Comatrix Corings and Reconstruction*

J. Gómez-Torrecillas Universidad de Granada

Mathematics Institute-Warwick, July 9th, 2004

*Based on the joint paper "Infinite comatrix corings" with **L. El Kaoutit**, IMRN 39 (2004), 2017-2037

Corings.(Following *Sweedler*, 1975) Let A be a ring. An A-coring is a three-tuple $(\mathfrak{C}, \Delta_{\mathfrak{C}}, \epsilon_{\mathfrak{C}})$ which consists of one A-bimodule \mathfrak{C} and two homomorphism of A-bimodules

$$\Delta_{\mathfrak{C}}: \mathfrak{C} \longrightarrow \mathfrak{C} \otimes_A \mathfrak{C} \quad \epsilon_{\mathfrak{C}}: \mathfrak{C} \longrightarrow A$$
 (1)

such that the diagrams

$$\begin{array}{c|c}
\mathfrak{C} & \xrightarrow{\Delta_{\mathfrak{C}}} \mathfrak{C} \otimes_{A} \mathfrak{C} \\
 & \xrightarrow{\Delta_{\mathfrak{C}}} & \downarrow^{\mathfrak{C} \otimes \Delta_{\mathfrak{C}}} \\
\mathfrak{C} \otimes_{A} \mathfrak{C} & \xrightarrow{A} \mathfrak{C} \otimes_{A} \mathfrak{C} \otimes_{A} \mathfrak{C}
\end{array}$$

and

commute.

Example. Sweedler's canonical coring. Consider $B \leq A$ a subring.

Bimodule:

$$A \otimes_B A$$
, $a(a' \otimes a'')a''' = aa' \otimes a''a'''$

Comultiplication:

$$\Delta: A \otimes_B A \longrightarrow A \otimes_B A \otimes_A A \otimes_B A$$

$$a\otimes a' \longrightarrow a\otimes 1\otimes 1\otimes a'$$

Counity:

$$\epsilon: A \otimes_B A \longrightarrow A, \quad a \otimes a' \longmapsto aa'$$

Example. Idempotent coring.

Bimodule: A twosided ideal I such that $I^2 = I$ and ${}_AA/I$ or A/I_A is flat.

Comultiplication: The canonical isomorphism $I \cong I \otimes_A I$.

Counity: The inclusion $I \subseteq A$.

Example. Coring associated to a graded ring. Consider $A = \bigoplus_{g \in G} A_g$ a ring graded by a group G.

Bimodule:

AG, the free *left* A-module with basis G

right action:
$$g * a_h = a_h gh$$
 for $a_h \in A_h$

Comultiplication:

$$\Delta : AG \longrightarrow AG \otimes_A AG$$

$$g \longmapsto g \otimes g$$

Counity:

$$\epsilon: AG \longrightarrow A, \quad g \longmapsto \mathbf{1}$$

More Examples. Coring associated to a Hopf-comodule algebra and, more generally, to a entwining structure between an algebra and a coalgebra (Brzezinski-Takeuchi)

Comodule categories. Given an A-coring \mathfrak{C} , the category $\mathcal{M}^{\mathfrak{C}}$ of all right \mathfrak{C} -comodules is defined as follows.

Objects: pairs (M, ρ_M) , with M_A a module, and ρ_M : $M \to M \otimes_A \mathfrak{C}$ a morphism of A- modules such that the diagrams

commute.

Morphisms: a morphism $f:(M,\rho_M)\to (N,\rho_N)$ is a morphism of A-modules $f:M\to N$ such that the following diagram commutes

$$M \xrightarrow{f} N$$
 $\downarrow^{
ho_M} \qquad \downarrow^{
ho_N}$
 $M \otimes \mathfrak{C} \xrightarrow{A} N \otimes \mathfrak{C}$
 $A \otimes \mathfrak{C} \xrightarrow{A} A$

 $\mathcal{M}^{\mathfrak{C}}$ is an additive category with inductive limits, but it is not abelian in general (kernels can fail).

the forgetful functor
$$U \ \ | \ \ -\otimes \mathfrak{C} \ \ U \ \ \text{has a right adjoint} \ \ -\otimes_A \mathfrak{C} \ \ \mathcal{M}_A$$

Theorem. The following are equivalent.

