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Raman spectroscopic discrimination
of pigments and tempera paint model samples
by principal component analysis
on first-derivative spectra†

Natalia Navas,a∗ Julia Romero-Pastor,b Eloisa Manzanoa

and Carolina Cardellb

This work explores the application of principal component analysis (PCA) on first-derivative Raman spectra to investigate
historical tempera paint model samples. Various paint model samples were prepared containing pure blue pigments (azurite,
lapis lazuli and smalt), pure red pigments (cinnabar, minium and raw Sienna), pure white pigments (lead white, chalk and
gypsum), pure egg yolk as binder and tempera model samples obtained by mixing each of the pigments with the binder,
and further characterized by Raman spectroscopy. The corresponding Raman spectra were used to apply PCA in order to
test whether spectral differences allowed discrimination of samples based on their composition. Multivariate analyses were
performed separately on three data matrices, one for each color, namely, white, blue and red, corresponding to the model
samples, and all containing the spectral data of the binder model sample. Different pretreatments, that is log and derivative
spectra, were performed on the spectra since no pattern distributions were obtained when the original Raman spectra were
analyzed. Nevertheless, the multivariate analysis of the original Raman spectra was able to track alterations of sensitive
pigments due to laser interaction. Results showed the excellent ability of PCA, when applied to the derived Raman spectra,
to discriminate model samples according to their differing compositions in the three groups of model samples tested. This is
the first attempt to use this approach in the field of cultural heritage and demonstrates the potential benefits for identifying
historical pigments and binders for purposes of conservation and restoration. Copyright c© 2010 John Wiley & Sons, Ltd.
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Introduction

At present, Raman microscopy (RM) is considered a well-
established analytical technique to characterize artworks and
their degradation products, providing valuable data for diagnostic
information, preservation and restoration of artistic objects.[1] In
fact, RM has become one of the most widely used techniques
to study painting materials both organic (varnishes, binders and
dyes)[2 – 4] and inorganic (pigments and extenders).[5 – 8] This is
due to the high spatial resolution and accuracy of RM, which
in addition provides rapid, reliable and specific results regarding
both inorganic and organic components in the same sample.[9,10]

Ancient paintings are complex, composite materials made
up of heterogeneous mixtures of organic and inorganic
components.[11 – 13] Thus, Raman spectral interpretation of these
materials can be a challenging task. Most previous studies on
characterization of model and historical paintings are based on
separate and independent analyses of the different painting
components, because of sample complexity.[5 – 8] In fact, problems
arise when the identification of individual components (pigments
or binders) in mixtures is attempted[14] since few studies have
addressed both binders and pigments simultaneously.[9,10] To
solve this problem, mathematical methods are applied to facilitate
the study of the spectral contributions from different components
of a mixture.[14 – 17]

The development of mathematical operations on spectra
such as derivatives is a well-known procedure. In the case of
Raman spectroscopy, the use of second derivatives to reduce the
fluorescence in the spectra is frequent,[18,19] although this method
has the limitation of reducing band sensitivity. First-derivative
Raman spectra followed by principal component regression was
also proposed for multivariate calibration of coating thickness in
pharmaceutical tablets.[20] Micro-Raman spectroscopy, combined
with several chemometric techniques, has also been applied to
differentiate between synthetic and natural indigo samples.[21] In
this last work, the best discrimination of the samples was obtained
by principal component analysis (PCA) before applying linear
discriminant analysis to the second-derivative Raman spectra.
PCA on Raman spectra was also used for the study of ceramics
and glasses, but cluster variation approaches appeared to be
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more efficient.[22] However, to the authors’ knowledge the use of
first-derivative Raman spectra with PCA has not been reported in
the study of complex, ancient painting materials.

