Apéry Sets and Feng-Ra. Numbers over Telescopic Numerical Semigroups

Benjamín Alarcón Heredia
Centro de Matemática e Aplicações, FCT, UNL Join work with
P.A. García-Sancheb

M.Z. Leamer

FCT

Feng-Rao Number

- Γ a numerical semigroup, the generalized

Feng-Rad distance is:

$$
\begin{gathered}
\delta_{F R}^{r}(s)=\min \left\{\# D_{\mu}\left(s_{1}, \ldots, s_{r}\right) \mid s \leqslant s_{1}<\ldots s s_{r}, s_{i} \in \Gamma\right\} \\
D_{\Gamma}\left(s_{1}, \ldots, s_{r}\right)=\bigcup D(s i) \\
D_{\Gamma}(s)=\{n \in \Gamma \mid s-n \in \Gamma\}
\end{gathered}
$$

Feng-Rao Number

- Γ a numerical semigroup, the generalized Feng-Rao distance is:

$$
\begin{gathered}
\delta_{F R}^{r}(s)=\min \left\{\# D_{\mu}\left(s_{1}, \ldots, s_{r}\right) \mid s \leqslant s_{1}<\ldots s s_{r}, s_{i} \in \Gamma\right\} \\
D_{\Gamma}\left(s_{1}, \ldots, s_{r}\right)=\bigcup D(s i) \\
D_{\Gamma}(s)=\{n \in \Gamma \mid s-n \in \Gamma\}
\end{gathered}
$$

- The $F_{\text {eng }}-R_{a 0}$ number $E(\Gamma, r)$ is the constant such that

$$
\delta_{F R}^{r}(s)=s+1-2 g+E(\Gamma, r)
$$

for $s \geqslant 2 c-1$

Feng-Rao Number and Apéry sets
For $r=2$ we have

$$
E(\Gamma, 2)=\min \left\{\# A_{p}(\Gamma, x) \mid 1 \leq x \leq m(\Gamma)\right\}
$$

where

$$
A_{p}(\Gamma, x)=\{y \in \Gamma \mid y-x \notin \Gamma\}
$$

for $x \in \mathbb{Z}$

Feng-Rao Number and Apéry sets
For $r=2$ we have

$$
E(\Gamma, 2)=\min \left\{\# A_{p}(\Gamma, x) \mid 1 \leq x \leq m(\Gamma)\right\}
$$

where

$$
A_{p}(\Gamma, x)=\{y \in \Gamma \mid y-x \notin \Gamma\}
$$

for $x \in \mathbb{Z}$

- Goal: Compute E(1,2) for certain numerical semigroups.

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$

$$
i+n x \quad n \in \mathbb{Z}
$$

... $000000000000000000000 \cdots$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A p(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

-Proof: $x>0,0 \leqslant i<x$

$$
\ldots 0000000000 \text { 厄000000000000 } \ldots
$$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A p(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$

$$
\ldots 000000000000 \psi_{0}^{\Gamma} 0000000000 \cdots
$$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A p(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$
... 0000000000•0•00•••0••••••

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$

$$
A_{p}(\Gamma, x)
$$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

-Proof: $x>0,0 \leqslant i<x$

$$
\begin{gathered}
A_{p}(\Gamma, x) \\
\ldots 000000000 \cdot \sigma 06 \cdot 0 \hat{0} \cdot \ldots \cdot \cdots \cdot
\end{gathered}
$$

k_{i} in $A_{p}(\Gamma, x)$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A p(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$

k_{i} in $A_{p}(\Gamma, x)$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

-Proof: $x>0,0 \leqslant i<x$

k_{i} in $A_{p}(\Gamma, x)$
$k_{i}-1$ in $A_{p}\left(\Gamma_{1}-x\right)$

More about Apéry sets
-Lemma: Given $x \in \mathbb{Z}$

$$
\# A_{p}(\Gamma, x)=x+\# A_{p}(\Gamma,-x)
$$

Proof: $x>0,0 \leqslant i<x$

$$
\begin{gathered}
A_{p}\left(\Gamma_{1}, x\right) \\
\ldots 0000000000 \oint_{i} 00 \uparrow \ldots 0 \uparrow \ldots \ldots \\
\sum_{i} k_{i}=\# A_{p}(\Gamma, x) \\
\sum_{i} k_{i}-x=\# A_{p}(\Gamma,-x)
\end{gathered}
$$

A cocycle inside the Apery

- Let $s \in \Gamma^{*}$, there is a bijection

$$
\omega: \mathbb{Z}_{s} \longrightarrow A_{p}(\Gamma, s)
$$

such that $\omega(i) \equiv i \bmod$.