- (i) $\mathcal{M}^{\mathfrak{C}}$ is abelian and U is left exact;
- (ii) $\mathcal{M}^{\mathfrak{C}}$ is a Grothendieck category and U is left exact;
- (iii) $_A\mathfrak{C}$ is flat.

Remark. $\mathcal{M}^{\mathfrak{C}}$ can be abelian without ${}_{A}\mathfrak{C}$ flat.

Example. Let $_RB_S$ a bimodule, $A=\begin{pmatrix} R & B \\ 0 & S \end{pmatrix}$, and $I=I^2=\begin{pmatrix} R & B \\ 0 & 0 \end{pmatrix}$. Then $\mathcal{M}^I\sim\mathcal{M}_R$ but $_AI$ is no flat unless $_RB$ is.

Examples of categories of comodules

Descent data.

Coring: Sweedler's canonical coring $A \otimes_B A$ for a (commutative) ring extension $\psi: B \to A$.

Isomorphism of categories: $\mathcal{M}^{A\otimes_B A} \sim Desc(\psi)$ (a detailed proof in Caenepeel/Militaru/Zhu Springer LNM)

Graded modules.

Coring: Coring AG associated to a G-graded ring A.

Isomorphism of categories: $\mathcal{M}^{AG} \sim gr - A$.

Hopf modules.

Coring: Coring $A \otimes H$ associated to an H- comodule algebra A.

Isomorphism of categories: $\mathcal{M}^{A\otimes H}\sim\mathcal{M}_A^H$

Let $\mathfrak C$ be an A-coring with a group-like g,

$$T = \{a \in A | ag = ga\}$$

the subring of g-coinvariants of A, and

$$can: A \otimes_T A \to \mathfrak{C}$$

the canonical map $(a \otimes_T a' \mapsto aga')$. The following definition and theorem were given by T. Brzezinski, Alg. Repr. Theory, 2002.

Definition. (\mathfrak{C}, g) is Galois if can is a (coring) isomorphism.

Theorem. The following are equivalent. (i) $_{A}\mathfrak{C}$ is flat, and the functor

$$-\otimes_T A: \mathcal{M}_T \to \mathcal{M}^{\mathfrak{C}}$$

is an equivalence of categories; (ii) $\mathfrak C$ is Galois and $_TA$ is faithfully flat.

Some consequences

- 1. For $\psi: B \to A$ commutative ring extension, with $\mathfrak{C} = A \otimes_B A$, and $g = 1 \otimes_B 1$, we have the faithfully flat descent: ψ is *effective* if and only if ${}_BA$ is faithfully flat.
- 2. For A a G-graded ring, with $\mathfrak{C} = AG$, and g = e, the neutral element of G, we easily deduce **Dade**'s characterization of strongly graded rings: $A gr \sim \mathcal{M}_{A_e}$ if and only if $A_g A_h = A_{gh}$ for every $g, h \in G$.
- 3. For A an H-comodule algebra, with $\mathfrak{C}=A\otimes H$ and $g=1\otimes 1$, we have part of **Schneider**'s theorem: $\mathcal{M}_A^H\sim \mathcal{M}_{A^{coH}}$ if and only if $A^{coH}\subseteq A$ is H-Galois and $_{A^{coH}}A$ is faithfully flat.

Remarks: 1.- For a Galois coring with $_TA$ faithfully flat, A becomes a finitely generated projective generator for the category $\mathcal{M}^{\mathfrak{C}}$.

- 2.- The functor $-\otimes_T A$ is always left adjoint to the functor $\operatorname{Hom}_{\mathfrak C}(A,-)$, this last being isomomorphic to the "coinvariants functor" defined by g.
- 3.- In favorable circumstances, the coring can be reconstructed from one of its representations (comodules).

The first two remarks are reminiscent of Mitchell's Theorem. Thus, a new question arises: for which corings $\mathfrak C$ has $\mathcal M^{\mathfrak C}$ a finitely generated projective generator? Could them be reconstructed from this comodule?