In recent years, chemometric techniques have been used
increasingly in the field of cultural heritage since they can extract
information from correlated data, such as spectroscopic sets.[23]

Nowadays, chemometric evaluation of spectral data is well
accepted as a powerful tool for different purposes, including
sample identification and recognition.[24] Among the different
chemometric tools, PCA is a powerful data-mining technique that
reduces data dimensionality and provides a more interpretable
representation of the system under investigation.[25,26] In addition,
valuable information is also obtained about the most important
variables involved in the process of interest. The benefits of
applying combined diffuse reflectance infrared Fourier transform
spectroscopy (DRIFTS) and PCA for identifying historical pigments
and binders were highlighted recently.[16] A similar approach
using Fourier transform infrared spectral data was applied to
study the UV ageing process of proteinaceous paint binder.[17] The
principles of quality control and multivariate statistical analysis
of Raman spectral data were successfully applied to monitor the
conservation state of pigmented and wooden works of arts.[27,28]

PCA on the Raman spectra of proteinaceous materials used in
paints proved to be a powerful tool to discriminate among protein
media on the basis of their Raman spectra,[29] as well as among
naturally and artificially aged protein-based paint media.[15] In
brief, all of these works demonstrate the increasing importance
of multivariate analytical methods in the field of cultural heritage
and a new trend in confronting problems related with works of art.

This paper explores the innovation of applying PCA on
first-derivative Raman spectra to investigate model tempera paint
samples. Thanks to the study of various paint model samples
that contain pure blue pigments (azurite, lapis lazuli and smalt),
pure red pigments (cinnabar, minium and raw Sienna), pure white
pigments (lead white, chalk and gypsum), pure egg yolk as binder
and mixtures of each of the pigments with the binder (tempera
samples), different aspects of the benefits of this novel analytical
approach are highlighted. The PCA-on-derivative Raman spectra
approach to discriminate model samples based on its composition
is described throughout this work.

Experimental

Painting materials

For this work, three blue pigments (azurite, lapis lazuli and smalt),
three red pigments (cinnabar, minium and raw Sienna), and three
white pigments (lead white, chalk and gypsum) were selected for
analysis. Pigments were chosen on the basis of their widespread
use throughout history. The azurite and smalt pigments were
purchased from Kremer Pigments GmbH & Co. KG (Madrid, Spain).
The rest of the pigments were supplied by Caremi Pigmentos
(Sevilla, Spain).

Azurite is the hydrated copper carbonate Cu3(CO3)2(OH)2, and
was the most important pigment in European paintings until
the later part of the 17th century.[30] Lapis lazuli is a pigment
made by grinding the semiprecious rock lapis lazuli whose
main constituent is lazurite (Na8-10Al6Si6O24S2 – 4). A famous and
expensive pigment used since the 6th century A.D. in Afghan
temples, it was worth more than gold during the Renaissance.[31]

Smalt is an artificial pigment made of coarsely ground potassium

cobalt glass strongly colored with cobalt oxide, which became a
substitute for azurite and lapis lazuli in the 17th century.[32]

Regarding the red pigments, cinnabar is mercuric sulfide (HgS)
and widely used in antiquity (e.g. 2nd millennium B.C. in China
and since Neolithic period in Europe[33]) and still in use, despite
its toxicity.[30] Minium is red oxide of lead (Pb3O4), also highly
poisonous and one of the earliest pigments artificially prepared
and still in use today.[34] Sienna and natural red earths represent a
large group of clay-rich materials having a complex composition
(e.g. gypsum, anhydrite, quartz, calcite, dolomite, etc.). The main
coloring agents are either some nonclay pigment, for example
iron oxides (haematite, goethite, magnetite, manganese oxides,
etc.) or a chromogenous element in the clay structure.[35] The
original pigment was obtained from Siena in Italy, from which the
term is adopted.[36]

Lead white or ceruse is the chemical compound
(PbCO3)2·Pb(OH)2; one of the oldest manmade pigments, it dates
back to the ancient Egyptians and Greeks. Lead white was the prin-
cipal white of classical European oil paintings.[37] Chalk is a natural
white pigment made of calcium carbonate (CaCO3), mainly used
for painting grounds and in fresco paintings.[30] Natural gypsum
(CaSO4·2H2O) has been used in all forms since the beginning of civ-
ilization for artistic purposes.[38] In paintings, it has been tradition-
ally used in ground layers and as filler or extender similar to chalk.

