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Corings.(Following Sweedler, 1975) Let A be
a ring. An A—coring is a three-tuple (€, Ag, €g)
which consists of one A—bimodule ¢ and two
homomorphism of A—bimodules

AQIQ:HQ:@A@ E@IQ:HA (1)
such that the diagrams
¢ Ae C®R4€C
Ay ¢§>A¢
Ae®C
C®pC 4 CRpCER Y C
and
¢ “Ceg,c ¢ “Ceg,c
¢ ¢
= A o
C®Ryp A ARy €

commute.



Example. Sweedler’'s canonical coring. Con-
sider B < A a subring.

Bimodule:

n_1

ARp A, ald ®dNd" =ad ®d"a
Comultiplication:

AA@BAHA(@BA@AA@BA

a®a aR1®1Rda

Counity:

€e.: ARXpA—A, axd—ad

Example. Idempotent coring.

Bimodule: | A twosided ideal I such that I2 =T
and 4A/I or A/I, is flat.

Comultiplication: | The canonical isomorphism
I =17 XA 1.

Counity:| The inclusion I C A.




Example. Coring associated to a graded ring.
Consider A = Dgec Ag aring graded by a group
G.

Bimodule:

AG, the free left A—module with basis G

right action: g * ap, = apgh for a; € Ay,

Comultiplication:

A AG—AG® g4 AG

g g®g

Counity:

e: AG—A, g—1

More Examples. Coring associated to a Hopf-
comodule algebra and, more generally, to a
entwining structure between an algebra and a
coalgebra (Brzezinski- Takeuchi)



Comodule categories. Given an A—coring ¢,
the category ME of all right ¢—comodules is
defined as follows.

Objects: | pairs (M, pys), with M4 a module,
and ppy - M — M ®4 € a morphism of A-
modules such that the diagrams

P MK CE PM M & €
M A M A
PM M%A@ = MQE)EQ:
P T
MRC AMRSIERCE M A
A A A A
commute.

Morphisms: |a morphism f : (M, ppr) — (N, pn)
is @ morphism of A—modules f : M — N such
that the following diagram commutes

f

M N

PM PN
fRC
MRJICEC A NRQC

A A




MY is an additive category with inductive lim-
its, but it is not abelian in general (kernels can
fail).

MC the forgetful functor

gl |—ee U has a right adjoint
A —®4C

My

Theorem. The following are equivalent.

(i) M% is abelian and U is left exact;

(i) M% is a Grothendieck category and U is
left exact,

(iii) A€ is flat.

Remark. M?S can be abelian without A€ flat.

Example. Let pBg a bimodule, A = (g l;)

1(;3 g) Then M! ~ Mp but 4TI

is no flat unless rB is.

and I=12=<



Examples of categories of comodules

Descent data.

Coring: | Sweedler’'s canonical coring AQg A for

a (commutative) ring extension ¢ : B — A.

Isomorphism of categories:

MAB®BA L Desc(v))

(a detailed proof in Caenepeel/Militaru/Zhu

Springer LNM)

Graded modules.

Coring:| Coring AG associated to a G—graded

ring A.

Isomorphism of categories:

Hopf modules.

MAG ~ gr — A.

Coring:| Coring A ® H associated to an H-—

comodule algebra A.

Isomorphism of categories:

AQH . aH
M M
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Let € be an A—coring with a group-like g,
T = {a € Alag = ga}
the subring of g—coinvariants of A, and
can . AQr A — €

the canonical map (a @ a’ — aga’). The fol-
lowing definition and theorem were given by T.
Brzezinski, Alg. Repr. Theory, 2002.

Definition. (¢, g) is Galois if can is a (coring)
isomorphism.

Theorem. The following are equivalent.
(i) 4€ is flat, and the functor

— @7 A My — ME

IS an equivalence of categories;
(ii) € is Galois and 1A is faithfully flat.



Some consequences

1. For ¢ : B — A commutative ring extension,
with € = AQp A, and g=1®pg 1, we have the
faithfully flat descent: v is effective if and only
if gA is faithfully flat.

2. For A a G—graded ring, with € = AG,
and g = e, the neutral element of G, we eas-
ily deduce Dade’s characterization of strongly
graded rings: A — gr ~ My, if and only if
AgAp = Ay, for every g,h € G.

3. For A an H—comodule algebra, with € = A®
H and ¢g =1® 1, we have part of Schneider’s
theorem: MH ~ M . if and only if A« C A
is H—Galois and AcoHA is faithfully flat.



Remarks: 1.- For a Galois coring with 1A
faithfully flat, A becomes a finitely generated
projective generator for the category ME.

