$, $\alpha_1 = 6$, $\alpha_2 = 5$.

• Then $H = \langle 15, 20, 25, 12, 18 \rangle$ and this is not almost symmetric, because $\mathsf{PF}(H) = \{41, 46\}$.

However, this H is still "good".

How is H "good" ? \Rightarrow We need the definition of "generalized Gorenstein rings".

(日) (周) (三) (三)

History of almost Gorenstein (AG) rings

- **1997** Barucci-Fröberg : introduced for analytically unramified 1-dimensional local ring.
- 2013 Goto-M.-Phuong : extended for arbitrary 1-dimensional Cohen-Macaulay(CM) local ring.
- 2015 Goto-Takahashi-Taniguchi : extended for higher-dimensional CM local/graded ring.

A (10) A (10)

History of almost Gorenstein (AG) rings

- **1997** Barucci-Fröberg : introduced for analytically unramified 1-dimensional local ring.
- 2013 Goto-M.-Phuong : extended for arbitrary 1-dimensional Cohen-Macaulay(CM) local ring.
- 2015 Goto-Takahashi-Taniguchi : extended for higher-dimensional CM local/graded ring.

When I and my colleagues studied about AGness of local/graded rings, we often met rings which is not AG but still seems "good".

(日) (同) (三) (三)

Generalized Gorenstein rings

Definition 5 (Goto-Kumashiro, in preparation)

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with the canonical module K_R . We say that R is a generalized Gorenstein local (GGL) ring, if either

- R is Gorenstein, or
- R is not Gorenstein but

$$\exists 0
ightarrow R \stackrel{\varphi}{
ightarrow} \mathsf{K}_R
ightarrow C
ightarrow 0$$

such that *C* is an Ulrich *R*-module with respect to some m-primary ideal \mathfrak{a} and $\varphi \otimes R/\mathfrak{a}$ is injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalized Gorenstein rings

Definition 5 (Goto-Kumashiro, in preparation)

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with the canonical module K_R . We say that R is a generalized Gorenstein local (GGL) ring, if either

- R is Gorenstein, or
- R is not Gorenstein but

$$\exists 0
ightarrow R \stackrel{\varphi}{
ightarrow} \mathsf{K}_R
ightarrow C
ightarrow 0$$

such that C is an Ulrich R-module with respect to some m-primary ideal a and $\varphi \otimes R/a$ is injective.

R is $AG \Leftrightarrow R$ is GGL ($\mathfrak{a} = \mathfrak{m}$).

(日) (同) (三) (三)

Generalized Gorenstein NS rings

Let H a numerical semigroup and R = k[[H]] where k is a field.

- Then R is a CM local ring with dim R = 1 and $\mathfrak{m} = (t^h \mid 0 < h \in H)$.
- Put K = ∑_{p∈PF(H)} R·t^{F(H)-p} ≅ K_R the canonical module of R such that R ⊆ K ⊆ V = k[[t]].
- Set S = R[K] and $\mathfrak{c} = R : S \subseteq R$.
- With this notation, R is GGL $\Leftrightarrow K/R$ can be controlled.

Theorem 6 (GK)

Let $PF(H) = \{p_1 < p_2 < \cdots < p_r\}$ and suppose $r \ge 2$. TFAE:

Q R is a GGL ring (in 1-dimensional case, automatically $\mathfrak{a} = \mathfrak{c}$).

② R/\mathfrak{c} is a Gorenstein ring and $p_i + p_{r-i} = p_r + x$ for all $1 \le i \le r-1$, where $t^x \in (\mathfrak{c} : \mathfrak{m}) \setminus \mathfrak{c}$.

Since c : m/c is a k-vector space and R/c is Gorenstein, x as in Theorem 6 is uniquely determined.

Naoyuki Matsuoka (Meiji University)

The easiest example

Example 7

Let $H = \langle 3, 7, 8 \rangle$. Then R = k[[H]] is a GGL ring but not AG.

- We easily get that $PF(H) = \{4, 5\}$, $K = R + R \cdot t$, and S = R[K] = k[[t]] = V.
- Then $\mathfrak{c} = R : S = (t^6, t^7, t^8)$ and hence $\mathfrak{c} : \mathfrak{m} = \mathfrak{c} + (t^3)$.
- Since 4 + 4 = 5 + 3, R is GGL by Theorem 6.

イロト イポト イヨト イヨト

The easiest example

Example 7

Let $H = \langle 3, 7, 8 \rangle$. Then R = k[[H]] is a GGL ring but not AG.

- We easily get that $PF(H) = \{4, 5\}$, $K = R + R \cdot t$, and S = R[K] = k[[t]] = V.
- Then $\mathfrak{c} = R : S = (t^6, t^7, t^8)$ and hence $\mathfrak{c} : \mathfrak{m} = \mathfrak{c} + (t^3)$.
- Since 4 + 4 = 5 + 3, R is GGL by Theorem 6.

Theorem 8 (GK)

Any 1-dimensional CM local ring of multiplicity \leq 3 is GGL.