Remark: If $P \in \mathcal{M}^{\mathfrak{C}}$ is a small projective generator, then, by the adjunction $U \dashv - \otimes_A \mathfrak{C}$, P_A is small and projective, and, therefore, it is finitely generated and projective as a module.

A more general point of view

Let A be an algebra over a commutative ring K, and denote by $\operatorname{add}(A_A)$ the category of all finitely generated and projective right A-modules. Let

$$\omega:\mathcal{A} o\mathsf{add}(A_A)$$

be a functor, where \mathcal{A} is a K-linear small category. The situation where \mathcal{A} is a subcategory of a Grothendieck category \mathcal{C} is not rare (e.g., a category of comodules).

The idea is construct from the functor ω an A-coring $\Re(\omega)$ in such a way that the objects in A become right $\Re(\omega)$ -comodules.

Let us start with the case where \mathcal{A} has a single object, that is, it is a K-algebra B. The functor ω becomes a B-A-bimodule Σ such that $\Sigma_A \in \operatorname{add}(A_A)$.

Comatrix Corings

Let ${}_B\Sigma_A$ be a B-A-bimodule; assume Σ_A is finitely generated and projective. Consider $\Sigma^* = \operatorname{Hom}_A(\Sigma, A_A)$ canonically as an A-B-bimodule. Pick $\{(e_i^*, e_i)\} \subseteq \Sigma^* \times \Sigma$ a dual basis.

Bimodule:
$$\Sigma^* \otimes_B \Sigma$$
, $a(\varphi \otimes u)a' = a\varphi \otimes ua'$.

Comultiplication:

$$\Sigma^* \otimes_B \Sigma \xrightarrow{\Delta} \Sigma^* \otimes_B \Sigma \otimes_A \Sigma^* \otimes_B \Sigma$$

$$\varphi \otimes_B u \longmapsto \sum_i \varphi \otimes_B e_i \otimes_A e_i^* \otimes_B u$$

Counity:

$$\Sigma^* \otimes_B \Sigma \xrightarrow{ev} A, \qquad \varphi \otimes_B u \longrightarrow \varphi(u)$$

Then Σ_A becomes a right $\Sigma^* \otimes_B \Sigma$ —comodule with the coaction

$$\varrho_{\Sigma} : \Sigma \to \Sigma \otimes_A \Sigma^* \otimes_B \Sigma \quad (u \mapsto \sum_i e_i \otimes_A e_i^* \otimes_B u)$$

Infinite comatrix corings

Returning to our general functor $\omega: \mathcal{A} \to \operatorname{add}(A_A)$. For each $P \in \mathcal{A}$ consider the ring homomorphism

$$T_P = \operatorname{End}_{\mathcal{A}}(P) \to S_P = \operatorname{End}(P_A),$$

where we are denoting by P the image by ω in $\mathrm{add}(A_A)$ of $P \in \mathcal{A}$. Thus, every P becomes a $T_P - A$ -bimodule with P_A finitely generated and projective. We have the coproduct of comatrix A-corings

$$\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P$$

Every $P \in \mathcal{A}$ becomes a right comodule over this A-coring in an obvious way but this does NOT define in general a functor

$$\mathcal{A} \to \mathcal{M}^{\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P}$$

.

In order to remedy this, we have to take the $T_Q-T_P\!\!-\!\!{\rm bimodules}$

$$T_{PQ} = \operatorname{Hom}_{\mathcal{A}}(P,Q)$$

into account. In fact, T_{PQ} acts on the left on P (resp. on the right on Q^*) in a straightforward way. Using these actions, we have

Lemma. The K-submodule $\mathfrak{J}(\omega)$ of

$$\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P$$

generated by the set

 $\{\varphi\otimes_{T_Q}tp-\varphi t\otimes_{T_P}p\ :\ \varphi\in Q^*, p\in P, t\in T_{PQ}, P, Q\in \mathcal{A}\}$ is a coideal.