A cocycle inside the Apery

- Let $s \in \Gamma^{*}$, there is a bijection

$$
\omega: \mathbb{Z}_{s} \longrightarrow A_{p}(\Gamma, s)
$$

such that $\omega(i) \equiv i \bmod$.

- There is a cocycle $h: \mathbb{Z}_{5} \times \mathbb{Z}_{S} \longrightarrow \mathbb{Z}$

$$
h(i, j)=\frac{1}{s}(\omega(i)-\omega(i+j)+\omega(j))
$$

A cocycle inside the Apery

- Let $s \in \Gamma^{*}$, there is a bijection

$$
\omega: \mathbb{Z}_{s} \longrightarrow A_{p}(\Gamma, s)
$$

such that $\omega(i) \equiv i \bmod$.

- There is a cocycle $h: \mathbb{Z}_{s} \times \mathbb{Z}_{S} \longrightarrow \mathbb{Z}$

$$
h(i, j)=\frac{1}{s}(\omega(i)-\omega(i+j)+\omega(j))
$$

or $\omega(i)+\omega(j)=\omega(i+j)+s * h(i, j)$.

Examples

$$
A p(\mathbb{N}, n)=\{0, \ldots, n-1\}, \omega(i)=i
$$

Examples

$$
\begin{array}{r}
\operatorname{Ap}(\mathbb{N}, n)=\{0, \ldots, n-1\}, \quad \omega(i)=i \\
h(i, j)=\left\{\begin{array}{lll}
0 & \text { if } \quad i+j<n \\
1 & \text { if } & i+j \geqslant n
\end{array}\right.
\end{array}
$$

Examples

$$
\begin{gathered}
\operatorname{Ap}(\mathbb{N}, n)=\{0, \ldots, n-1\}, \omega(i)=i \\
h(i, j)=\left\{\begin{array}{lll}
0 & \text { if } i+j<n \\
1 & \text { if } i+j \geqslant n
\end{array}\right. \\
\operatorname{Ap}(\langle 4,5,6\rangle, 4)=\left\{\begin{array}{l}
0,5,6,11\} \\
(0) \\
(1) \\
(2) \\
(3)
\end{array}\right\}
\end{gathered}
$$

$h(i, j)$	0	1	2	3
0				
1				
2				
3				

Examples

$$
\begin{gathered}
\operatorname{Ap}(\mathbb{N}, n)=\{0, \ldots, n-1\}, \omega(i)=i \\
h(i, j)=\left\{\begin{array}{lll}
0 & \text { if } i+j<n \\
1 & \text { if } i+j \geqslant n
\end{array}\right. \\
\cdot \operatorname{Ap}(\langle 4,5,6\rangle, 4)=\left\{\begin{array}{l}
\{0,5,6,11\} \\
(0) \\
(1) \\
(2) \\
(3)
\end{array}\right.
\end{gathered}
$$

$h(i, j)$	0	1	2	3
0	0	0	0	0
1	0			
2	0			
3	0			

Examples

$$
\begin{gathered}
\operatorname{Ap}(\mathbb{N}, n)=\{0, \ldots, n-1\}, \omega(i)=i \\
h(i, j)=\left\{\begin{array}{lll}
0 & \text { if } i+j<n \\
1 & \text { if } i+j \geqslant n
\end{array}\right. \\
\operatorname{Ap}(\langle 4,5,6\rangle, 4)=\left\{\begin{array}{l}
0,5,6,11\} \\
(0) \\
(1) \\
(2) \\
(3)
\end{array}\right)
\end{gathered}
$$

$h(i, j)$	0	1	2	3
0	0	0	0	0
1	0	1		

Examples

$$
\begin{gathered}
A_{p}(\mathbb{N}, n)=\{0, \ldots, n-1\}, \omega(i)=i \\
h(i, j)=\left\{\begin{array}{lll}
0 & \text { if } i+j<n \\
1 & \text { if } i+j \geqslant n
\end{array}\right. \\
A_{p}(\langle 4,5,6\rangle, 4)= \begin{cases}0,5,6,11 \\
(0) & (1) \\
(2) & (3)\end{cases}
\end{gathered}
$$

