On the Abhyankar-Moh inequality

Evelia García Barroso

La Laguna University, Tenerife

September, 2014

In this talk we present some results of

- R.D. Barrolleta, E. García Barroso and A. Płoski, On the Abhyankar-Moh inequality, arXiv:1407.0176.
- E. García Barroso, J. Gwoździewicz and A. Płoski, Semigroups corresponding to branches at infinity of coordinate lines in the affine plane, arXiv:1407.0514.

Introduction

We study semigroups of integers appearing in connection with the Abhyankar-Moh inequality which is the main tool in proving the famous embedding line theorem.

Introduction

We study semigroups of integers appearing in connection with the Abhyankar-Moh inequality which is the main tool in proving the famous embedding line theorem.

Since the Abhyankar-Moh inequality can be stated in terms of semigroups associated with the branch at infinity of a plane algebraic curve it is natural to consider the semigroups for which such an inequality holds.

First definitions

A subset G of \mathbf{N} is a *semigroup* if it contains 0 and it is closed under addition.

Let *G* be a nonzero semigroup and let $n \in G$, n > 0. There exists a unique sequence (v_0, \ldots, v_h) such that

- $v_0 = n$,
- $v_k = \min(G \setminus v_0 \mathbf{N} + \cdots + v_{k-1} \mathbf{N})$ for $1 \le k \le h$ and
- $\bullet G = v_0 \mathbf{N} + \cdots + v_h \mathbf{N}.$

We call the sequence (v_0, \ldots, v_h) the *n*-minimal system of generators of G.

If $n = \min(G \setminus \{0\})$ then we say that (v_0, \dots, v_h) is the *minimal* system of generators of G.

Characteristic sequences

A sequence of positive integers $(\overline{b}_0, \dots, \overline{b}_h)$ will be called a *characteristic sequence* if satisfies

- Set $e_k = \gcd(\overline{b}_0, \dots, \overline{b}_k)$ for $0 \le k \le h$. Then $e_k < e_{k-1}$ for $1 \le k \le h$ and $e_h = 1$.
- $e_{k-1}\overline{b}_k < e_k\overline{b}_{k+1}$ for $1 \le k \le h-1$.

Put $n_k = \frac{e_{k-1}}{e_k}$ for $1 \le k \le h$. Therefore $n_k > 1$ for $1 \le k \le h$ and $n_h = e_{h-1}$.

Examples

If h = 0 there is exactly one characteristic sequence $(\overline{b}_0) = (1)$. If h = 1 then the sequence $(\overline{b}_0, \overline{b}_1)$ is a characteristic sequence if and only if $gcd(\overline{b}_0, \overline{b}_1) = 1$.

Characteristic sequences

Proposition

Let $G = \overline{b}_0 \mathbf{N} + \cdots + \overline{b}_h \mathbf{N}$, where $(\overline{b}_0, \dots, \overline{b}_h)$ is a characteristic sequence. Then

- the sequence $(\overline{b}_0, \dots, \overline{b}_h)$ is the \overline{b}_0 -minimal system of generators of the semigroup G.
- The minimal system of generators of G is $(\overline{b}_0, \ldots, \overline{b}_h)$ if $\overline{b}_0 < \overline{b}_1$, $(\overline{b}_1, \overline{b}_0, \overline{b}_2, \ldots, \overline{b}_h)$ if $\overline{b}_0 > \overline{b}_1$ and $\overline{b}_0 \not\equiv 0 \pmod{\overline{b}_1}$ and $(\overline{b}_1, \overline{b}_2, \ldots, \overline{b}_h)$ if $\overline{b}_0 \equiv 0 \pmod{\overline{b}_1}$.
- 4 Let $c = \sum_{k=1}^{h} (n_k 1)\overline{b}_k \overline{b}_0 + 1$. Then c is the conductor of G, that is the smallest element of G such that all integers bigger than or equal to it are in G.

A semigroup $G \subseteq \mathbf{N}$ will be called an *Abhyankar-Moh* semigroup of degree n > 1 if it is generated by a characteristic sequence $(\overline{b}_0 = n, \overline{b}_1, \dots, \overline{b}_h)$, satisfying the Abhyankar-Moh inequality

$$(AM) \qquad e_{h-1}\overline{b}_h < n^2.$$

Let $G \subseteq \mathbf{N}$ be a semigroup generated by a characteristic sequence, which minimal system of generators is $(\overline{\beta}_0, \dots, \overline{\beta}_g)$.

