Comatrix Corings and Reconstruction*

J. Gómez-Torrecillas

Universidad de Granada

Mathematics Institute-Warwick, July 9th, 2004

*Based on the joint paper "Infinite comatrix corings" with L. El Kaoutit, IMRN 39 (2004), 2017-2037

Corings.(Following Sweedler, 1975) Let A be a ring. An A-coring is a three-tuple ($\mathfrak{C}, \Delta_{\mathfrak{C}}, \epsilon_{\mathfrak{C}}$) which consists of one A-bimodule \mathfrak{C} and two homomorphism of A-bimodules

$$
\begin{equation*}
\Delta_{\mathfrak{C}}: \mathfrak{C} \longrightarrow \mathfrak{C} \otimes_{A} \mathfrak{C} \quad \epsilon_{\mathfrak{C}}: \mathfrak{C} \longrightarrow A \tag{1}
\end{equation*}
$$

such that the diagrams

and

commute.

Example. Sweedler's canonical coring. Consider $B \leq A$ a subring.

Bimodule:

$$
A \otimes_{B} A, \quad a\left(a^{\prime} \otimes a^{\prime \prime}\right) a^{\prime \prime \prime}=a a^{\prime} \otimes a^{\prime \prime} a^{\prime \prime \prime}
$$

Comultiplication:

$$
\begin{gathered}
\Delta: A \otimes_{B} A \longrightarrow A \otimes_{B} A \otimes_{A} A \otimes_{B} A \\
a \otimes a^{\prime} \longmapsto a \otimes 1 \otimes 1 \otimes a^{\prime}
\end{gathered}
$$

Counity:

$$
\epsilon: A \otimes_{B} A \longrightarrow A, \quad a \otimes a^{\prime} \longmapsto a a^{\prime}
$$

Example. Idempotent coring.
Bimodule: A twosided ideal I such that $I^{2}=I$ and ${ }_{A} A / I$ or A / I_{A} is flat.

Comultiplication: The canonical isomorphism $I \cong I \otimes_{A} I$.

Counity: The inclusion $I \subseteq A$.

Example. Coring associated to a graded ring. Consider $A=\bigoplus_{g \in G} A_{g}$ a ring graded by a group G.

Bimodule:

$A G$, the free left A-module with basis G
right action: $g * a_{h}=a_{h} g h$ for $a_{h} \in A_{h}$
Comultiplication:

$$
\begin{gathered}
\Delta: A G \longrightarrow A G \otimes_{A} A G \\
g \longmapsto g \otimes g
\end{gathered}
$$

Counity:

$$
\epsilon: A G \longrightarrow A, \quad g \longmapsto 1
$$

More Examples. Coring associated to a Hopfcomodule algebra and, more generally, to a entwining structure between an algebra and a coalgebra (Brzezinski-Takeuchi)

Comodule categories. Given an A-coring \mathfrak{C}, the category $\mathcal{M}^{\mathfrak{C}}$ of all right \mathfrak{C}-comodules is defined as follows.

Objects: pairs $\left(M, \rho_{M}\right)$, with M_{A} a module, and $\rho_{M}: M \rightarrow M \otimes_{A} \mathfrak{C}$ a morphism of $A-$ modules such that the diagrams

commute.
Morphisms: a morphism $f:\left(M, \rho_{M}\right) \rightarrow\left(N, \rho_{N}\right)$ is a morphism of A-modules $f: M \rightarrow N$ such that the following diagram commutes

$\mathcal{M}^{\mathfrak{C}}$ is an additive category with inductive limits, but it is not abelian in general (kernels can fail).

Theorem. The following are equivalent.
(i) $\mathcal{M}^{\mathfrak{C}}$ is abelian and U is left exact;
(ii) $\mathcal{M}^{\mathfrak{C}}$ is a Grothendieck category and U is left exact;
(iii) ${ }_{A} \mathfrak{C}$ is flat.

Remark. $\mathcal{M}^{\mathfrak{C}}$ can be abelian without ${ }_{A} \mathfrak{C}$ flat.
Example. Let ${ }_{R} B_{S}$ a bimodule, $A=\left(\begin{array}{cc}R & B \\ 0 & S\end{array}\right)$, and $I=I^{2}=\left(\begin{array}{cc}R & B \\ 0 & 0\end{array}\right)$. Then $\mathcal{M}^{I} \sim \mathcal{M}_{R}$ but ${ }_{A} I$ is no flat unless ${ }_{R} B$ is.

