Almost Gorenstien rings

Naoyuki Matsuoka

Meiji University

September 9, 2014

Joint work with Shiro Goto and Tran Thi Phuong

History

- 1997 The notion of almost Gorenstein rings was introduced by Valentina Barucci-Ralf Fröberg (analytically unramified case) with a result about the Gorenstein property of $\mathfrak{m}:\mathfrak{m}=\{\alpha\in Q(R)\mid \alpha\mathfrak{m}\subseteq\mathfrak{m}\}.$
- 2009 A counterexample for a result about m : m was given by Barucci. (But their result is true!)
- 2013 A new definition of almost Gorenstein rings of dimension one was given and repair the proof of the Gorenstein property of m:m.

History

- 1997 The notion of almost Gorenstein rings was introduced by Valentina Barucci-Ralf Fröberg (analytically unramified case) with a result about the Gorenstein property of $\mathfrak{m}:\mathfrak{m}=\{\alpha\in Q(R)\mid \alpha\mathfrak{m}\subseteq\mathfrak{m}\}.$
- 2009 A counterexample for a result about $\mathfrak{m}:\mathfrak{m}$ was given by Barucci. (But their result is true!)
- 2013 A new definition of almost Gorenstein rings of dimension one was given and repair the proof of the Gorenstein property of m:m.

2 / 29

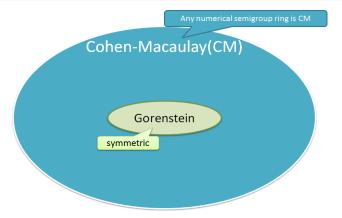
History

- 1997 The notion of almost Gorenstein rings was introduced by Valentina Barucci-Ralf Fröberg (analytically unramified case) with a result about the Gorenstein property of $\mathfrak{m}:\mathfrak{m}=\{\alpha\in Q(R)\mid \alpha\mathfrak{m}\subseteq\mathfrak{m}\}.$
- 2009 A counterexample for a result about m : m was given by Barucci. (But their result is true!)
- 2013 A new definition of almost Gorenstein rings of dimension one was given and repair the proof of the Gorenstein property of $\mathfrak{m}:\mathfrak{m}.$

reliminaries Definition $\mathfrak{m}:\mathfrak{m}$ Idealization Recent

Classes of local rings

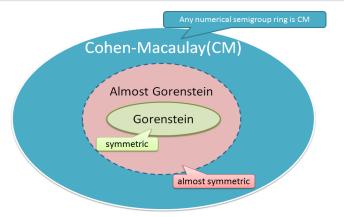
```
regular \Rightarrow complete-intersection \Rightarrow Gorenstein \Rightarrow Cohen-Macaulay \Rightarrow Buchsbaum
```



reliminaries Definition $\mathfrak{m}:\mathfrak{m}$ Idealization Recent

Classes of local rings

regular \Rightarrow complete-intersection \Rightarrow Gorenstein \Rightarrow almost Gorenstein \Rightarrow Cohen-Macaulay \Rightarrow Buchsbaum



- Preliminaries (Hilbert coefficients, existence of canonical ideals)
- Definition of almost Gorenstein rings
- 3 The Gorenstein property of m : m
- 4 Almost Gorenstein rings obtained by idealization
- Recent researches

$$k[[H]] = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]] \text{ for } H = \langle a_1, a_2, \dots, a_\ell \rangle.$$

§1. Preliminaries

Let (R, \mathfrak{m}) a CM local ring, dim R = 1, I an \mathfrak{m} -primary ideal $\Rightarrow \exists e_0(I), e_1(I) \in \mathbb{Z}$ such that

$$\ell_R(R/I^{n+1}) = e_0(I) \binom{n+1}{1} - e_1(I) \ \ (\forall n \gg 0).$$

We call $e_0(I)$ the multiplicity of R w.r.t. I and $e_1(I)$ the first Hilbert coefficient of R w.r.t. I.

How to compute $e_0(I)$ and $e_1(I)$?

- Assume $\exists a \in I$ such that Q = (a) is a reduction of I (i.e., $\exists n \geq 0$, $I^{n+1} = QI^n$)
- For any n > 0, put $\frac{I^n}{a^n} = \{\frac{x}{a^n} \mid x \in I^n\} \subseteq \mathbb{Q}(R)$
- Let $S = R[\frac{I}{a}] \subseteq Q(R)$. $\Rightarrow S = \bigcup_{n>0} \frac{I^n}{a^n} = \frac{I^r}{a^r}$ where $r = \text{red}_Q(I) = \min\{n \ge 0 \mid I^{n+1} = QI^n\}$.
- Hence