The protein binder selected was natural egg yolk, which has
been used since ancient times. It solidifies quickly and is favorably
flexible, but remains soft for long time and resists mechanical
abrasion.[39]

Model samples

Nineteen model paint samples were prepared according to ‘Old
Master recipes’ to obtain egg yolk tempera painting standards
similar to those used by medieval artists.[40] Tempera is a painting
technique in which finely ground pigments are first mixed with
water and later blended with a solidifying proteinaceous binding
agent, such as egg, animal glue or casein.[41] The first 9 model
samples were pure pigments and the 10th the pure egg yolk
binder. The nine remaining model samples were paint binary
mixture samples composed by each of the pure pigments mixed
with the egg yolk binder.

To prepare the binder, the egg yolk was separated from the white
by the usual method of pouring it back and forth in the half shells. It
was then rolled onto a paper tissue to remove the layer of clinging
egg white and most of the chalazae. The skin was punctured at
the bottom by a pin and the liquid content poured into a jar.[39]

The preparation of the tempera model samples was as follows:
approximately 0.5 g of each pigment powder was formed as
a crater-shaped mass and several drops of beaten egg yolk
(different amounts according to each pigment) were added to
form a fluid paste. This procedure was adapted to emulate real
paint layers with variable pigment concentrations as found in
ancient paintings. Then, one layer of the obtained paste was
spread with a paintbrush to a fine coat on a glass slide. To obtain
the pure binder model sample, the beaten egg yolk was directly
spread onto the glass slide. By contrast, the pure pigment samples
did not require this preparation, so the Raman measurements
were done directly on the pigment powder.

Raman technique

A Renishaw Invia Raman microscope system fitted with a
Peltier-cooled CCD detector and a Leica DMLM microscope was
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Table 1. Specific working conditions for each analyzed sample

Samples Laser (%) Objective Exposure time (s) Accumulation (number) Wavenumber (cm−1)

Binder

Egg yolk 100 20 13 3 300–3800

White pigments

Lead white 100 20 15 10 250–1600

Chalk 100 20 15 10 250–1200

Gypsum 100 20 15 5 350–1250

Lead white–egg 100 20 15 5 300–3500

Chalk–egg 100 20 15 5 250–3400

Gypsum–egg 100 50 10 5 350–3400

Blue pigments

Lapis lazuli 25 20 10 5 200–1200

Smalt 100 50 10 10 200–1200

Azurite 1 50 10 10 200–1650

Lapis–egg 50 50 10 10 300–3400

Smalt–egg 100 50 10 5 200–3400

Azurite–egg 100 50 20 7 200–3400

Red pigments

Cinnabar 1 20 10 10 200–450

Minium 5 50 10 5 100–600

Raw sienna 20 50 10 10 200–500

Cinnabar–egg 15 20 10 7 200–3400

Minium–egg 25 50 20 1 200–3400

Raw sienna–egg 25 50 10 10 200–3400

used. Samples were excited with the 514.5-nm line of an Ar
laser (Laser Physics, model 23S514), with an average spectral
resolution of approximately 1 cm−1 over the wavenumber range
of 3800–200 cm−1. To improve signal/noise ratios, spectra from
20-s exposure were averaged (n = 10). The spectra were recorded
by placing the samples on the microscope stage and observing
them with t long-working-distance 20× and 50× objectives. The
sampled areas were identified and focused using either a video
camera or microscope binoculars. Precautions were taken not to
cause any damage to the samples (i.e. laser-induced degradation
of paint materials). This was done by reducing the laser intensity
and visually confirming the absence of damage in the sampling
area with the help of the camera. Thus, laser power was kept
between 0.2 and 20 mW. Moreover to avoid sample alteration and
to obtain the best sample spectrum, we varied the laser power (%
of 20 mW maximum), the number of spectra accumulations and
irradiation exposure times for the diverse samples, as shown in
Table 1.