Examples of categories of comodules

Descent data.
Coring: Sweedler's canonical coring $A \otimes_{B} A$ for a (commutative) ring extension $\psi: B \rightarrow A$.

Isomorphism of categories: $\mathcal{M}^{A \otimes_{B} A} \sim \operatorname{Desc}(\psi)$ (a detailed proof in Caenepeel/Militaru/Zhu Springer LNM)

Graded modules.

Coring: Coring $A G$ associated to a G-graded ring A.

Isomorphism of categories: $\mathcal{M}^{A G} \sim g r-A$.

Hopf modules.

Coring: Coring $A \otimes H$ associated to an $H-$ comodule algebra A.

Isomorphism of categories: $\mathcal{M}^{A \otimes H} \sim \mathcal{M}_{A}^{H}$

Let \mathfrak{C} be an A-coring with a group-like g,

$$
T=\{a \in A \mid a g=g a\}
$$

the subring of g-coinvariants of A, and

$$
\operatorname{can}: A \otimes_{T} A \rightarrow \mathfrak{C}
$$

the canonical map $\left(a \otimes_{T} a^{\prime} \mapsto a g a^{\prime}\right)$. The following definition and theorem were given by \top. Brzezinski, Alg. Repr. Theory, 2002.

Definition. (\mathfrak{C}, g) is Galois if can is a (coring) isomorphism.

Theorem. The following are equivalent.
(i) $A_{A} \mathfrak{C}$ is flat, and the functor

$$
-\otimes_{T} A: \mathcal{M}_{T} \rightarrow \mathcal{M}^{\mathfrak{C}}
$$

is an equivalence of categories;
(ii) \mathfrak{C} is Galois and ${ }_{T} A$ is faithfully flat.

Some consequences

1. For $\psi: B \rightarrow A$ commutative ring extension, with $\mathfrak{C}=A \otimes_{B} A$, and $g=1 \otimes_{B} 1$, we have the faithfully flat descent: ψ is effective if and only if ${ }_{B} A$ is faithfully flat.
2. For A a G-graded ring, with $\mathfrak{C}=A G$, and $g=e$, the neutral element of G, we easily deduce Dade's characterization of strongly graded rings: $A-g r \sim \mathcal{M}_{A_{e}}$ if and only if $A_{g} A_{h}=A_{g h}$ for every $g, h \in G$.
3. For A an H-comodule algebra, with $\mathfrak{C}=A \otimes$ H and $g=1 \otimes 1$, we have part of Schneider's theorem: $\mathcal{M}_{A}^{H} \sim \mathcal{M}_{A^{c o H}}$ if and only if $A^{c o H} \subseteq A$ is H-Galois and ${ }_{A c o H} A$ is faithfully flat.

Remarks: 1.- For a Galois coring with ${ }_{T} A$ faithfully flat, A becomes a finitely generated projective generator for the category $\mathcal{M}^{\mathfrak{C}}$.
2.- The functor $-\otimes_{T} A$ is always left adjoint to the functor $\operatorname{Hom}_{\mathfrak{C}}(A,-)$, this last being isomomorphic to the "coinvariants functor" defined by g.
3.- In favorable circumstances, the coring can be reconstructed from one of its representations (comodules).

The first two remarks are reminiscent of Mitchell's Theorem. Thus, a new question arises: for which corings \mathfrak{C} has $\mathcal{M}^{\mathfrak{C}}$ a finitely generated projective generator? Could them be reconstructed from this comodule?

Remark: If $P \in \mathcal{M}^{\mathfrak{C}}$ is a small projective generator, then, by the adjunction $U \dashv-\otimes_{A} \mathfrak{C}$, P_{A} is small and projective, and, therefore, it is finitely generated and projective as a module.

A more general point of view

Let A be an algebra over a commutative ring K, and denote by $\operatorname{add}\left(A_{A}\right)$ the category of all finitely generated and projective right A modules. Let

$$
\omega: \mathcal{A} \rightarrow \operatorname{add}\left(A_{A}\right)
$$

be a functor, where \mathcal{A} is a K-linear small category. The situation where \mathcal{A} is a subcategory of a Grothendieck category \mathcal{C} is not rare (e.g., a category of comodules).