$h(i, j)$	0	1	2	3
0	0	0	0	0
1	0	1	0	4
2	0	0	3	3
3	0	4	3	4

Some properties of h

$$
\begin{aligned}
& -h(i, j) \geqslant 0 \\
& -h(i, j)=h(i, i) \\
& -h(i, 0)=0 \quad(\omega(0)=0)
\end{aligned}
$$

Some properties of h

$$
\begin{aligned}
& \text { l } h(i, j) \geqslant 0 \\
& \cdot \\
& \cdot h(i, j)=h(j, i) \\
& \cdot \\
& h(i, 0)=0 \quad(\omega(0)=0) \\
& \cdot \\
& \omega(i)-\omega(j)=\omega(i-j)-s * h(i-j, j)
\end{aligned}
$$

Some properties of h

$$
\begin{aligned}
& \cdot h(i, j) \geqslant 0 \\
& \cdot h(i, j)=h(j, i) \\
& \cdot h(i, 0)=0 \quad(\omega(0)=0) \\
& \cdot \omega(i)-\omega(j)=\omega(i-j)-s * h(i-j, j) \\
& \cdot \omega(i)=\sum_{j \in z_{s}} h(i, j)
\end{aligned}
$$

More properties

- It detects divisors

$$
D_{\Gamma}(s)=\{0, s\} \cup\left\{\omega(i) \in A_{p}(\Gamma, s) \mid h(i,-i)=1\right\}
$$

More properties

- It detects divisors

$$
D_{\Gamma}(s)=\{0, s\} \cup\left\{\omega(i) \in A_{p}(\Gamma, s) \mid h(i,-i)=1\right\}
$$

- And maximal elements (and so Psendo-Frobenius)

$$
\max \leq \Gamma A_{p}(\Gamma, s)=\left\{\omega(i) \in A_{p}(\Gamma, s) \mid h(i, j)>0, \forall j^{j} \in \mathcal{Z}_{s} \backslash 100\right\}
$$

Gluing of numerical semigroups

- Γ_{1}, Γ_{2} numerical semignoups

$$
\cdot a_{2} \in \Gamma_{1}, a_{1} \in \Gamma_{2}, \quad \operatorname{gcd}\left(a_{1}, a_{2}\right)=1
$$

Gluing of numerical semigroups

- Γ_{1}, Γ_{2} numerical semigroups
- $a_{2} \in \Gamma_{1}, a_{1} \in \Gamma_{2}, \quad \operatorname{gcd}\left(a_{1}, a_{2}\right)=1$
- The gluing is

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}=\left\{a_{1} s_{1}+a_{2} s_{2} \mid s_{i} \in \Gamma_{i}\right\}
$$

Gluing of numerical semigroups

- Γ_{1}, Γ_{2} numerical semigroups
- $a_{2} \in \Gamma_{1}, a_{1} \in \Gamma_{2}, \operatorname{gcd}\left(a_{1}, a_{2}\right)=1$
- The gluing is

$$
\begin{aligned}
& \Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}=\left\{a_{1} s_{1}+a_{2} s_{2} \mid s_{i} \in \Gamma_{i}\right\} \\
& A_{p}\left(\Gamma, a_{1} \cdot a_{2}\right)=a_{1} \cdot A_{p}\left(\Gamma_{1}, a_{2}\right)+a_{2} \cdot A_{p}\left(\Gamma_{2}, a_{1}\right)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}
$$

$\cdot z \in \mathbb{Z}$, it can be expressed uniquely as

$$
z=a_{1} \cdot k+a_{2} \omega(i)
$$

with $h \in \mathbb{Z}$, $\omega(i) \in A_{p}\left(\Gamma_{2}, a_{1}\right)$

Gluing of numerical semigroups

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}
$$

$\cdot z \in \mathbb{Z}$, it can be expressed uniquely as

$$
z=a_{1} \cdot k+a_{2} \omega(i)
$$

with $k \in \mathbb{Z}$, $\omega(i) \in A_{p}\left(\Gamma_{2}, a_{1}\right)$

$$
\cdot z \in \Gamma \Longleftrightarrow k \in \Gamma_{1}
$$

Gluing of numerical semigroups

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}
$$

$\cdot z \in \mathbb{Z}$, it can be expressed uniquely as

$$
z=a_{1} \cdot k+a_{2} \omega(i)
$$

with $k \in \mathbb{Z}$, $\omega(i) \in A_{p}\left(\Gamma_{2}, a_{1}\right)$

$$
\begin{aligned}
& \cdot z \in \Gamma \Longleftrightarrow k \in \Gamma_{1} \\
& A_{p}\left(\Gamma_{1} z\right)=\bigcup_{j \in \mathbb{Z}_{a_{1}}} a_{1} \cdot A_{p}\left(\Gamma_{1}, k+a_{2} h_{\Gamma_{2}, a_{1}}(j-i, i)\right)+c_{2} \omega(j)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2}
$$