Every sample was characterized by ten spectra obtained from
the same location on the model sample in order to avoid spatial
variation. The egg yolk model samples were characterized by 20
Raman spectra. Raman signals were collected by the probe and
transferred via fiber optics to the CCD detector (NIR-enhanced),
controlled by the Wire 2.0 software running on a personal
computer.

Principal component analysis

PCA was performed separately on Raman spectral data on the
basis of the color of the model samples, that is white, blue
or red model samples. Three data matrices were built, one for
each color, which initially included the spectra of the tempera

model samples (30 spectra), the pure pigment model samples
(30 spectra) and the pure egg yolk binder model samples (20
spectra). In this way, each color matrix was initially formed by
90 spectra. The principal components (PCs) were obtained using
both the covariance data matrices (scaling by mean-centered
data) and the correlation data matrixes (scaling by unit variance).
Similar to previous works,[16,17] results were better when PCA was
performed on correlation data matrices, so the results shown
and discussed here correspond to autoscaled data. A simple
centering data procedure is often adopted for spectral data[42,43]

because the commonly applied autoscaling procedure assigns
the same relevance to each spectral region. Thus spectral regions
with small variation – no relevant bands – can acquire the same
importance as large bands related to important functional groups.
This problem was avoided in this work because only regions
containing relevant bands were selected to apply PCA. These
spectral regions were selected on the basis of the presence of
characteristic bands of the pigments contained in the pigment-
laden samples. The best results were obtained for the spectral
regions shown in Table 2. Pretreatment techniques – log and first-
derivative Raman spectra – were performed on the original Raman
spectra before extracting the PCs. Log spectra were calculated
using Excel 2000 (Microsoft Corporation, USA). First-derivative
spectra were obtained using Spectrum Viewer 2.1b freeware
program. PCA was performed using the Statistical Product and
Service Solutions program (SPSS, for Windows ver. 15, USA).

Results and Discussion

The chemometric method PCA was applied in order to differentiate
model samples on the basis of their different compositions.

wileyonlinelibrary.com/journal/jrs Copyright c© 2010 John Wiley & Sons, Ltd. J. Raman Spectrosc. 2010, 41, 1196–1203
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Table 2. PCA results

Data matrix

Raman spectral
region
(cm−1) PC

Variance
account

(%)

Variance
accumulated

(%)

White model samples 1200–600 PC1 65.3 65.3

PC2 12.2 77.6

PC3 6.1 83.7

PC4 2.7 86.4

Blue model samples 1100–600 PC1 42.0 42.0

PC2 26.5 68.5

PC3 21.1 89.6

PC4 1.6 91.2

Red model samples 1700–200 PC1 52.2 52.2

PC2 12.0 64.2

PC3 5.8 70.0

PC4 2.6 72.6

First, this analysis was performed directly on the recorded
Raman spectra separately for each color, that is white model
samples, blue model samples and red model samples. Different
Raman spectral regions were tested, including those with
information on the pigments and also those at shorter Raman
shifts, since no signal from the pigments appears at longer
Raman shifts. Results from these multivariate analyses were
discarded since they were uninformative for the three kinds
of color model samples studied and for the different spectral
regions tested. No pattern distributions were detected when
projecting the samples onto the space of the firsts PCs, and
the score plots showed no relation between sample distribution
and composition for all the three color samples studied. No
meaningful distribution could be assigned to the graphs. This
meant that PCA was not able to detect differences in the recorded
Raman spectra on the basis of the different composition of the
samples.