2.- The functor —®1 A is always left adjoint to
the functor Homg(A, —), this last being isomo-
morphic to the “coinvariants functor’ defined
by g.

3.- In favorable circumstances, the coring can
be reconstructed from one of its representa-
tions (comodules).

T he first two remarks are reminiscent of Mitchell’'s
Theorem. Thus, a new question arises: for
which corings € has M% a finitely generated
projective generator? Could them be recon-
structed from this comodule?

Remark: If P ¢ M% is a small projective gen-

erator, then, by the adjunction U 4 — ®4 ¢,

P4 is small and projective, and, therefore, it is

finitely generated and projective as a module.
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A more general point of view

Let A be an algebra over a commutative ring
K, and denote by add(A,4) the category of
all finitely generated and projective right A—
modules. Let

w:A— add(Ay)

be a functor, where A is a K—linear small cat-
egory. The situation where A is a subcategory
of a Grothendieck category C is not rare (e.g.,
a category of comodules).

The idea is construct from the functor w an
A—coring R(w) in such a way that the objects
in A become right R(w)—comodules.

et us start with the case where A has a sin-
gle object, that is, it is a K—algebra B. The
functor w becomes a B — A—bimodule > such
that X 4 € add(Ay).
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Comatrix Corings

Let g2 4 be a B — A—bimodule; assume > 4
is finitely generated and projective. Consider
>* = Homy(X,A4) canonically as an A — B—
bimodule. Pick {(e],e;)} € Z*x X a dual basis.

Bimodule: | Z*®p X, alp®@u)d = ap @ uad'.

Comultiplication:

SHrRpY -2 Y FRpYAitep

Y QB U i Rpe; Qe Qpu
Counity:
SrRp XA, p @p u—@(u)

Then X 4 becomes a right 2* ® g >—comodule
with the coaction

0y X > XX ®Y (u— ) e;®q€f @pu)
;
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Infinite comatrix corings

Returning to our general functorw : A — add(Ay).
For each P € A consider the ring homomor-
phism

Tp = End4(P) — Sp = End(Py,),

where we are denoting by P the image by w in
add(Ay) of P € A. Thus, every P becomes a
Tp— A—bimodule with P4 finitely generated and
projective. We have the coproduct of comatrix
A—corings

P P*®@r, P

PeA
Every P € A becomes a right comodule over
this A—coring in an obvious way but this does
NOT define in general a functor

A — MPreal @rpP
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In order to remedy this, we have to take the
Tg — Tp—bimodules

Tpg = Homy (P, Q)

into account. In fact, Tpg acts on the left on P
(resp. on the right on Q*) in a straightforward
way. Using these actions, we have

Lemma. The K—submodule J(w) of
P P*@r, P
generated by the set

{e@r tp—pt®T,p © ¢ € Q% p € Pt € Tpg, P,Q € A}

IS a coideal.



Proposition. Define the factor A—coring
Dpeca P" 7, P

J(w)
There is a functor F(w) : A — MW making
the diagram

R(w) =

_A “ add(AA)
§(w)
MAW) My

commutative.

The right fR(w)—comodule structure pp of P €
A is given explicitly as follows: choose a dual
basis {(e4,,eap)} € P* x P, then

op(u) =) eap ®4 (ef, O1p u~+ J(w))

ap
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Now assume A to be a full subcategory of a
K—linear category C such that the coproduct

Ss=@ P

does exist in C, and assume further a functor
Q:C — My which commutes with this co-
product and such that the diagram

A—*—~add(Ay)
C 2 My
Consider the ring T'= Endg(X); then X isa T—

A—bimodule, and we have the A — A—bimodule
> * Q7 2.

Proposition. There is a canonical surjective
map of A—bimodules

r: P PR, P> "@r %
PeA
whose kernel is just the coideal J(w). Hence-
forth, there is a unique structure of A—coring
on >*®p 2 such that I is a homomorphism of
A—corings.
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The map I' has an explicit expression: for P &
A let

tp P—2%2, 7wp:2—P

be resp. the canonical injection and projection.
T hen

Dpeca P* @1, P 3 >* Q@p X

>.poprp Q7 tp(up)
and the comultiplication of Z*®7 % is given by

(pp @1, up) Pea

A(p®@rzT)=

Y. D woprp@ripleap)®aen,mpOripmp(x),
PcF ap
where F is any finite set of objects of A such
that x = Y pcripmp(x). The counit of Z* Q3

is simply the evaluation map ¢ @ x — @©(x).

