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Introduction GGL GGLness of gluing

Setting

H1 = ⟨a1, a2, . . . , aℓ⟩, H2 = ⟨b1, b2, . . . , bm⟩, gcd(a) = gcd(b) = 1.

α1 ∈ H1 \ {a1, . . . , aℓ}, α2 ∈ H2 \ {b1, . . . , bm}, gcd(α1, α2) = 1.

H = α2H1 + α1H2 = ⟨α2a1, . . . , α2aℓ, α1b1, . . . , α1bm⟩ a gluing of H1

and H2.

V = k[[t]] the formal power series ring over a field k.

R = k[[H]] = k[[th | h ∈ H]] ⊆ V ,
R1 = k[[H1]] = k[[th | h ∈ H1]] ⊆ V , and
R2 = k[[H2]] = k[[th | h ∈ H2]] ⊆ V .

Problem 1

Explore the relation between the structure of H (resp. R) and the
structures of H1 and H2 (resp. R1 and R2).
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Introduction GGL GGLness of gluing

Motivation

Fact 2 (Delorme, Rosales)

R is complete intersection ⇔ R1 and R2 are complete intersection

R is Gorenstein (i.e. H is symmetric) ⇔ R1 and R2 are Gorenstein

Reamrk

It is also well-known that a numerical semigroup H ̸= N is complete
intersection if and only if H is a gluing of two complete intersection
numerical semigroups.

(Starting point of this study, cf. Nari, Numata)

How about the almost Gorenstein property?
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Theorem 3 (Nari)

R can not be almost Gorenstein, if R is not Gorenstein.

Example 4

Let H1 = ⟨3, 4, 5⟩, H2 = ⟨2, 3⟩, α1 = 6, α2 = 5.

Then H = ⟨15, 20, 25, 12, 18⟩ and this is not almost symmetric,
because PF(H) = {41, 46}.

However,this H is still ”good”.

How is H ”good” ?
⇒ We need the definition of ”generalized Gorenstein rings”.
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History of almost Gorenstein (AG) rings

1997 Barucci-Fröberg :
introduced for analytically unramified 1-dimensional local ring.

2013 Goto-M.-Phuong :
extended for arbitrary 1-dimensional Cohen-Macaulay(CM) local ring.

2015 Goto-Takahashi-Taniguchi :
extended for higher-dimensional CM local/graded ring.

When I and my colleagues studied about AGness of local/graded rings, we
often met rings which is not AG but still seems ”good”.
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Generalized Gorenstein rings

Definition 5 (Goto-Kumashiro, in preparation)

Let (R,m) be a Cohen-Macaulay local ring with the canonical module KR .
We say that R is a generalized Gorenstein local (GGL) ring, if either

R is Gorenstein, or

R is not Gorenstein but

∃0 → R
φ→ KR → C → 0

such that C is an Ulrich R-module with respect to some m-primary
ideal a and φ⊗ R/a is injective.

R is AG ⇔ R is GGL (a = m).
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Generalized Gorenstein NS rings
Let H a numerical semigroup and R = k[[H]] where k is a field.

Then R is a CM local ring with dimR = 1 and m = (th | 0 < h ∈ H).
Put K =

∑
p∈PF(H) R·tF(H)−p ∼= KR the canonical module of R such

that R ⊆ K ⊆ V = k[[t]].
Set S = R[K ] and c = R : S ⊆ R.
With this notation, R is GGL ⇔ K/R can be controlled.

Theorem 6 (GK)

Let PF(H) = {p1 < p2 < · · · < pr} and suppose r ≥ 2. TFAE:

1 R is a GGL ring (in 1-dimensional case, automatically a = c).

2 R/c is a Gorenstein ring and pi + pr−i = pr + x for all 1 ≤ i ≤ r − 1,
where tx ∈ (c : m) \ c.

Since c : m/c is a k-vector space and R/c is Gorenstein, x as in Theorem 6
is uniquely determined.
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The easiest example

Example 7

Let H = ⟨3, 7, 8⟩. Then R = k[[H]] is a GGL ring but not AG.

We easily get that PF(H) = {4, 5}, K = R + R·t, and
S = R[K ] = k[[t]] = V .

Then c = R : S = (t6, t7, t8) and hence c : m = c+ (t3).

Since 4 + 4 = 5 + 3, R is GGL by Theorem 6.

Theorem 8 (GK)

Any 1-dimensional CM local ring of multiplicity ≤ 3 is GGL.
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GGL NS rings with embedding dimension 3.