Thus, in order to discern variability in the original Raman spectra,
two pretreatments were performed on the spectral data matrices
before extracting the PCs. These pretreatments were the logarithm
and derivative of the recorded Raman spectra. No improvements
were observed when applying PCA to the log-Raman spectra,
which again produced uninformative score plots for the model
samples. By contrast, however, when first-derivative spectra were
used, the results indicated successful discrimination of the samples
based on their different compositions for the three kinds of color
model samples (white, blue and red). Consequently, all of the
results presented and discussed in the remainder of this paper
correspond to first-derivative Raman spectra. The transformation
of a single Raman spectral band into its maximum and minimum, by
calculating the first derivative of the spectra, apparently modifies
the structure of the data matrix in such a way that differences
are evident when PCA is applied. Small spectral differences in
the original Raman spectra are seen in the first-derivative spectra,
making possible PCA discrimination among samples based on
their different composition.

White model samples

PCA was performed on several spectral regions that contained
characteristic spectral bands of the white pigments. The highest
quality information was obtained using the spectral region in the

Raman shift interval 1100–600 cm−1. The main spectral bands of
the three pigments are found in this interval, that is at 1057 cm−1

for lead white, at 1086 cm−1 for chalk and at 1007 cm−1 for
gypsum. PCA in the interval 1100–600 cm−1 allowed separation
of the model samples according to their composition. The score
plot of the first two PCs shown in Fig. 1(a) reveals that the first-
derivative Raman spectral characteristics of this region exhibited
enough difference to cluster the samples on the basis of their
different chemical compositions. The results of the corresponding
PCA in terms of explained variance (%) and cumulative explained
variance (%) are shown in Table 2. An in-depth examination of
the score plot of these two first PCs, which accounted for 77.6%
of the total variance, reveals that the lead white samples clearly
differ from the rest of the samples, the first PC being sufficient
to discriminate them from the rest of the samples. Similarly, the
pure gypsum samples were discriminated via the second PC. The
rest of the samples were discriminated using both PCs. The scores
of the pure chalk samples were identical; thus they clustered in
the space of the two first PCs, near the gypsum tempera samples.
Although these two types of samples were placed into the same
cluster, there were small derivative spectral differences between
them that allowed their separation. Surprisingly, the score plot of
PC2 and PC4, which accounted only for 15.0% of the total variance,
improved the results, and samples were better discriminated
despite the fact that PC4 accounted only for 2.7% of the total
variance (Fig. 1(b)).

The loading values indicate the specific contribution of each
Raman shift in the calculation of the total variance of the derivative
spectral data. Therefore, the loading plot can identify those Raman
shift intervals that are important in the PC. A closer examination
of the loading plots combined with the score plots can also reveal
the kind of contribution associated with the PC. Since the scores
of PC1 and PC2 discriminated lead white samples and gypsum
samples, respectively, it is clear that the derivative spectral data
variances due to these samples are mainly described by these PCs.
Nevertheless, the interpretation of the loading plots is difficult
since they did not directly represent the Raman spectrum, but
rather its derivative. For example, a zero loading value corresponds
to either a maximum or a minimum (zero first derivative) in the
Raman spectrum.

Taking this into account, the contribution of each of the
three white pigments is observed in the PC1 loading plot. A
maximum and a minimum centered at zero for the Raman shift,
corresponding to the characteristic Raman band of each pigment,
was detected as shown in Fig. 1(c). The PC2 loading plot clearly
indicates the contribution of the gypsum-laden samples in this
PC because of the presence of a maximum and a minimum
corresponding to its characteristic Raman band, that is 1007 cm−1

(Fig. 1(d)). Finally, from the loading plot of PC4, the Raman shift
around 1086 cm−1 (maximum of chalk), 811 and 717 cm−1 weighs
more heavily on this PC (Fig. 1(e)). The score plot in the spaces of
PC4 and PC2 allowed a complete discrimination of the samples
based on their composition (Fig. 1(b)). The use of the PC3 to
build the score plots did not improve the results, and so is not
discussed.