Proposition. Define the factor A-coring

$$\Re(\omega) = \frac{\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P}{\Im(\omega)}$$

There is a functor $\mathfrak{F}(\omega)$: $\mathcal{A} \to \mathcal{M}^{\mathfrak{R}(\omega)}$ making the diagram

commutative.

The right $\Re(\omega)$ -comodule structure ϱ_P of $P \in \mathcal{A}$ is given explicitly as follows: choose a dual basis $\{(e_{\alpha_P}^*, e_{\alpha_P})\} \subseteq P^* \times P$, then

$$\varrho_P(u) = \sum_{\alpha_P} e_{\alpha_P} \otimes_A (e_{\alpha_P}^* \otimes_{T_P} u + \mathfrak{J}(\omega))$$

Now assume $\mathcal A$ to be a full subcategory of a K-linear category $\mathcal C$ such that the coproduct

$$\Sigma = \bigoplus_{P \in \mathcal{A}} P$$

does exist in \mathcal{C} , and assume further a functor $\Omega:\mathcal{C}\to\mathcal{M}_A$ which commutes with this coproduct and such that the diagram

$$A \xrightarrow{\omega} \operatorname{add}(A_A)$$
 $\downarrow \qquad \qquad \downarrow$
 $C \xrightarrow{\Omega} \mathcal{M}_A$

Consider the ring $T = \operatorname{End}_{\mathcal{C}}(\Sigma)$; then Σ is a T-A-bimodule, and we have the A-A-bimodule $\Sigma^* \otimes_T \Sigma$.

Proposition. There is a canonical surjective map of A-bimodules

$$\Gamma: \bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P \to \Sigma^* \otimes_T \Sigma$$

whose kernel is just the coideal $\mathfrak{J}(\omega)$. Henceforth, there is a unique structure of A-coring on $\Sigma^* \otimes_T \Sigma$ such that Γ is a homomorphism of A-corings.

The map Γ has an explicit expression: for $P \in \mathcal{A}$ let

$$\iota_P: P \to \Sigma, \quad \pi_P: \Sigma \to P$$

be resp. the canonical injection and projection. Then

$$\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P \xrightarrow{\qquad \qquad \Gamma \qquad } \Sigma^* \otimes_T \Sigma$$

$$(\varphi_P \otimes_{T_P} u_P)_{P \in \mathcal{A}} \longrightarrow \sum_P \varphi_P \pi_P \otimes_T \iota_P(u_P)$$

and the comultiplication of $\Sigma^* \otimes_T \Sigma$ is given by

$$\Delta(\varphi \otimes_T x) = \sum_{P \in \mathcal{F}} \sum_{\alpha_P} \varphi \iota_P \pi_P \otimes_T \iota_P(e_{\alpha_P}) \otimes_A e_{\alpha_P}^* \pi_P \otimes_T \iota_P \pi_P(x),$$

where \mathcal{F} is any finite set of objects of \mathcal{A} such that $x = \sum_{P \in \mathcal{F}} \iota_P \pi_P(x)$. The counit of $\Sigma^* \otimes_T \Sigma$ is simply the evaluation map $\varphi \otimes_T x \mapsto \varphi(x)$.

We have thus the alternative description for the A-coring $\Re(\omega)$ as $\Sigma^* \otimes_T \Sigma$.

Now assume that \mathcal{A} is a small subcategory of the category of right comodules $\mathcal{M}^{\mathfrak{C}}$ over an A-coring \mathfrak{C} , and that the functor $\omega: \mathcal{A} \to \operatorname{add}(A_A)$ is the restriction of the forgetful functor $U: \mathcal{M}^{\mathfrak{C}} \to \mathcal{M}_A$. We have then a pair of functors

$$\mathcal{M}_T \overset{-\otimes_T \Sigma}{\overset{-\otimes_T \Sigma}{\leftarrow}} \mathcal{M}^{\mathfrak{C}}$$

where $-\otimes_T \Sigma$ is left adjoint to $\operatorname{Hom}_{\mathfrak{C}}(\Sigma, -)$.