Proposition

G is an Abhyankar-Moh semigroup of degree n>1 if and only if $\epsilon_{g-1}\overline{\beta}_g < n^2$ and $n=\overline{\beta}_1$ or $n=I\overline{\beta}_0$, where I is an integer such that $1< I<\overline{\beta}_1/\overline{\beta}_0$ and $\epsilon_{g-1}=\gcd(\overline{\beta}_0,\ldots,\overline{\beta}_{g-1})$.

Theorem (Barrolleta-GB-Płoski)

Let G be an Abhyankar-Moh semigroup of degree n > 1 and let c be the conductor of G. Then $c \le (n-1)(n-2)$.

Moreover if G is generated by the characteristic sequence $(\overline{b}_0 = n, \overline{b}_1, \dots, \overline{b}_h)$ satisfying (AM) then c = (n-1)(n-2) if and only if $\overline{b}_k = \frac{n^2}{e_{k-1}} - e_k$ for $1 \le k \le h$, where $e_k = \gcd(\overline{b}_0, \dots, \overline{b}_k)$.

Let n > 1 be an integer. A sequence of integers (e_0, \dots, e_h) will be called a *sequence of divisors of* n if e_k divides e_{k-1} for $1 \le k \le h$ and $n = e_0 > e_1 > \dots > e_{h-1} > e_h = 1$.

Lemma

If (e_0, \ldots, e_h) is a sequence of divisors of n > 1 then the sequence

$$\left(n, n-e_1, \frac{n^2}{e_1}-e_2, \dots, \frac{n^2}{e_{k-1}}-e_k, \dots, \frac{n^2}{e_{h-1}}-1\right)$$
 (2.1)

is a characteristic sequence satisfying the Abhyankar-Mohinequality (AM).

Let $G(e_0, ..., e_h)$ be the semigroup generated by the sequence (2.1).

Proposition (Barrolleta-GB-Płoski)

A semigroup $G \subseteq \mathbf{N}$ is an Abhyankar-Moh semigroup of degree n > 1 with c = (n-1)(n-2) if and only if $G = G(e_0, \dots, e_h)$ where (e_0, e_1, \dots, e_h) is a sequence of divisors of n.

Corollary

Let G be an Abhyankar-Moh semigroup of degree n > 1 with c = (n-1)(n-2) and let $n' = \min(G \setminus \{0\})$. Then n-n' divides n.

Corollary

Let G be an Abhyankar-Moh semigroup of degree n > 1 with c = (n-1)(n-2) and let $n' = \min(G \setminus \{0\})$. Then n-n' divides n.

Corollary

Let G be an Abhyankar-Moh semigroup of degree n>1 with c=(n-1)(n-2) and let $(\overline{\beta}_0,\overline{\beta}_1,\ldots,\overline{\beta}_g)$ be the minimal system of generators of the semigroup G. Then $n=\overline{\beta}_1$ or $n=2\overline{\beta}_0$.

If
$$n = \overline{\beta}_1$$
 then $G = G(n, \epsilon_1, \dots, \epsilon_g)$.

If $n = 2\overline{\beta}_0$ then $G = G(n, \epsilon_0, \dots, \epsilon_g)$.

Let **K** be an algebraically closed field of arbitrary characteristic.

A projective plane curve C defined over K has one branch at infinity if there is a line (line at infinity) intersecting C in only one point C, and C has only one branch centered at this point. In what follows we denote by n the degree of C, by n' the multiplicity of C at C and we put $d := \gcd(n, n')$.

We call *C* permissible if $d \not\equiv 0$ (mod char **K**).

Theorem (Abhyankar-Moh inequality)

Assume that C is a permissible curve of degree n > 1. Then the semigroup G_O of the unique branch at infinity of C is an Abhyankar-Moh semigroup of degree n.

- Abhyankar, S.S.; Moh, T.T. Embeddings of the line in the plane. *J. reine angew. Math.* 276 (1975), 148-166. (0-characteristic).
- García Barroso, E. R., Płoski, A. An approach to plane algebroid branches. Revista Matemática Complutense (2014). doi: 10.1007/s13163-014-0155-5. First published online: July 29, 2014. (any characteristic).

