Infinite Comatrix Corings

J. Gómez-Torrecillas
Universidad de Granada

Ferrara, June 18th, 2004

Assume $\mathcal{M}^{\mathfrak{C}}$ to be abelian (which implies to be Grothendieck), and that it has a generating set of small projectives \mathcal{A}. Then, by Freyd's Theorem, we have an equivalence of categories

$$
\mathcal{M}^{\mathfrak{C}} \sim \operatorname{Funct}\left(\mathcal{A}^{o p}, A b\right),
$$

where \mathcal{A} denotes as well the full subcategory of $\mathcal{M}^{\mathfrak{C}}$ whose objects are those in \mathcal{A}, and

$$
\text { Funct }\left(\mathcal{A}^{o p}, A b\right)
$$

is the category of contravariant additive functors from \mathcal{A} to the category of abelian groups $A b$.

This equivalence is given by the functor

$$
F_{1}=\mathcal{M}^{\mathfrak{C}} \rightarrow \operatorname{Funct}\left(\mathcal{A}^{o p}, A b\right) \quad\left(N \mapsto \operatorname{Hom}_{\mathfrak{C}}(-, N)\right),
$$

which makes sense for any small subcategory \mathcal{A} of $\mathcal{M}^{\mathfrak{C}}$.

Let \mathcal{A} any set of right \mathfrak{C}-comodules. Consider the (in general not unitary) ring $R=$ $\oplus_{P, Q \in \mathcal{A}}$ Hom $_{\mathfrak{C}}(Q, P)$. Elements in R can be thought as matrices $\left(r_{P Q}\right)$ with finitely many nonzero entries $r_{P Q} \in \operatorname{Hom}_{\mathfrak{C}}(Q, P)$ with the usual matrix product.

We have then the functor
$F_{2}: F \operatorname{unct}\left(\mathcal{A}^{o p}, A b\right) \rightarrow \mathcal{M}_{R} \quad\left(G \mapsto \oplus_{P \in \mathcal{A}} G(P)\right)$, where \mathcal{M}_{R} is the category of all unital (i.e. $M R=R$) right R-modules.

It turns out (Gabriel) that F_{2} is an equivalence of categories. Now, we have the functor
$F=F_{2} F_{1}: \mathcal{M}^{\mathfrak{C}} \rightarrow \mathcal{M}_{R} \quad\left(X \mapsto \oplus_{Q \in \mathcal{A}} \operatorname{Hom}_{\mathfrak{C}}(Q, X)\right)$
Thus, $F(P) \cong 1_{P} R$, where $1_{P} \in R$ is the idempotent matrix corresponding to P. It is easy to see that the set $\left\{1_{P} R \mid P \in \mathcal{A}\right\}$ is a generating set of small projectives of \mathcal{M}_{R}.

We have thus the following commutative diagram of functors

and F maps the set of comodules \mathcal{A} onto the generating set of small projectives

$$
\left\{1_{P} R \mid P \in \mathcal{A}\right\}
$$

Therefore, \mathcal{A} is a generating set of small projectives for $\mathcal{M}^{\mathfrak{C}}$ if and only if F is an equivalence of categories.

Nothing new yet!

We have always a pair of functors

$$
\mathcal{M}^{\mathfrak{C}} \underset{-\otimes_{A} \mathfrak{C}}{\stackrel{U}{\rightleftarrows}} \mathcal{M}_{A}
$$

with U left adjoint to $-\otimes_{A} \mathfrak{C}$. Here, U denotes the forgetful functor.

Thus, if $\mathcal{M}^{\mathfrak{C}}$ is abelian (e. g. ${ }_{A} \mathfrak{C}$ is flat) and $P \in \mathcal{M}^{\mathfrak{C}}$ is a small projective, then P_{A} is a small projective in \mathcal{M}_{A}, that is, P_{A} is finitely generated and projective as a right module. This gives the chance of extract the structure of \mathfrak{C} from a generating set of small projective comodules.

No assumptions made on $\mathcal{M}^{\mathfrak{C}}$.