GGL NS rings with embedding dimension 3.

Suppose $H = \langle a, b, c \rangle$ and H is not symmetric. Then it is well-known (by [Herzog]) that

$$R = k[[H]] \cong k[[x, y, z]] / I_2 \begin{pmatrix} x^{\alpha} & y^{\beta} & z^{\gamma} \\ y^{\beta'} & z^{\gamma'} & x^{\alpha'} \end{pmatrix}$$

for some $\alpha, \beta, \gamma, \alpha', \beta', \gamma' > 0$.

Theorem 9 (GK)

TFAE:

- R is a GGL ring.
- 2 Either

- 32

(日) (周) (三) (三)

Recall that

•
$$H_1 = \langle a_1, a_2, \dots, a_\ell \rangle, H_2 = \langle b_1, b_2, \dots, b_m \rangle$$

•
$$\alpha_1 \in H_1 \setminus \{a_1, \ldots, a_\ell\}, \alpha_2 \in H_2 \setminus \{b_1, \ldots, b_m\}$$

•
$$H = \alpha_2 H_1 + \alpha_1 H_2 = \langle \alpha_2 a_1, \dots, \alpha_2 a_\ell, \alpha_1 b_1, \dots, \alpha_1 b_m \rangle$$

•
$$R = k[[H]], R_1 = k[[H_1]], R_2 = k[[H_2]]$$

Main Theorem

TFAE:

- R is a GGL ring.
- **2** One of R_1 and R_2 is Gorenstein and another one is GGL.

3

イロト イヨト イヨト イヨト

To prove the main theorem, we need some preparative lemmas.

Lemma 10 (Nari)

Let $PF(H_1) = \{p_1 < p_2 < \dots < p_r\}$ and $PF(H_2) = \{q_1 < q_2 < \dots < q_s\}$. Then

 $\mathsf{PF}(H) = \{\alpha_2 p_i + \alpha_1 q_j + \alpha_1 \alpha_2 \mid 1 \le i \le r, 1 \le j \le s\}.$

To prove the main theorem, we need some preparative lemmas.

Lemma 10 (Nari)

Let $PF(H_1) = \{p_1 < p_2 < \dots < p_r\}$ and $PF(H_2) = \{q_1 < q_2 < \dots < q_s\}$. Then

 $\mathsf{PF}(H) = \{\alpha_2 p_i + \alpha_1 q_j + \alpha_1 \alpha_2 \mid 1 \le i \le r, 1 \le j \le s\}.$

Idea of a proof (different from Nari's proof).

• The minimal graded free resolution of k[H] is completely computed by Gimenez and Srinivasan, by using the graded minimal free resolutions of $k[H_1]$ and $k[H_2]$.

イロト 不得 トイヨト イヨト 二日

To prove the main theorem, we need some preparative lemmas.

Lemma 10 (Nari)

Let $PF(H_1) = \{p_1 < p_2 < \cdots < p_r\}$ and $PF(H_2) = \{q_1 < q_2 < \cdots < q_s\}$. Then

 $\mathsf{PF}(H) = \{\alpha_2 p_i + \alpha_1 q_j + \alpha_1 \alpha_2 \mid 1 \le i \le r, 1 \le j \le s\}.$

Idea of a proof (different from Nari's proof).

- The minimal graded free resolution of k[H] is completely computed by Gimenez and Srinivasan, by using the graded minimal free resolutions of $k[H_1]$ and $k[H_2]$.
- Thanks to their result, we can compute the pseudo-Frobenius numbers of *H* by checking the grading of the resolution.

イロト 不得下 イヨト イヨト 二日

Lemma 11

Let $PF(H) = \{\xi_1 < \xi_2 < \cdots < \xi_u\}$ and suppose that $\xi_i + \xi_{u-i}$ is constant for $1 \le i \le u - 1$. Then H_1 or H_2 is symmetric. In particular, if R is GGL, then R_1 or R_2 is Gorenstein.

Lemma 11

Let $PF(H) = \{\xi_1 < \xi_2 < \cdots < \xi_u\}$ and suppose that $\xi_i + \xi_{u-i}$ is constant for $1 \le i \le u - 1$. Then H_1 or H_2 is symmetric. In particular, if R is GGL, then R_1 or R_2 is Gorenstein.

Proof.

- Let $PF(H_1) = \{p_1 < \dots < p_r\}$ and $PF(H_2) = \{q_1 < \dots < q_s\}$. Suppose r, s > 1.
- Then $\mathsf{PF}(H) = \{\alpha_2 p_i + \alpha_1 q_j + \alpha_1 \alpha_2 \mid 1 \le i \le r, 1 \le j \le s\}.$
- We may assume $\alpha_2 p_r + \alpha_1 q_{s-1} + \alpha_1 \alpha_2 > \alpha_2 p_{r-1} + \alpha_1 q_s + \alpha_1 \alpha_2$.
- By our assumption, $(\alpha_2 p_1 + \alpha_1 q_1 + \alpha_1 \alpha_2) + (\alpha_2 p_r + \alpha_1 q_{s-1} + \alpha_1 \alpha_2) = (\alpha_2 p_1 + \alpha_1 q_s + \alpha_1 \alpha_2) + (\alpha_2 p_i + \alpha_1 q_j + \alpha_1 \alpha_2)$ for some *i* and *j*.
- This implies $\alpha_1((q_s q_{s-1}) + (q_j q_1)) = \alpha_2(p_r p_i) > 0.$
- Because $gcd(\alpha_1, \alpha_2) = 1$, we can write $p_r = \alpha_1 x + p_i$, $\exists x > 0$.