$\cdot z \in \mathbb{Z}$, it can be expressed uniquely as

$$
z=a_{1} \cdot k+a_{2} \omega(i)
$$

with $k \in \mathbb{Z}, \omega(i) \in A_{p}\left(\Gamma_{2}, a_{1}\right)$

$$
\begin{aligned}
& \cdot z \in \Gamma \Longleftrightarrow k \in \Gamma_{1} \\
& A_{p}\left(\Gamma_{1} z\right)=\bigcup_{j \in \mathbb{Z}_{a_{1}}} a_{1} \cdot A_{p}\left(\Gamma_{1}, k+a_{2} h_{\Gamma_{2}, a_{1}}(j-i, i)\right)+a_{2} \omega(j) \\
& D_{\Gamma}(z)=\bigcup_{j \in \mathbb{Z}_{a_{1}}} a_{1} \cdot D_{\Gamma_{1}}\left(k-a_{2} h_{\Gamma_{2} a_{1}}(j-j, j)\right)+a_{2} \omega(j)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\begin{aligned}
& \Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2} \\
& \quad A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} A_{p}\left(\Gamma_{2}, a_{1}\right)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\begin{aligned}
& \Gamma=a_{1} \Gamma_{1}+a_{2} \Gamma_{2} \\
& A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} A_{p}\left(\Gamma_{2}, a_{1}\right) \\
& \# A_{p}\left(\Gamma_{1}, a_{1} k\right)=a_{1} \# A_{p}\left(\Gamma_{1}, k\right)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\begin{aligned}
& \Gamma= \\
& a_{1} \Gamma_{1}+a_{2} \Gamma_{2} \\
& A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} A_{p}\left(\Gamma_{2}, a_{1}\right) \\
& \# A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} \# A_{p}\left(\Gamma_{1}, k\right) \\
& \cdot \Gamma=a_{1} \Gamma_{1}+a_{2} \mathbb{N}, z=a_{1} k+a_{2} \omega, 0 \leq \omega<a_{1} \\
& A_{p}(\Gamma, z)=\left(a_{1} A_{p}\left(\Gamma_{1}, k+a_{2}\right)+a_{2} \cdot\{0, \ldots, \omega-1\}\right) \\
& \cup\left(a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} \cdot\left\{\omega, \ldots, a_{1}-1\right\}\right)
\end{aligned}
$$

Gluing of numerical semigroups

$$
\begin{aligned}
& \Gamma= a_{1} \Gamma_{1}+a_{2} \Gamma_{2} \\
& A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} A_{p}\left(\Gamma_{2}, a_{1}\right) \\
& \# A_{p}\left(\Gamma_{1} a_{1} k\right)=a_{1} \# A_{p}\left(\Gamma_{1}, k\right) \\
& \Gamma=a_{1} \Gamma_{1}+a_{2} \mathbb{N}, z=a_{1} k+a_{2} \omega, 0 \leq \omega<a_{1} \\
& A_{p}(\Gamma, z)=\left(a_{1} A_{p}\left(\Gamma_{1}, k+a_{2}\right)+a_{2} \cdot\{0, \ldots, \omega-1\}\right) \\
& \cup\left(a_{1} A_{p}\left(\Gamma_{1}, k\right)+a_{2} \cdot\left\{\omega, \ldots, a_{1}-1\right\}\right)
\end{aligned}
$$

$\# A_{p}(\Gamma, z)=\omega \cdot \# A_{p}\left(\Gamma_{1}, k+a_{2}\right)+\left(a_{1}-\omega\right) \cdot \# A_{p}\left(\Gamma_{1}, k\right)$

Gluing of numerical semigroups

$$
\begin{aligned}
& \cdot \Gamma_{=} a_{1} \Gamma_{1}+a_{2} \mathbb{N} \\
& \quad E\left(\Gamma_{1} 2\right) \geqslant \min \left\{a_{1} E\left(\Gamma_{1}, 2\right), \frac{\left(a_{1}-1\right) \cdot a_{2}}{a_{1}}\right\}
\end{aligned}
$$