Let $\mathcal{A}=\left\{P_{\mathfrak{C}}\right\}$ be a set of comodules such that every P_{A} is finitely generated and projective. For each $P \in \mathcal{A}$, let $\left\{\left(e_{\alpha_{P}}^{*}, e_{\alpha_{P}}\right)\right\} \subseteq P^{*} \times P$ be a dual basis $\left(P^{*}=\operatorname{Hom}_{A}(P, A)\right.$). We have comodules

$$
\Sigma_{\mathfrak{C}}=\oplus_{P \in \mathcal{A}} P, \quad \mathfrak{C}^{\Sigma^{\dagger}}=\oplus_{P \in \mathcal{A}} P^{*}
$$

Consider the (in general not unitary) ring

$$
R=\oplus_{P, Q \in \mathcal{A}} \operatorname{Hom}_{\mathfrak{C}}(Q, P)
$$

The ring R acts on the left on Σ and on the right Σ^{\dagger}, making them unital R-modules (that is, $R \Sigma=\Sigma$ and $\Sigma^{\dagger} R=\Sigma^{\dagger}$). It is useful to think of the elements of Σ^{\dagger} as row vectors (resp. of Σ as column vectors).

Lemma. The right \mathfrak{C}-comodule structure map $\rho_{\Sigma}: \Sigma \rightarrow \Sigma \otimes_{A} \mathfrak{C}$ is left R-linear, and the left \mathfrak{C}-comodule structure map $\lambda_{\Sigma^{\dagger}}: \Sigma^{\dagger} \rightarrow \mathfrak{C} \otimes_{A} \Sigma^{\dagger}$ is right R-linear.

We have a pair of functors

$$
\mathcal{M}_{A}^{\stackrel{-\otimes_{A} \Sigma^{\dagger}}{-\otimes_{R} \Sigma}} \mathcal{M}_{R}
$$

where \mathcal{M}_{A} and \mathcal{M}_{R} are categories of right unital modules. It is known that $-\otimes_{R} \Sigma$ is left adjoint to $-\otimes_{A} \Sigma^{\dagger}$. The counit of this adjunction is built from the evaluation map

$$
e v: \Sigma^{\dagger} \otimes_{R} \Sigma \rightarrow A \quad\left(\varphi \otimes_{R} x \mapsto \sum \varphi_{P}\left(x_{P}\right)\right)
$$

which is a homomorphism of A-bimodules. The unit is constructed from the homomorphism of rings

$$
R \subseteq \oplus_{P, Q \in \mathcal{A}} \operatorname{Hom}_{A}(Q, P) \cong \Sigma \otimes_{A} \Sigma^{\dagger}
$$

From this, "tensoring on the left by Σ_{R}^{\dagger} and on the right by R^{Σ} ", a coassociative comultiplication can be easily obtained

$$
\Delta: \Sigma^{\dagger} \otimes_{R} \Sigma \rightarrow \Sigma^{\dagger} \otimes_{R} \Sigma \otimes_{A} \Sigma^{\dagger} \otimes_{R} \Sigma
$$

It turns out that ($\Sigma^{\dagger} \otimes_{R} \Sigma, \Delta, e v$) is an $A-$ coring; the infinite comatrix coring.

Proposition. The following diagram is conmutative. The resulting map can : $\Sigma^{\dagger} \otimes_{R} \Sigma \rightarrow \mathfrak{C}$ is a homomorphism of A-corings.

Definition. The comodule Σ (or the set of comodules \mathcal{A}) is said to be $R-\mathfrak{C}$-Galois if can is an isomorphism.

We will show that a Galois comodule Σ allows to reconstruct some comodules from the category \mathcal{M}_{R} by using the functor $-\otimes_{R} \Sigma$.

Recall that for $N \in \mathcal{M}^{\mathfrak{C}}$ the cotensor product $N \square_{\mathfrak{C}^{\Sigma}}{ }^{\dagger}$ is the equalizer

$$
N \square_{\mathfrak{C}^{\Sigma}} \Sigma^{\dagger} \xrightarrow{e q_{N, \Sigma} \dagger} N \otimes_{A} \Sigma^{\dagger} \xrightarrow{\frac{\rho_{N} \otimes_{A} \Sigma^{\dagger}}{N \otimes_{A} \Sigma^{\dagger}}} N \otimes_{A} \mathfrak{C} \otimes_{A} \Sigma^{\dagger}
$$