Now, using the counit of this adjunction and the isomorphism $\Sigma^* \cong \operatorname{Hom}_{\mathfrak{C}}(\Sigma,\mathfrak{C})$ we have

Lemma. The map $can : \Sigma^* \otimes_T \Sigma \to \mathfrak{C}$ defined by $can(\varphi \otimes_T u) = (\varphi \otimes_A \mathfrak{C})\rho_{\Sigma}(u)$ is a homomorphism of A-corings.

This map is called the *canonical map*. We will say that $(\mathfrak{C}, \mathcal{A})$ is *Galois* when can is an isomorphism.

As a consequence of Gabriel-Popescu Theorem, we have

Theorem. (Reconstruction) Assume that $\mathcal{M}^{\mathfrak{C}}$ is abelian and it is generated by a set \mathcal{A} of right comodules such that $P_A \in \operatorname{add}(A_A)$ for every $P \in \mathcal{A}$. Then $(\mathfrak{C}, \mathcal{A})$ is Galois.

Example. Let C be a coalgebra over a field, and \mathcal{A} a generating set of finite dimensional right C-comodules. Then can gives an isomorphism of coalgebras

$$C \cong \Sigma^* \otimes_T \Sigma$$

where $\Sigma = \bigoplus_{P \in \mathcal{A}} P$.

Example. If an A-coring $\mathfrak C$ is cosemisimple (i.e., $\mathcal M^{\mathfrak C}$ is a semisimple Grothendieck category), then

$$\mathfrak{C} \cong \bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P$$

for A a set of representatives of all simple right \mathfrak{C} -comodules. Hence, all T_P are here division rings.

To see the connection of Galois comatrix corings with the faithfully flat descent, we shall give a third construction of (infinite) comatrix corings. Coming back to our category \mathcal{C} , consider the ring (without unit in general)

$$R = \bigoplus_{P \in \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(Q, P),$$

which is a left ideal of $T=\operatorname{End}_{\mathcal{C}}(\Sigma)$. Then $\Sigma^\dagger=\bigoplus_{P\in\mathcal{A}}P^*$ becomes an A-R-bimodule.

Proposition. We have a commutative diagram of surjective homomorphisms of A-bimodules.

$$\bigoplus_{P \in \mathcal{A}} P^* \otimes_{T_P} P \xrightarrow{\Gamma_1} \Sigma^{\dagger} \otimes_R \Sigma$$

$$\downarrow^{\Gamma}$$

$$\Sigma^* \otimes_T \Sigma$$

Moreover, the kernel of Γ_1 is $\mathfrak{J}(\omega)$, and therefore $\Sigma^{\dagger} \otimes_R \Sigma$ is endowed with a structure of A-coring such that the former induces a commutative diagram of isomorphisms of A-corings

$$\mathfrak{R}(\omega) \xrightarrow{\simeq} \Sigma^{\dagger} \otimes_{R} \Sigma$$
 $\downarrow^{\simeq} \qquad \qquad \simeq$
 $\Sigma^{*} \otimes_{T} \Sigma^{\frown}$

Put $\mathcal{C} = \mathcal{M}^{\mathfrak{C}}$, for \mathfrak{C} an A-coring, and let $\mathcal{A} = \{P_{\mathfrak{C}}\}$ be a set of comodules such that every P_A is finitely generated and projective.

We have a pair of functors

$$\mathcal{M}_A \overset{-\otimes_A \Sigma^{\dagger}}{\longleftarrow} \mathcal{M}_R$$

where \mathcal{M}_A and \mathcal{M}_R are categories of right unital modules. It is known that $-\otimes_R \Sigma$ is left adjoint to $-\otimes_A \Sigma^\dagger$. The counit of this adjunction is built from the evaluation map

$$ev: \Sigma^{\dagger} \otimes_R \Sigma \to A \quad (\varphi \otimes_R x \mapsto \sum \varphi_P(x_P)),$$

which is a homomorphism of A-bimodules.