Gluing of numerical semigroups

$$
\begin{aligned}
& \cdot \Gamma=a_{1} \Gamma_{1}+a_{2} \mathbb{N} \\
& \quad E\left(\Gamma_{1}\right) \geqslant \min \left\{a_{1} \cdot E\left(\Gamma_{1}, 2\right), \frac{\left(a_{1}-1\right) \cdot a_{2}}{a_{1}}\right\} \\
& \cdot \Gamma=a_{1} \mathbb{N}+a_{2} \Gamma_{2}, a_{2}>a_{1} \\
& E(\Gamma, 2)=a_{1}=m(\Gamma)
\end{aligned}
$$

Free and telescopic

- Γ is free if $\Gamma=\mathbb{N}$ or

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \mathbb{N}
$$

with Γ_{1} free

Free and telescopic

- Γ is free if $\Gamma=\mathbb{N}$ or

$$
\Gamma=a_{1} \Gamma_{1}+a_{2} \mathbb{N}
$$

with Γ_{1} free

- Γ is telescopic if $\Gamma=\mathbb{N}$ or

$$
\Gamma=a_{1} \cdot \Gamma_{1}+a_{2} \mathbb{N}
$$

with $\Gamma_{1}=\left\langle n_{1}, \ldots, n_{e-1}\right\rangle$ telescopic and

$$
a_{2}>a_{1} \cdot n_{e-1}
$$

Free and telescopic

Theorem: If Γ is telescopic

$$
E(\Gamma, 2)=m(\Gamma)
$$

Examples

- Generalized Hermitian semigraups

$$
\left.H_{q, r}=\left\langle q^{r-1}, q^{n-1}+q^{r-2}, q^{r}+1\right\rangle \quad, q, r\right\rangle 2
$$

Examples

- Generalized Hermitian semigraups

$$
\left.H_{q, r}=\left\langle q^{n-1}, q^{n-1}+q^{r-2}, q^{r}+1\right\rangle, q, r\right\rangle 2
$$

are telescopic $H_{q, r}=q^{r-2}\langle q, q+1\rangle+\left(q^{r}+1\right) \cdot \mathbb{N}$

Examples

- Generalized Hermitian semigraups

$$
\left.H_{q, r}=\left\langle q^{r-1}, q^{n-1}+q^{r-2}, q^{r}+1\right\rangle, q, r\right\rangle 2
$$

are telescopic $H_{q, r}=q^{n-2}\langle q, q+1\rangle+\left(q^{r}+1\right) \cdot \mathbb{N}$

$$
E\left(H_{q, r}, 2\right)=q^{-1}
$$

Examples
Generalized Suzuki numerical semigroups

$$
S_{p, n}=\left\langle p^{2 n+1}, p^{2 n+1}+p^{n}, p^{2 n+1}+p^{n+1}, p^{2 n+1}+p^{n+1}+1\right\rangle
$$

Examples
Generalized Suzuki numerical semigroups

$$
S_{p, n}=\left\langle p^{2 n+1}, p^{2 n+1}+p^{n}, p^{2 n+1}+p^{n+1}, p^{2 n+1}+p^{n+1}+1\right\rangle
$$

are free but not teles conic

$$
S_{p, n}=p^{n} \cdot\left(p\left\langle p^{n}, p^{n}+1\right\rangle+\left(p^{n+1}+1\right) \mathbb{N}\right)+\left(p^{2 n+1}+p^{n+1}+1\right) \cdot \mathbb{N}
$$

Examples
Generalized Suzuki numerical semigroups

$$
S_{p, n}=\left\langle p^{2 n+1}, p^{2 n+1}+p^{n}, p^{2 n+1}+p^{n+1}, p^{2 n+1}+p^{n+1}+1\right\rangle
$$

are free but not teles conic

$$
\begin{gathered}
S_{p, n}=p^{n} \cdot\left(p\left\langle p^{n}, p^{n}+1\right\rangle+\left(p^{n+1}+1\right) \mathbb{N}\right)+\left(p^{2 n+1}+p^{n+1}+1\right) \cdot \mathbb{N} \\
E\left(S_{p, n}, 2\right)=p^{2 n+1}-p^{2 n}+p^{n}
\end{gathered}
$$

Thanks!