Suppose H = ⟨a, b, c⟩ and H is not symmetric. Then it is well-known (by
[Herzog]) that

R = k[[H]] ∼= k[[x , y , z ]]/ I2
(

xα yβ zγ

yβ′ zγ
′
xα

′

)
for some α, β, γ, α′, β′, γ′ > 0.

Theorem 9 (GK)

TFAE:

1 R is a GGL ring.
2 Either

1 α ≥ α′, β ≥ β′, and γ ≥ γ′ or
2 α ≤ α′, β ≤ β′, and γ ≤ γ′.
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Recall that

H1 = ⟨a1, a2, . . . , aℓ⟩, H2 = ⟨b1, b2, . . . , bm⟩
α1 ∈ H1 \ {a1, . . . , aℓ}, α2 ∈ H2 \ {b1, . . . , bm}
H = α2H1 + α1H2 = ⟨α2a1, . . . , α2aℓ, α1b1, . . . , α1bm⟩
R = k[[H]], R1 = k[[H1]], R2 = k[[H2]]

Main Theorem

TFAE:

1 R is a GGL ring.

2 One of R1 and R2 is Gorenstein and another one is GGL.
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To prove the main theorem, we need some preparative lemmas.

Lemma 10 (Nari)

Let PF(H1) = {p1 < p2 < · · · < pr} and PF(H2) = {q1 < q2 < · · · < qs}.
Then

PF(H) = {α2pi + α1qj + α1α2 | 1 ≤ i ≤ r , 1 ≤ j ≤ s}.

Idea of a proof (different from Nari’s proof).

The minimal graded free resolution of k[H] is completely computed
by Gimenez and Srinivasan, by using the graded minimal free
resolutions of k[H1] and k[H2].

Thanks to their result, we can compute the pseudo-Frobenius
numbers of H by checking the grading of the resolution.
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Lemma 11

Let PF(H) = {ξ1 < ξ2 < · · · < ξu} and suppose that ξi + ξu−i is constant
for 1 ≤ i ≤ u − 1. Then H1 or H2 is symmetric.
In particular, if R is GGL, then R1 or R2 is Gorenstein.

Proof.

Let PF(H1) = {p1 < · · · < pr} and PF(H2) = {q1 < · · · < qs}.
Suppose r , s > 1.

Then PF(H) = {α2pi + α1qj + α1α2 | 1 ≤ i ≤ r , 1 ≤ j ≤ s}.
We may assume α2pr + α1qs−1 + α1α2 > α2pr−1 + α1qs + α1α2.

By our assumption,
(α2p1 + α1q1 + α1α2) + (α2pr + α1qs−1 + α1α2) =
(α2p1 + α1qs + α1α2) + (α2pi + α1qj + α1α2) for some i and j .

This implies α1((qs − qs−1) + (qj − q1)) = α2(pr − pi ) > 0.

Because gcd(α1, α2) = 1, we can write pr = α1x + pi , ∃x > 0.
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Sketch of Proof of Main Theorem

Main Theorem

TFAE:

1 R is a GGL ring.

2 One of R1 and R2 is Gorenstein and another one is GGL.

We may assume R2 is Gorenstein. Let q = F(H2).

Let PF(H1) = {p1 < · · · < pr} and ξi = α2pi + α1q + α1α2.

Then PF(H) = {ξ1 < · · · < ξr}.
Easy: pi + pr−i = pr + x (∀i) ⇔ ξi + ξr−i = ξr + y (∀i) where
y = α2x + α1q + α1α2.

Therefore, what we have to prove is the following.
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Lemma 12

Suppose H2 is symmetric. Let

K =
∑

p∈PF(H) R·tF(H)−p, K1 =
∑

p∈PF(H1)
R1·tF(H1)−p,

S = R[K ], S1 = R1[K1],

c = R : S, c1 = R1 : S1.

Then R/c is Gorenstein if and only if R1/c1 is Gorenstein. When this is the
case, let x ∈ H1 such that c1 : m1 = c1 + (tx), then c : m = c+ (ty ) where
y = α2x + α1 F(H2) + α1α2.

(Recall: GK)

Let PF(H) = {p1 < p2, . . . , pr} and suppose r ≥ 2. TFAE:

1 R is a GGL ring.

2 R/c is a Gorenstein ring and pi + pr−i = pr + x for all 1 ≤ i ≤ r − 1,
where tx ∈ (c : m) \ c.
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Back to the first example

H = ⟨15, 20, 25, 12, 18⟩ is gluing of ⟨3, 4, 5⟩ and ⟨2, 3⟩.
PF(H) = {41, 46}. Hence K = R + Rt5.

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59
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That’s all of my talk.
Thank you for your attention.
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