Sketch of Proof of Main Theorem

Main Theorem

TFAE:

R is a GGL ring.

2 One of R_1 and R_2 is Gorenstein and another one is GGL.

- We may assume R_2 is Gorenstein. Let $q = F(H_2)$.
- Let $\mathsf{PF}(H_1) = \{p_1 < \cdots < p_r\}$ and $\xi_i = \alpha_2 p_i + \alpha_1 q + \alpha_1 \alpha_2$.
- Then $\mathsf{PF}(H) = \{\xi_1 < \cdots < \xi_r\}.$
- Easy: $p_i + p_{r-i} = p_r + x \ (\forall i) \Leftrightarrow \xi_i + \xi_{r-i} = \xi_r + y \ (\forall i)$ where $y = \alpha_2 x + \alpha_1 q + \alpha_1 \alpha_2$.
- Therefore, what we have to prove is the following.

イロト 不得 トイヨト イヨト 二日

Lemma 12

Suppose H_2 is symmetric. Let

•
$$K = \sum_{p \in \mathsf{PF}(H)} R \cdot t^{\mathsf{F}(H)-p}$$
, $K_1 = \sum_{p \in \mathsf{PF}(H_1)} R_1 \cdot t^{\mathsf{F}(H_1)-p}$
• $S = R[K]$ $S_1 = R_1[K_1]$

•
$$\mathfrak{c} = R : S, \ \mathfrak{c}_1 = R_1 : S_1.$$

Then R/\mathfrak{c} is Gorenstein if and only if R_1/\mathfrak{c}_1 is Gorenstein. When this is the case, let $x \in H_1$ such that $\mathfrak{c}_1 : \mathfrak{m}_1 = \mathfrak{c}_1 + (t^x)$, then $\mathfrak{c} : \mathfrak{m} = \mathfrak{c} + (t^y)$ where $y = \alpha_2 x + \alpha_1 F(H_2) + \alpha_1 \alpha_2$.

(Recall: GK)

Let
$$PF(H) = \{p_1 < p_2, \dots, p_r\}$$
 and suppose $r \ge 2$. TFAE:

R is a GGL ring.

② R/\mathfrak{c} is a Gorenstein ring and $p_i + p_{r-i} = p_r + x$ for all $1 \le i \le r-1$, where $t^x \in (\mathfrak{c} : \mathfrak{m}) \setminus \mathfrak{c}$.

イロン イロン イヨン イヨ

Back to the first example

•
$$H = \langle 15, 20, 25, 12, 18 \rangle$$
 is gluing of $\langle 3, 4, 5 \rangle$ and $\langle 2, 3 \rangle$.
 $PF(H) = \{41, 46\}$. Hence $K = R + Rt^5$.

0	1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31	32	33	34	35
36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59

э

イロト イヨト イヨト イヨト

Back to the first example

- $H = \langle 15, 20, 25, 12, 18 \rangle$ is gluing of $\langle 3, 4, 5 \rangle$ and $\langle 2, 3 \rangle$. PF(H) = {41, 46}. Hence $K = R + Rt^5$.
- We get $K^2 = K^3$. This is equivalent to $\mathfrak{c} = R : S = R : K$ (by GK).
- Hence $\mathfrak{c} = R : K = R : t^5 \Rightarrow \mathfrak{c} = (t^{15}, t^{20}, t^{25}).$
- Notice that for $H_1 = \langle 3, 4, 5 \rangle$, $\mathfrak{c}_1 = (t^3, t^4, t^5)$.

0	1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31	32	33	34	35
36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59

くほと くほと くほと

Back to the first example

- $H = \langle 15, 20, 25, 12, 18 \rangle$ is gluing of $\langle 3, 4, 5 \rangle$ and $\langle 2, 3 \rangle$. PF(H) = {41, 46}. Hence $K = R + Rt^5$.
- We get $K^2 = K^3$. This is equivalent to c = R : S = R : K (by GK).
- Hence $\mathfrak{c} = R : K = R : t^5 \Rightarrow \mathfrak{c} = (t^{15}, t^{20}, t^{25}).$
- Then $c : m = c + (t^{36})$. To check this, we need to consider 18 and 36, because other numbers +12 is not in c.

• By
$$41 + 41 = 46 + 36$$
, R is GGL

0	1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31	32	33	34	35
36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59

イロト イポト イヨト イヨト 二日

That's all of my talk. Thank you for your attention.

3

-

・ロト ・回ト ・ヨト