The idea is construct from the functor ω an A-coring $\mathfrak{R}(\omega)$ in such a way that the objects in \mathcal{A} become right $\mathfrak{R}(\omega)$-comodules.

Let us start with the case where \mathcal{A} has a single object, that is, it is a K-algebra B. The functor ω becomes a $B-A$-bimodule Σ such that $\Sigma_{A} \in \operatorname{add}\left(A_{A}\right)$.

Comatrix Corings

Let ${ }_{B} \Sigma_{A}$ be a $B-A$-bimodule; assume Σ_{A} is finitely generated and projective. Consider $\Sigma^{*}=\operatorname{Hom}_{A}\left(\Sigma, A_{A}\right)$ canonically as an $A-B-$ bimodule. Pick $\left\{\left(e_{i}^{*}, e_{i}\right)\right\} \subseteq \Sigma^{*} \times \Sigma$ a dual basis.

Bimodule: $\Sigma^{*} \otimes_{B} \Sigma, a(\varphi \otimes u) a^{\prime}=a \varphi \otimes u a^{\prime}$.
Comultiplication:

$$
\begin{gathered}
\Sigma^{*} \otimes_{B} \Sigma \xrightarrow{\longrightarrow} \Sigma^{*} \otimes_{B} \Sigma \otimes_{A} \Sigma^{*} \otimes_{B} \Sigma \\
\varphi \otimes_{B} u \longmapsto \sum_{i} \varphi \otimes_{B} e_{i} \otimes_{A} e_{i}^{*} \otimes_{B} u
\end{gathered}
$$

Counity:

$$
\Sigma^{*} \otimes_{B} \Sigma \xrightarrow{e v} A, \quad \varphi \otimes_{B} u \longmapsto \varphi(u)
$$

Then Σ_{A} becomes a right $\Sigma^{*} \otimes_{B} \Sigma$-comodule with the coaction

$$
\varrho_{\Sigma}: \Sigma \rightarrow \Sigma \otimes_{A} \Sigma^{*} \otimes_{B} \Sigma \quad\left(u \mapsto \sum_{i} e_{i} \otimes_{A} e_{i}^{*} \otimes_{B} u\right)
$$

Infinite comatrix corings

Returning to our general functor $\omega: \mathcal{A} \rightarrow \operatorname{add}\left(A_{A}\right)$. For each $P \in \mathcal{A}$ consider the ring homomorphism

$$
T_{P}=\operatorname{End}_{\mathcal{A}}(P) \rightarrow S_{P}=\operatorname{End}\left(P_{A}\right)
$$

where we are denoting by P the image by ω in $\operatorname{add}\left(A_{A}\right)$ of $P \in \mathcal{A}$. Thus, every P becomes a $T_{P}-A$-bimodule with P_{A} finitely generated and projective. We have the coproduct of comatrix A-corings

$$
\bigoplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P
$$

Every $P \in \mathcal{A}$ becomes a right comodule over this A-coring in an obvious way but this does NOT define in general a functor

$$
\mathcal{A} \rightarrow \mathcal{M}^{\oplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P}
$$

In order to remedy this, we have to take the $T_{Q}-T_{P}$-bimodules

$$
T_{P Q}=\operatorname{Hom}_{\mathcal{A}}(P, Q)
$$

into account. In fact, $T_{P Q}$ acts on the left on P (resp. on the right on Q^{*}) in a straightforward way. Using these actions, we have

Lemma. The K-submodule $\mathfrak{J}(\omega)$ of

$$
\bigoplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P
$$

generated by the set
$\left\{\varphi \otimes_{T_{Q}} t p-\varphi t \otimes_{T_{P}} p: \varphi \in Q^{*}, p \in P, t \in T_{P Q}, P, Q \in \mathcal{A}\right\}$ is a coideal.

Proposition. Define the factor A-coring

$$
\mathfrak{R}(\omega)=\frac{\oplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P}{\mathfrak{J}(\omega)}
$$

There is a functor $\mathfrak{F}(\omega): \mathcal{A} \rightarrow \mathcal{M}^{\mathfrak{R}(\omega)}$ making the diagram

$$
\begin{aligned}
& \mathcal{A} \stackrel{\omega}{\longrightarrow} \operatorname{add}\left(A_{A}\right) \\
& \mathfrak{F}(\omega) \\
& \mathcal{M}^{\mathfrak{R}(\omega)} \underset{U}{ } \mathcal{M}_{A}
\end{aligned}
$$

commutative.