We have thus the alternative description for
the A—coring R(w) as Z* R X.
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Now assume that A is a small subcategory
of the category of right comodules M over
an A—coring ¢, and that the functor w : A —
add (A 4) is the restriction of the forgetful func-
tor U : M% — My4. We have then a pair of
functors

—®TZ

M ¢
T Homg(X,—) M

where — ®p X is left adjoint to Homg(XZ, —).

Now, using the counit of this adjunction and

Y

the isomorphism ~* = Homg(XZ,¢) we have

Lemma. The map can : >* 7> — € defined
by can(p @7 u) = (¢ ® 4 €)ps(u) is a homomor-
phism of A—corings.

This map is called the canonical map. We
will say that (&, A) is Galois when can is an
iIsomorphism.
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As a consequence of Gabriel-Popescu Theo-
rem, we have

Theorem. (Reconstruction) Assume that M¢
is abelian and it is generated by a set A of right
comodules such that P4 € add(Ay4) for every
Pec A. Then (&, A) is Galois.

Example. Let C be a coalgebra over a field,
and A a generating set of finite dimensional
right C—comodules. Then can gives an iso-
morphism of coalgebras

cC=x* ®TZ
where > = @pcyg P.

Example. If an A—coring € is cosemisimple
(i.,e., MY is a semisimple Grothendieck cate-
gory), then

¢ = ED P* ®TP P
PecA
for A a set of representatives of all simple right
¢C—comodules. Hence, all Tp are here division
rings.



To see the connection of Galois comatrix cor-
ings with the faithfully flat descent, we shall
give a third construction of (infinite) comatrix
corings. Coming back to our category C, con-
sider the ring (without unit in general)

R= & Hom4(Q, P),
PecA

which is a left ideal of T' = Endg(X). Then
> = @pc 4 P* becomes an A — R—bimodule.

Proposition. We have a commutative dia-
gram of surjective homomorphisms of A—bimodules.

-
Dpes P @7, P—1

[

> * ®TZ

Moreover, the kernel of 1 is J(w), and there-
fore “T@p 3 is endowed with a structure of A—
coring such that the former induces a commu-
tative diagram of isomorphisms of A—corings

ZT ®RZ

%(W)i’ZT Rp 2=

lz/

> * K 2
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Put ¢ = MY, for ¢ an A—coring, and let A =
{Ps} be a set of comodules such that every Py
is finitely generated and projective.

We have a pair of functors

_®AZT
My Mp
_®RZ
where M 4 and M p are categories of right uni-
tal modules. It is known that — @p > is left
adjoint to —® 4 1. The counit of this adjunc-

tion is built from the evaluation map

ev 1 Rp — A (pR®pxr— ZSOP(QJP))a

which is a homomorphism of A—bimodules.
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Recall that for N € M% the cotensor product
NOgXT is the equalizer
€y st pPNOAZT

N®yxt N®4CRy st
®A N Ay ¥ACR4

NOgX T

This gives a functor —OeX : M% — Mp. Now,
the adjunction isomorphism

Hom4(M ®p =, N) = Homp(M,N ® 4 =)
gives, by restriction, the isomorphism
Homg(M ®p =, N) & Homp(M, NOgxT)
which shows that in the pair of functors
ME < MR
QR

— ®p X is left adjoint to —Og=T. The counit
of this adjunction at N € M is given by




The Galois comodule structure Theorem, 1

With the collaboration of J. Vercruysse (work
in progress), or, alternatively, with the help of
a result by Abrams and Menini, J.P.A.A., 1996,
we have

Theorem. If Py is finitely generated and pro-
jective for every P € A, the following are equiv-
alent.

(i) (¢, A) is Galois and p% is flat;

(ii) € is flat and A is a generating set of small
(or f.g.) objects for MY;

(iii) A€ is flat and 65 is an isomorphism for
every N ¢ MY,

With A a singleton, this has been formulated
in Brzezinski-Wisbauer's corings book, (2003).
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The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, and
some help from Freyd/Gabriel's Theorem, we
have (Int. Math. Res. Notices, 2004).

Theorem. Let A be asetofright€—comodules.
Consider the ring extension R C S, where R =
®poeaHOMe(Q, P) and S = &pgcaHOMA(Q, P).
T he following statements are equivalent.

(i) Py is f.g. projective for all P € A, (€, A) is
Galois, and r2 is faithfully flat;

(i) € is flat and — @p ~ : Mp — M% is an
equivalence of categories;

(iii) 5€ is flat and A is a generating set of small
projectives for MY :

(iv) o€ is flat, Py is f.g. projective for all P € A,
(¢, A) is Galois, and RS is faithfully flat.
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