$$\ell_R(R/I^{n+1}) = \ell_R(R/Q^{n+1}) - \ell_R(I^{n+1}/Q^{n+1})$$

$$= \ell_R(R/Q) \binom{n+1}{1} - \ell_R(S/R) \quad \text{if } n \ge r-1$$

$$\parallel \qquad \qquad \parallel$$

$$e_0(I) \qquad \qquad e_1(I)$$

Theorem

$$e_0(I) = \ell_R(R/Q), e_1(I) = \ell_R(S/R).$$

Corollary

$$\mu_R(I/Q) \le \ell_R(I/Q) \le e_1(I)$$

- $\ell_R(I/Q) = e_1(I) \iff I^2 = QI \text{ (i.e. } red_Q(I) \leq 1)$

The case $H = \langle 3, 4, 5 \rangle$

Example

Let $H=\langle 3,4,5\rangle$ and $R=k[[H]]=k[[t^3,t^4,t^5]]$ (k a field). Take $I=(t^3,t^4)$ and $Q=(t^3)$, then Q is a reduction of I. In fact, $I^3=QI^2$. Hence $S=\frac{I^2}{t^6}$. For $e_0(I)$:

0	1	2	
3	4	5	
6	7	8	
9	10	11	

R

6 9	7 10	8
6	7	8
3	4	5
0	1	2

Q

0	1	2
3	4	5
6	7	8
9	10	11
R/Q		

$$\Rightarrow$$
 e₀(I) = $\ell_R(R/Q) = 3$

The case $H = \langle 3, 4, 5 \rangle$

Example

Let $H=\langle 3,4,5\rangle$ and $R=k[[H]]=k[[t^3,t^4,t^5]]$ (k a field). Take $I=(t^3,t^4)$ and $Q=(t^3)$, then Q is a reduction of I. In fact, $I^3=QI^2$. Hence $S=\frac{I^2}{t^6}$. For $e_1(I)$:

0	1	2	0	1	2
3	4	5	3	4	5
6	7	8	6	7	8
9	10	11	9	10	11

0	1	2	
3	4	5	
6	7	8	
9	10	11	
S/R			

$$\Rightarrow$$
 e₁(I) = $\ell_R(S/R) = 2$

Preliminaries Definition m:m Idealization Recent

Existence of canonical ideals

- Let K_R denote the canonical module of R.
- $\exists K_R \Leftrightarrow R \cong \text{a Gorenstein ring } / \sim$.

Definition

We say that $I \subsetneq R$ is a <u>canonical ideal</u> of R if $I \cong K_R$.

When $\exists I \subsetneq R$ a canonical ideal?

11 / 29

Theorem (Herzog-Kunz)

TFAE

- **1** \subseteq *R* a canonical ideal of *R*.
- $Q(\widehat{R})$ is a Gorenstein ring.

Hence if R is analytically unramified then $\exists I$ a canonical ideal of R.

Corollary

Suppose that $Q(\widehat{R})$ is Gorenstein. If $|R/\mathfrak{m}| = \infty$, then $R \subseteq \exists K \subseteq \overline{R}$ such that $K \cong K_R$ where \overline{R} is the integral closure of R.

Proof.

 $\exists a \in I$ such that Q = (a) is a reduction of I. Put $K = \frac{1}{a}$

Example

Let $R = k[[X, Y, Z]]/(X, Y) \cap (Y, Z) \cap (Z, X)$. Then $I = (x + y, y + z) \cong K_R$. If $k = \mathbb{Z}/(2)$, then $\forall a \in I$, (a) is <u>not</u> a reduction of I.

Preliminaries Definition m:m Idealization Recent

Proposition

Let $k = R/\mathfrak{m}$ and \widetilde{k}/k an extension of fields. then

 $\exists \varphi: (R,\mathfrak{m}) o (\widetilde{R},\widetilde{\mathfrak{m}})$ a flat homomorphism of local rings such that

Moreover we have the following

- (a) $Q(\widehat{R})$ is Gorenstein $\Leftrightarrow Q(\widehat{R})$ is Gorenstein. In this case, $\forall I$ a canonical ideal of R, $I\widetilde{R}$ is a canonical ideal of \widetilde{R} and $e_1(I\widetilde{R}) = e_1(I)$.
- (b) m: m is Gorenstein $\Leftrightarrow \widetilde{m}: \widetilde{m}$ is Gorenstein.

Problem

? R is analytically unramified $\Longleftrightarrow \widetilde{R}$ is analytically unramified

§2. Definition of almost Gorenstein rings

Definition

We say that R is an almost Gorenstein ring, if

- **1** $Q(\widehat{R})$ is Gorenstein. Hence $\exists I \subsetneq R$ a canonical ideal of R.
- **2** $e_1(I) \le r(R)$ (the Cohen-Macaulay type of R) = $\mu_R(I)$.