The right $\mathfrak{R}(\omega)$-comodule structure ϱ_{P} of $P \in$ \mathcal{A} is given explicitly as follows: choose a dual basis $\left\{\left(e_{\alpha_{P}}^{*}, e_{\alpha_{P}}\right)\right\} \subseteq P^{*} \times P$, then

$$
\varrho_{P}(u)=\sum_{\alpha_{P}} e_{\alpha_{P}} \otimes_{A}\left(e_{\alpha_{P}}^{*} \otimes_{T_{P}} u+\mathfrak{J}(\omega)\right)
$$

Now assume \mathcal{A} to be a full subcategory of a K-linear category \mathcal{C} such that the coproduct

$$
\Sigma=\bigoplus_{P \in \mathcal{A}} P
$$

does exist in \mathcal{C}, and assume further a functor $\Omega: \mathcal{C} \rightarrow \mathcal{M}_{A}$ which commutes with this coproduct and such that the diagram

Consider the ring $T=\operatorname{End}_{\mathcal{C}}(\Sigma)$; then Σ is a $T-$ A-bimodule, and we have the $A-A$-bimodule $\Sigma^{*} \otimes_{T} \Sigma$.

Proposition. There is a canonical surjective map of A-bimodules

$$
\Gamma: \bigoplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P \rightarrow \Sigma^{*} \otimes_{T} \Sigma
$$

whose kernel is just the coideal $\mathfrak{J}(\omega)$. Henceforth, there is a unique structure of A-coring on $\Sigma^{*} \otimes_{T} \Sigma$ such that Γ is a homomorphism of A-corings.

The map Γ has an explicit expression: for $P \in$ \mathcal{A} let

$$
\iota_{P}: P \rightarrow \Sigma, \quad \pi_{P}: \Sigma \rightarrow P
$$

be resp. the canonical injection and projection. Then

$$
\begin{aligned}
& \oplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P \longrightarrow \Sigma^{*} \otimes_{T} \Sigma \\
& \left(\varphi_{P} \otimes_{T_{P}} u_{P}\right)_{P \in \mathcal{A}} \longmapsto \sum_{P} \varphi_{P} \pi_{P} \otimes_{T} \iota_{P}\left(u_{P}\right)
\end{aligned}
$$

and the comultiplication of $\Sigma^{*} \otimes_{T} \Sigma$ is given by

$$
\begin{aligned}
& \Delta\left(\varphi \otimes_{T} x\right)= \\
& \sum_{P \in \mathcal{F}} \sum_{\alpha_{P}} \varphi^{\prime} \iota_{P} \pi_{P} \otimes_{T} \iota_{P}\left(e_{\alpha_{P}}\right) \otimes_{A} e_{\alpha_{P}}^{*} \pi_{P} \otimes_{T} \iota_{P} \pi_{P}(x)
\end{aligned}
$$

where \mathcal{F} is any finite set of objects of \mathcal{A} such that $x=\sum_{P \in \mathcal{F}} \iota_{P} \pi_{P}(x)$. The counit of $\Sigma^{*} \otimes_{T} \Sigma$ is simply the evaluation map $\varphi \otimes_{T} x \mapsto \varphi(x)$.

We have thus the alternative description for the A-coring $\mathfrak{R}(\omega)$ as $\Sigma^{*} \otimes_{T} \Sigma$.

Now assume that \mathcal{A} is a small subcategory of the category of right comodules $\mathcal{M}^{\mathfrak{C}}$ over an A-coring \mathfrak{C}, and that the functor $\omega: \mathcal{A} \rightarrow$ $\operatorname{add}\left(A_{A}\right)$ is the restriction of the forgetful functor $U: \mathcal{M}^{\mathfrak{C}} \rightarrow \mathcal{M}_{A}$. We have then a pair of functors

$$
\mathcal{M}_{T} \underset{\operatorname{Hom}_{\mathfrak{C}}(\Sigma,-)}{-\otimes_{T} \Sigma} \mathcal{M}^{\mathfrak{C}}
$$

where $-\otimes_{T} \Sigma$ is left adjoint to $\operatorname{Hom}_{\mathfrak{C}}(\Sigma,-)$.
Now, using the counit of this adjunction and the isomorphism $\Sigma^{*} \cong \operatorname{Hom}_{\mathfrak{C}}(\Sigma, \mathfrak{C})$ we have

Lemma. The map can : $\Sigma^{*} \otimes_{T} \Sigma \rightarrow \mathfrak{C}$ defined by $\operatorname{can}\left(\varphi \otimes_{T} u\right)=\left(\varphi \otimes_{A} \mathfrak{C}\right) \rho_{\Sigma}(u)$ is a homomorphism of A-corings.