Theorem (Abhyankar-Moh Embedding Line Theorem)

Assume that C is a rational projective irreducible curve of degree n > 1 with one branch at infinity and such that the center of the branch at infinity O is the unique singular point of C. Suppose that C is permissible and let n' be the multiplicity of C at O. Then n - n' divides n.

Theorem (Abhyankar-Moh Embedding Line Theorem)

Assume that C is a rational projective irreducible curve of degree n > 1 with one branch at infinity and such that the center of the branch at infinity O is the unique singular point of C. Suppose that C is permissible and let n' be the multiplicity of C at O. Then n - n' divides n.

Proof [Barrolleta-Gb-Płoski]

By Theorem (Abhyankar-Moh inequality) the semigroup G_O of the branch at infinity is an Abhyankar-Moh semigroup of degree n. Let c be the conductor of the semigroup G_O . Using the Noether formula for the genus of projective plane curve we get c = (n-1)(n-2). Then the theorem follows from Corollary.

Let $\overline{\beta}_0 = n'$, $\overline{\beta}_1, \cdots$ be the minimal system of generators of the semigroup G_O .

• From the first characterization of A-M semigroups if follows that the line at infinity L has maximal contact with C, that is intersects C with multiplicity $\overline{\beta}_1$ if and only if $n \not\equiv 0 \pmod{n'}$.

Let $\overline{\beta}_0 = n', \overline{\beta}_1, \cdots$ be the minimal system of generators of the semigroup G_O .

• From the first characterization of A-M semigroups if follows that the line at infinity L has maximal contact with C, that is intersects C with multiplicity $\overline{\beta}_1$ if and only if $n \not\equiv 0 \pmod{n'}$.

What happens if $n \equiv 0 \pmod{n'}$?

Let $\overline{\beta}_0 = n', \overline{\beta}_1, \cdots$ be the minimal system of generators of the semigroup G_O .

• From the first characterization of A-M semigroups if follows that the line at infinity L has maximal contact with C, that is intersects C with multiplicity $\overline{\beta}_1$ if and only if $n \not\equiv 0 \pmod{n'}$.

What happens if $n \equiv 0 \pmod{n'}$?

• Using the main result on the approximate roots in [GB-Płoski] one proves that if $n \equiv 0 \pmod{n'}$ then there is an irreducible curve C' of degree n/n' intersecting C with multiplicity $\overline{\beta}_1$.

Let $\overline{\beta}_0 = n', \overline{\beta}_1, \cdots$ be the minimal system of generators of the semigroup G_O .

• From the first characterization of A-M semigroups if follows that the line at infinity L has maximal contact with C, that is intersects C with multiplicity $\overline{\beta}_1$ if and only if $n \not\equiv 0 \pmod{n'}$.

What happens if $n \equiv 0 \pmod{n'}$?

- Using the main result on the approximate roots in [GB-Płoski] one proves that if n ≡ 0 (mod n') then there is an irreducible curve C' of degree n/n' intersecting C with multiplicity β

 1.
- In particular, if C is rational then by last Corollary we get
 n/n' = 2 (if n ≡ 0 (mod n')) and C' is a nonsingular curve of
 degree 2.

Geometrically characterization of Abhyankar-Moh semigroups with maximum conductor

An affine curve $\Gamma \subseteq \mathbf{K}^2$ is a *coordinate line* if there is a polynomial automorphism $F: \mathbf{K}^2 \longrightarrow \mathbf{K}^2$ such that $F(\Gamma) = \{0\} \times \mathbf{K}$.

Geometrically characterization of Abhyankar-Moh semigroups with maximum conductor

An affine curve $\Gamma \subset \mathbf{K}^2$ is a *coordinate line* if there is a polynomial automorphism $F: \mathbb{K}^2 \longrightarrow \mathbb{K}^2$ such that $F(\Gamma) = \{0\} \times \mathbf{K}.$

Theorem (GB-Gwoździewicz-Płoski)

Let $G \subseteq \mathbf{N}$ be a semigroup with conductor c. Then the following two conditions are equivalent:

- (I) $G \in AM(n)$ and c = (n-1)(n-2),
- (II) there exists a coordinate line $\Gamma \subseteq \mathbf{K}^2$ (char **K** is arbitrary!) with a unique branch at infinity γ such that $G(\gamma) = G$.