Remark

Let $I, J \subsetneq R$ canonical ideals, then $e_1(I) = e_1(J)$.

R is Gorenstein \Rightarrow r(R) = 1 and I is a parameter ideal. Hence $e_1(I) = 0 \le r(R)$. Thus R is almost Gorenstein

Examples of almost Gorenstein rings

Example

- **1** $R = k[[t^3, t^4, t^5]] \subseteq k[[t]]$ (r(R) = 2; an integral domain)
- $R = k[[X, Y, Z]]/(X, Y) \cap (Y, Z) \cap (Z, X)$ (r(R) = 2; a reduced ring)
- (r(R) = 3; not a reduced ring)
- **4** Let $3 \le a \in \mathbb{Z}$ and $R = k[[t^a, t^{a+1}, t^{a^2-a-1}]]$. Let I be a canonical ideal of $R \Rightarrow e_1(I) = \frac{a(a-1)}{2} - 1$, r(R) = 2. Hence R is an almost Gorenstein ring $\Leftrightarrow a = 3$. On the other hand, $R \cong k[[x, y, z]/I_2\begin{pmatrix} x & y^{a-2} & z \\ y & z & x^{a-1} \end{pmatrix}$. Hence, by Nari-Numata-Watanabe, R is almost Gorenstein $\Leftrightarrow a-2=1$.

Settings

- $R \subseteq \exists K \subseteq \overline{R}$ an R-submodule such that $K \cong K_R$.
- Choose a NZD $a \in \mathfrak{m}$ such that $I = aK \subsetneq R$. Hence Q = (a) is a reduction of I.
- $S = R[\frac{1}{a}] = R[K].$
- $\mathfrak{c} = R : S := \{ \alpha \in Q(R) \mid \alpha S \subseteq R \} \subseteq R.$

Definition (BF)

R is an almost Gorenstein ring (in the sense of [BF]) if $\mathfrak{m}K\subseteq R$.

Lemma

$$\mathsf{r}(R) - 1 = \mu_R(I/Q) \le \ell_R(I/Q) \le \mathsf{e}_1(I) = \ell_R(I/Q) + \ell_R(R/\mathfrak{c})$$

Proof

- $e_1(I) = \ell_R(S/R) = \ell_R(S/K) + \ell_R(K/R)$.
- Since $\ell_R(K/R) = \ell_R(I/Q)$, it is enough to show that $\ell_R(S/K) = \ell_R(R/\mathfrak{c})$
- K : S = K : KS = (K : K) : S = R : S = c.
- $\ell_R(S/K) = \ell_R(K:K/K:S) = \ell_R(R/\mathfrak{c}).$

Characterization of Gorenstein rings

Theorem

TFAE

- R is a Gorenstein ring.
- \mathbf{O} K = R.
- \bullet K=S.
- **4** R = S.

- $0 I^2 = QI$.
- \circ e₁(I) = 0.
- $e_1(I) = r(R) 1.$

19 / 29

reliminaries **Definition** m:m Idealization Recent

Characterization of almost Gorenstein rings

Theorem

R is an almost Goresntein ring \iff $\mathfrak{m}K\subseteq R$ (i.e. $\mathfrak{m}I\subseteq Q$) When this is the case, $\mathfrak{m}S\subseteq R$.

This means two definitions of almost Gorenstein property coincide.

$$\mathsf{r}(R)-1 \leq \ell_R(I/Q) \leq \mathsf{e}_1(I)$$
 $\uparrow \qquad \uparrow$
 $\mathsf{m}I \subseteq Q \qquad \qquad I^2 = QI$
 $\downarrow \qquad \qquad \downarrow$
almost Gorenstein Gorenstein

eliminaries Definition $\mathfrak{m}:\mathfrak{m}$ Idealization Recent

Proof

Theorem

R is an almost Goresntein ring \iff $\mathfrak{m}K \subseteq R$ (i.e. $\mathfrak{m}I \subseteq Q$) When this is the case, $\mathfrak{m}S \subseteq R$

$$\mathsf{r}(R) - 1 \le \ell_R(I/Q) \le \mathsf{e}_1(I)$$

- ullet \Rightarrow is easy.
- \leftarrow We may assume R is not Gorenstein.
- Put $J = Q :_R \mathfrak{m}$. Then $I \subseteq J$ and $J^2 = QJ$.
- We have $R \subseteq S = R[\frac{I}{a}] \subseteq R[\frac{J}{a}] = \frac{J}{a}$.
- Hence $e_1(I) = \ell_R(S/R) \le \ell_R(R[\frac{J}{2}]/R) = \ell_R(J/Q) = r(R)$.