This map is called the canonical map. We will say that $(\mathfrak{C}, \mathcal{A})$ is Galois when can is an isomorphism.

As a consequence of Gabriel-Popescu Theorem, we have

Theorem. (Reconstruction) Assume that $\mathcal{M} \mathfrak{C}^{\mathfrak{C}}$ is abelian and it is generated by a set \mathcal{A} of right comodules such that $P_{A} \in \operatorname{add}\left(A_{A}\right)$ for every $P \in \mathcal{A}$. Then $(\mathfrak{C}, \mathcal{A})$ is Galois.

Example. Let C be a coalgebra over a field, and \mathcal{A} a generating set of finite dimensional right C-comodules. Then can gives an isomorphism of coalgebras

$$
C \cong \Sigma^{*} \otimes_{T} \Sigma
$$

where $\Sigma=\oplus_{P \in \mathcal{A}} P$.
Example. If an A-coring \mathfrak{C} is cosemisimple (i.e., $\mathcal{M}^{\mathfrak{C}}$ is a semisimple Grothendieck category), then

$$
\mathfrak{C} \cong \bigoplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P
$$

for \mathcal{A} a set of representatives of all simple right \mathfrak{C}-comodules. Hence, all T_{P} are here division rings.

To see the connection of Galois comatrix corings with the faithfully flat descent, we shall give a third construction of (infinite) comatrix corings. Coming back to our category \mathcal{C}, consider the ring (without unit in general)

$$
R=\bigoplus_{P \in \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(Q, P)
$$

which is a left ideal of $T=\operatorname{End}_{\mathcal{C}}(\Sigma)$. Then $\Sigma^{\dagger}=\bigoplus_{P \in \mathcal{A}} P^{*}$ becomes an $A-R$-bimodule.

Proposition. We have a commutative diagram of surjective homomorphisms of A-bimodules.

$$
\begin{aligned}
& \oplus_{P \in \mathcal{A}} P^{*} \otimes_{T_{P}} P \xrightarrow{\Gamma_{1}} \Sigma^{\dagger} \otimes_{R} \Sigma \\
& \Sigma^{*} \otimes_{T} \Sigma \\
& \Gamma_{2}
\end{aligned}
$$

Moreover, the kernel of Γ_{1} is $\mathfrak{J}(\omega)$, and therefore $\Sigma^{\dagger} \otimes_{R} \Sigma$ is endowed with a structure of A coring such that the former induces a commutative diagram of isomorphisms of A-corings

Put $\mathcal{C}=\mathcal{M}^{\mathfrak{C}}$, for \mathfrak{C} an A-coring, and let $\mathcal{A}=$ $\left\{P_{\mathfrak{C}}\right\}$ be a set of comodules such that every P_{A} is finitely generated and projective.

We have a pair of functors

$$
\mathcal{M}_{A} \stackrel{-\otimes_{A^{\Sigma}}{ }^{\dagger}}{-\otimes_{R} \Sigma} \mathcal{M}_{R}
$$

where \mathcal{M}_{A} and \mathcal{M}_{R} are categories of right unital modules. It is known that $-\otimes_{R} \Sigma$ is left adjoint to $-\otimes_{A} \Sigma^{\dagger}$. The counit of this adjunction is built from the evaluation map

$$
e v: \Sigma^{\dagger} \otimes_{R} \Sigma \rightarrow A \quad\left(\varphi \otimes_{R} x \mapsto \sum \varphi_{P}\left(x_{P}\right)\right),
$$

which is a homomorphism of A-bimodules.