Blue model samples

The best capability to discriminate among the model samples by
PCA was found in the Raman spectral shift between 1100 and
600 cm−1. The main band of the Raman spectrum of the azurite
pigment (401 cm−1) was not included in this spectral region, nor
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Figure 1. White model samples: (a) score plot of PC1 and PC2; (b) score plot of PC2 and PC4; (c) loading plot of PC1; (d) loading plot of PC2; (e) and loading
plot of PC4.

was the main band of smalt (462 cm−1). Bands at 761, 839, 933
and 1094 cm−1 were included; all these bands exhibited similar
intensities. Also, for lapis lazuli its main spectral band was outside
this spectral region (547 cm−1). The spectral bands at 670, 802 and
1095 cm−1 were included, the latter having the highest intensity.
The result of performing PCA on this spectral region is shown in
Table 2. The first three PCs accounted for 89% of the total variance
of the original Raman spectra studied (Table 2). The projection
of the samples onto the spaces of the two first PCs, explaining
68% of the total variance, is shown in Fig. 2(a). This score plot
shows the distribution of the samples in six groups based on the
composition. Although the azurite model samples grouped near
the smalt model samples in both Fig. 2(a) and (b), they did not
cluster together in both score plots; rather, PC3 allowed slight
separation of the azurite from the pure smalt (more negative
scores).

Again, the interpretation of the information related to each PC
was difficult since many spectral regions weighted the PCs as can
be observed from the loading plots in Fig. 2(c)–(e). The analysis
of the loadings of the first PC revealed that the spectral regions
1068–1009, 879–792 and 770–670 cm−1 had large positive values
(Fig. 2(c)). Analysis of the derivative spectra of the model samples
suggested that the first mentioned region could be related to

the presence of egg yolk in the sample since its higher derivative
band was located between 1045 and 929 cm−1. The combination
of the binder with the pigment could introduce small spectral
changes in this region detected by the PCA, thus contributing to
the discrimination of the samples. The most negative score value
on PC1 was found for the azurite tempera model samples and the
most positive value was for lapis lazuli tempera model samples,
while the rest of the samples were characterized with score values
near zero. The second and third regions could be related to the
presence of the azurite pigment because its main derivative bands
were located in this spectral region, that is between 863 and
718 cm−1; nevertheless, the azurite tempera model samples had
the most negative values. This result could be attributed to a
significant change in the derivative spectra of the tempera with
respect to those of the pure components (Fig. 2(c)). The second
and third PCs also showed that the spectral region between
1092 and 1009 cm−1 gave large positive values (Fig. 2(d) and (c)).
The score values of the tempera samples were positive on PC2,
whereas those for pure pigment samples and egg yolk samples
were negative. No improvement was found when using PC3 to
project the samples (Fig. 2(b)).

wileyonlinelibrary.com/journal/jrs Copyright c© 2010 John Wiley & Sons, Ltd. J. Raman Spectrosc. 2010, 41, 1196–1203
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Figure 2. Blue model samples: (a) score plot of PC1 and PC2; (b) score plot of PC2 and PC3; (c) loading plot of PC1; (d) loading plot of PC3; (e) and loading
plot of PC2.

Red model samples

Visual inspection of the minium Raman spectra and PCA (Fig. 3)
revealed degradation of the minium samples by laser irradiation,
in agreement with Burgio et al.[44] Consistent with the findings of
these authors, minium degraded immediately when irradiated
with the 514.5-nm excitation lines at any power, yielding a
spectrum similar to that of massicot (orthorhombic PbO), with
the main band at ∼277 cm−1. This degradation was detected only
in the pure minium model samples, indicating protection of the
pigment when mixed with the binder in its egg yolk tempera. The
red model samples spectral differences were better discriminated
when performing PCA on the Raman spectral data between 1700
and 200 cm−1 using centered data, where multiplicative effects
were not eliminated. The score plot of the two PCs (Fig. 4(b))
accounting for 60.4% of the total variance, PC1 (41.7%) and
PC2 (18.7%), shows a clear shift of the score distribution for the
pure minium model sample, from the highest PC2 value for the
first recorded Raman spectra to the much lower value for the
last one. Thus, the degradation process of minium was mainly
related to variance explained by PC2. PC1 mainly accounts for
the discrimination of the egg yolk samples (positive values) from
the rest of the samples containing pigments (negative values).
From the score of the minium egg tempera grouped with the
samples containing pigments, we infer that the egg yolk binder
protected it from the degradation induced by the laser. Thus, this

fact highlighted the capacity of PCA to track different degradation
processes that may occur in pictorial samples by using Raman
spectroscopic data.