Corollary

TFAE

- R is almost Gorenstein but not Gorenstein.
- $e_1(I) = r(R).$
- $e_1(I) = e_0(I) \ell_R(R/I) + 1$ (Sally's equality).

- $\mathfrak{m} : \mathfrak{m} = S \text{ and } R \text{ is }$ not a DVR.

When this is the case,

- (a) $red_Q(I) = 2$.
- (b) Put $G = \operatorname{gr}_I(R)$ and $M = \mathfrak{m}G + G_+$. Then G is Buchsbaum and $H^0_M(G) = [H^0_M(G)]_0 \cong R/\mathfrak{m}$. Hence $\mathbb{I}(G) = 1$.

Proof of $(1) \Leftrightarrow (3)$

- R is almost Gorenstein but not Gorenstein.
- **3** $e_1(I) = e_0(I) \ell_R(R/I) + 1$ (Sally's equality).

$$e_1(I) - e_0(I) = (\ell_R(R/\mathfrak{c}) + \ell_R(I/Q)) - \ell_R(R/Q)$$

= $\ell_R(R/\mathfrak{c}) - \ell_R(R/I)$.

- Hence $e_1(I) = e_0(I) \ell_R(R/I) + \ell_R(R/\mathfrak{c})$.
- (3) \iff $\mathfrak{m} = \mathfrak{c}(= S : R) \iff S \neq R \text{ and } \mathfrak{m}S \subseteq R \iff (1)$

- \bullet $e_1(I) = r(R) 1 \iff R$ is Gorenstein.
- $e_1(I) = r(R) \iff R$ is almost Gorenstein but not Gorenstein.

Problem

When
$$e_1(I) = r(R) + 1$$
?

I heorem
$$e_1(I) \neq r(R) + 1$$

24 / 29

- \bullet $e_1(I) = r(R) 1 \iff R$ is Gorenstein.
- \circ $e_1(I) = r(R) \iff R$ is almost Gorenstein but not Gorenstein.

Problem

When
$$e_1(I) = r(R) + 1$$
?

Theorem

$$e_1(I) \neq r(R) + 1$$

§3. The Gorenstein property of $\mathfrak{m} : \mathfrak{m}$

Theorem (Barucci-Fröberg)

TFAE

- **1** $A = \mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring.
- ② R is an almost Gorenstein ring and v(R) = e(R). v(R) the embedding dimension of R, e(R) the multiplicity of R

When R = k[[H]] is a numerical semigroup ring of $H = \langle a_1, a_2, \dots, a_\ell \rangle$, $v(R) = \ell$ and $e(R) = \min\{a_i \mid 1 \le i \le \ell\}$.

How to prove the theorem

- We may assume R/\mathfrak{m} is algebraically closed.
- Thanks to this assumption, we get the following claim.

Claim

$$\ell_A(X) = \ell_R(X)$$
 for $\forall X$ A-modules.

• Then Barucci and Fröberg's argument works well.

Problem (again)

? R is analytically unramified $\iff \widetilde{R}$ is analytically unramified

We now have no proof in special cases, but we can prove in full generality.

reliminaries Definition m : m **Idealization** Recent

§4. Almost Gorenstein rings obtained by idealization

Theorem

TFAE

- R ⋉ m is an almost Gorenstein ring.
- R is an almost Gorenstein ring.

When this is the case, $v(R \ltimes \mathfrak{m}) = 2v(R)$.

27 / 29

Example

 $\forall n \geq 0$, put

$$R_n = \begin{cases} R & (n=0) \\ R \ltimes \mathfrak{m} & (n=1) \\ [R_{n-1}]_1 & (n \geq 2). \end{cases}$$

- **1** If R is Gorenstein, then R_n is almost Gorenstein $(\forall n \geq 0)$.
- **2** R_n is not Gorenstein $(\forall n \geq 2)$.

Example

$$k[[X, Y, Z, W]]/(Y^2, Z^2, W^2, YW, ZW, XW - YZ)$$

 $\cong k[[X, Y]]/(Y^2) \ltimes (X, Y)/(Y^2)$

eliminaries Definition $\mathfrak{m}:\mathfrak{m}$ Idealization Recent

Recent researches

- GTT Shiro Goto, Ryo Takahashi, and Naoki Taniguchi gave a possible definition of **higher-dimensional** or **graded** almost Gorenstein rings in terms of $C = \text{Coker}(0 \rightarrow R \rightarrow K_R)$. (to appear in Journal of Pure and Applied Algebra, arXiv:1403.3599)
 - MM Satoshi Murai and I consider the graded almost Gorenstein property for Stanley-Reisner rings following the definition by [GTT]. (Preprint, arXiv:1405.7438).