Recall that for $N \in \mathcal{M}^{\mathfrak{C}}$ the cotensor product $N \square_{\mathfrak{C}^{\Sigma}}{ }^{\dagger}$ is the equalizer

$$
N \square_{\mathfrak{C}^{\Sigma}} \Sigma^{\dagger} \xrightarrow{e q_{N, \Sigma} \dagger} N \otimes_{A} \Sigma^{\dagger} \xrightarrow{\frac{\rho_{N} \otimes_{A} \Sigma^{\dagger}}{N \otimes_{A} \Sigma^{\dagger}}} N \otimes_{A} \mathfrak{C} \otimes_{A} \Sigma^{\dagger}
$$

This gives a functor $-\square_{\mathfrak{C}} \Sigma^{\dagger}: \mathcal{M}^{\mathfrak{C}} \rightarrow \mathcal{M}_{R}$. Now, the adjunction isomorphism

$$
\operatorname{Hom}_{A}\left(M \otimes_{R} \Sigma, N\right) \cong \operatorname{Hom}_{R}\left(M, N \otimes_{A} \Sigma^{\dagger}\right)
$$

gives, by restriction, the isomorphism

$$
\operatorname{Hom}_{\mathfrak{C}}\left(M \otimes_{R} \Sigma, N\right) \cong \operatorname{Hom}_{R}\left(M, N \square_{\mathfrak{C}^{\prime}} \Sigma^{\dagger}\right)
$$

which shows that in the pair of functors

$$
\mathcal{M}^{\mathfrak{C}} \stackrel{-\square_{\mathfrak{C}^{\Sigma} \Sigma^{\dagger}}^{\stackrel{-\otimes_{R} \Sigma}{\rightleftarrows}}}{\mathcal{M}_{R}}
$$

$-\otimes_{R} \Sigma$ is left adjoint to $-\square_{\mathfrak{C}^{\Sigma}} \Sigma^{\dagger}$. The counit of this adjunction at $N \in \mathcal{M}^{\mathfrak{C}}$ is given by

$$
\begin{gathered}
e q_{N, \Sigma \Sigma^{\dagger} \otimes_{R} \Sigma^{N}} \otimes_{A} \Sigma^{\dagger} \otimes_{R} \Sigma \underbrace{}_{N \otimes_{A} e v} \\
\left(N \square_{\left.\mathfrak{C}^{\dagger} \Sigma^{\dagger}\right) \otimes_{R} \Sigma} \delta_{N}\right.
\end{gathered}
$$

The Galois comodule structure Theorem, I

With the collaboration of J. Vercruysse (work in progress), or, alternatively, with the help of a result by Abrams and Menini, J.P.A.A., 1996, we have

Theorem. If P_{A} is finitely generated and projective for every $P \in \mathcal{A}$, the following are equivalent.
(i) $(\mathfrak{C}, \mathcal{A})$ is Galois and ${ }_{R} \Sigma$ is flat;
(ii) ${ }_{A} \mathfrak{C}$ is flat and \mathcal{A} is a generating set of small (or f.g.) objects for $\mathcal{M}^{\mathfrak{C}}$;
(iii) ${ }_{A} \mathfrak{C}$ is flat and δ_{N} is an isomorphism for every $N \in \mathcal{M}^{\mathfrak{C}}$.

With \mathcal{A} a singleton, this has been formulated in Brzezinski-Wisbauer's corings book, (2003).

The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, and some help from Freyd/Gabriel's Theorem, we have (Int. Math. Res. Notices, 2004).

Theorem. Let \mathcal{A} be a set of right \mathfrak{C}-comodules. Consider the ring extension $R \subseteq S$, where $R=$ $\oplus_{P, Q \in \mathcal{A}} \operatorname{Hom}_{\mathfrak{C}}(Q, P)$ and $S=\oplus_{P, Q \in \mathcal{A}} \operatorname{Hom}_{A}(Q, P)$. The following statements are equivalent.
(i) P_{A} is $f . g$. projective for all $P \in \mathcal{A},(\mathfrak{C}, \mathcal{A})$ is Galois, and ${ }_{R} \Sigma$ is faithfully flat;
(ii) ${ }_{A} \mathfrak{C}^{\mathfrak{C}}$ is flat and $-\otimes_{R} \Sigma: \mathcal{M}_{R} \rightarrow \mathcal{M}^{\mathfrak{C}}$ is an equivalence of categories;
(iii) ${ }_{A} \mathfrak{C}$ is flat and \mathcal{A} is a generating set of small projectives for $\mathcal{M}^{\mathfrak{C}}$;
(iv) ${ }_{A} \mathfrak{C}$ is flat, P_{A} is f.g. projective for all $P \in \mathcal{A}$, $(\mathfrak{C}, \mathcal{A})$ is Galois, and ${ }_{R} S$ is faithfully flat.