In order to discriminate red samples on the basis of their
composition, all the minium-laden samples were discarded from
the original (recorded) and derivative spectral data matrixes. Thus,
PCA was performed on data matrices with 60 spectra. As cited
above, the best results were obtained when the derivative data
matrix was used to apply PCA and the following results were
obtained.

Again, different Raman shift intervals were tested for applying
PCA. The highest quality information for discerning samples was
obtained using the interval between and 1700 and 200 cm−1.
This includes the main Raman bands for the red pigments (at
251 and 343 cm−1 for cinnabar; at 214, 279 and 394 cm−1 for
raw Sienna), and several characteristic Raman bands for the egg
yolk (at 1156, 1440 and 1524 cm−1). The results of the PCA are
summarized in Table 2. Projection of the data samples from the
original space into the plane of the two first PCs, explaining 64.2%
of the total variance, is shown in Fig. 4(a). Three clear groups are
distinguished. The first PC must be related to the presence of
pigment in the model samples. The samples were divided in two
groups in this PC, which score positive for the egg yolk model
samples and negative for the rest of the model samples (each with
a pigment in the composition), and gave negative score values.

J. Raman Spectrosc. 2010, 41, 1196–1203 Copyright c© 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jrs
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Figure 3. Minium degradation process: (a) spectra of massicot (277 cm−1) obtained after irradiating minium with the Ar laser (514.5 nm); (b) score plot of
the two principal components, PC1 and PC2. Raman spectra of all the red model samples were included in the PCA using centered data.

Figure 4. Red model samples: (a) score plot of PC1 and PC2; (b) score plot of PC2 and PC3; (c) loading plot of PC1; (d) loading plot of PC2; (e) and loading
plot of PC3.

Loading plot for PC1 indicated that the whole spectral interval
selected contributed to the score value, and thus the whole
interval contributed to discriminate the presence of pigment in
the model samples (Fig. 4(c)). In PC2, raw Sienna tempera model
samples were separated from the rest of the studied samples by
negative score values. Loading plot of this PC again indicated a
contribution of the whole spectral interval in grouping the samples

(Fig. 4(d)). Finally, the score plot of PC2 and PC3 grouped samples
according to their composition as shown in Fig. 4(b). Five groups
could be clearly discriminated, one for each type of model sample.
From the loading plot of PC3, it is clear that this component is
mainly related to the sample pigment composition (Fig. 4(e)). The
spectral region weighting this derivative PC corresponds to the
bands of the pigments (between 430 and 200 cm−1).

wileyonlinelibrary.com/journal/jrs Copyright c© 2010 John Wiley & Sons, Ltd. J. Raman Spectrosc. 2010, 41, 1196–1203
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Conclusions

In this study, PCA of first-derivative Raman spectra of pure and
tempera model paint samples has demonstrated its capability
to discriminate samples on the basis of their composition. This
approach provides a novel and complementary method for
discerning among egg yolk temperas used in ancient paintings.
Model samples prepared following Old Master recipes were
analyzed by RM, showing the usefulness of this technique to study
artistic materials like pigments and egg yolk binder. In addition,
laser degradation of the red pigment minium was detected by
multivariate analysis. To validate the analytical approach, the PCA
was performed separately on the derivative spectra of white,
blue and red model samples. In all cases, the approach proved
a powerful tool to discriminate tempera samples on the basis
of their composition, including tempera and pigment. In future
work, it would be very interesting to extend such study to different
binders and attempt the study of real samples.
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