Recall that for $N \in \mathcal{M}^{\mathfrak{C}}$ the cotensor product $N \square_{\mathfrak{C}} \Sigma^{\dagger}$ is the equalizer

$$N \square_{\mathfrak{C}} \mathbf{\Sigma}^{\dagger} \xrightarrow{eq_{N,\mathbf{\Sigma}^{\dagger}}} N \otimes_{A} \mathbf{\Sigma}^{\dagger} \xrightarrow{\rho_{N} \otimes_{A} \mathbf{\Sigma}^{\dagger}} N \otimes_{A} \mathfrak{C} \otimes_{A} \mathbf{\Sigma}^{\dagger}$$

This gives a functor $-\square_{\mathfrak{C}}\Sigma^{\dagger}:\mathcal{M}^{\mathfrak{C}}\to\mathcal{M}_{R}.$ Now, the adjunction isomorphism

 $\operatorname{Hom}_A(M \otimes_R \Sigma, N) \cong \operatorname{Hom}_R(M, N \otimes_A \Sigma^{\dagger})$ gives, by restriction, the isomorphism

 $\operatorname{Hom}_{\mathfrak{C}}(M \otimes_R \Sigma, N) \cong \operatorname{Hom}_R(M, N \square_{\mathfrak{C}} \Sigma^{\dagger})$ which shows that in the pair of functors

$$\mathcal{M}^{\mathfrak{C}} \xrightarrow{-\square_{\mathfrak{C}} \Sigma^{\dagger}} \mathcal{M}_{R}$$

 $-\otimes_R \Sigma$ is left adjoint to $-\square_{\mathfrak{C}} \Sigma^{\dagger}$. The counit of this adjunction at $N \in \mathcal{M}^{\mathfrak{C}}$ is given by

$$eq_{N,\Sigma^{\dagger}} \otimes_{R} \Sigma^{N} \otimes_{A} \Sigma^{\dagger} \otimes_{R} \Sigma_{N \otimes_{A} ev}$$

$$(N \square_{\mathfrak{C}} \Sigma^{\dagger}) \otimes_{R} \Sigma^{-} \delta_{N} \longrightarrow N$$

The Galois comodule structure Theorem, I

With the collaboration of J. Vercruysse (work in progress), or, alternatively, with the help of a result by Abrams and Menini, J.P.A.A., 1996, we have

Theorem. If P_A is finitely generated and projective for every $P \in A$, the following are equivalent.

- (i) $(\mathfrak{C}, \mathcal{A})$ is Galois and $_{R}\Sigma$ is flat;
- (ii) ${}_{A}\mathfrak{C}$ is flat and \mathcal{A} is a generating set of small (or f.g.) objects for $\mathcal{M}^{\mathfrak{C}}$;
- (iii) ${}_A{\mathfrak C}$ is flat and δ_N is an isomorphism for every $N\in {\mathcal M}^{\mathfrak C}$.

With A a singleton, this has been formulated in Brzezinski-Wisbauer's corings book, (2003).

The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, and some help from Freyd/Gabriel's Theorem, we have (Int. Math. Res. Notices, 2004).

Theorem. Let \mathcal{A} be a set of right \mathfrak{C} -comodules. Consider the ring extension $R \subseteq S$, where $R = \bigoplus_{P,Q \in \mathcal{A}} \operatorname{Hom}_{\mathfrak{C}}(Q,P)$ and $S = \bigoplus_{P,Q \in \mathcal{A}} \operatorname{Hom}_{A}(Q,P)$. The following statements are equivalent.

- (i) P_A is f.g. projective for all $P \in \mathcal{A}$, $(\mathfrak{C}, \mathcal{A})$ is Galois, and ${}_R\Sigma$ is faithfully flat;
- (ii) ${}_A\mathfrak{C}$ is flat and $-\otimes_R \Sigma : \mathcal{M}_R \to \mathcal{M}^{\mathfrak{C}}$ is an equivalence of categories;
- (iii) $_A\mathfrak{C}$ is flat and $\mathcal A$ is a generating set of small projectives for $\mathcal M^{\mathfrak{C}}$;
- (iv) $_A\mathfrak{C}$ is flat, P_A is f.g. projective for all $P \in \mathcal{A}$, $(\mathfrak{C}, \mathcal{A})$ is Galois, and $_BS$ is faithfully flat.