This gives a functor $-\square_{\mathfrak{C}} \Sigma^{\dagger}: \mathcal{M}^{\mathfrak{C}} \rightarrow \mathcal{M}_{R}$. Now, in the adjunction isomorphism

$$
\operatorname{Hom}_{A}\left(M \otimes_{R} \Sigma, N\right) \cong \operatorname{Hom}_{R}\left(M, N \otimes_{A} \Sigma^{\dagger}\right)
$$

gives, by restriction, the isomorphism

$$
\operatorname{Hom}_{\mathfrak{C}}\left(M \otimes_{R} \Sigma, N\right) \cong \operatorname{Hom}_{R}\left(M, N \square_{\mathfrak{C}^{\prime}} \Sigma^{\dagger}\right)
$$

which shows that in the pair of functors

$$
\mathcal{M}^{\mathfrak{C}} \underset{-\otimes_{R} \Sigma}{\stackrel{-\square_{\mathfrak{C}} \Sigma^{\dagger}}{\underset{-}{2}}} \mathcal{M}_{R}
$$

$-\otimes_{R} \Sigma$ is left adjoint to $-\square_{\mathfrak{C}^{\Sigma}} \Sigma^{\dagger}$. The counit of this adjunction at $N \in \mathcal{M}^{\mathfrak{C}}$ is given by

$$
\begin{gathered}
e q_{N, \Sigma \Sigma^{\dagger} \otimes_{R} \Sigma^{N}} \otimes_{A} \Sigma^{\dagger} \otimes_{R} \Sigma \underbrace{}_{N \otimes_{A} e v} \\
\left(N \square_{C^{\prime}} \Sigma^{\dagger}\right) \otimes_{R} \Sigma \xrightarrow{\Sigma} N
\end{gathered}
$$

We have the following commutative diagram

Define a natural transformation

$$
\Psi:\left(-\square_{\mathfrak{C}} \Sigma^{\dagger}\right) \otimes_{R} \Sigma \rightarrow-\square_{\mathfrak{C}}\left(\Sigma^{\dagger} \otimes_{R} \Sigma\right)
$$

making commute the diagrams (for $N \in \mathcal{M}^{\mathfrak{C}}$)

$$
\begin{aligned}
& \left(N \square_{\mathfrak{C}} \Sigma^{\dagger}\right) \underset{R}{\otimes} \Sigma \\
& \Psi_{N} e q_{N, \Sigma} \dagger_{R}^{\otimes \Sigma} \\
& N \square_{\mathfrak{C}}\left(\Sigma^{\dagger} \underset{R}{\otimes} \Sigma\right)_{\in q_{N, \Sigma} \Sigma^{\dagger} \underset{R}{\otimes}} N \underset{A}{\otimes} \Sigma^{\dagger} \underset{R}{\otimes} \Sigma \longrightarrow N \underset{A}{\otimes} \mathfrak{C} \underset{A}{\otimes} \Sigma^{\dagger} \underset{A}{\otimes} \Sigma
\end{aligned}
$$

We thus get the following diagram

which turns out to be commutative.
Proposition. Let Σ be a Galois \mathfrak{C}-comodule. The following are equivalent for $N \in \mathcal{M}^{\mathfrak{C}}$.
(i) δ_{N} gives an isomorphism

$$
\left(N \square_{\mathfrak{C}^{\Sigma}} \Sigma^{\dagger}\right) \otimes_{R} \Sigma \cong N
$$

(ii) Ψ_{N} gives an isomorphism

$$
\left(N \square_{\mathfrak{C}} \Sigma^{\dagger}\right) \otimes_{R} \Sigma \cong N \square_{\mathfrak{C}}\left(\Sigma^{\dagger} \otimes_{R} \Sigma\right)
$$

(iii) $-\otimes_{R} \Sigma$ preserves the equalizer $e q_{N, \Sigma{ }^{\dagger}}$.

The Galois comodule structure Theorem, I

With the collaboration of J. Vercruysse (work in progress), we have

Theorem. If P_{A} is finitely generated and projective for every $P \in \mathcal{A}$, the following are equivalent.
(i) Σ is Galois and ${ }_{R} \Sigma$ is flat;
(ii) ${ }_{A} \mathfrak{C}$ is flat and \mathcal{A} is a generating set of small (or f.g.) objects for $\mathcal{M}^{\mathfrak{C}}$;
(iii) ${ }_{A} \mathfrak{C}$ is flat and δ_{N} is an isomorphism for every $N \in \mathcal{M}^{\mathfrak{C}}$.

With \mathcal{A} a singleton, this has been formulated in Brzezinski-Wisbauer's corings book, (2003). Precedents and/or related by Abuhlail, Caenepeel, De Groot, Vercruysse.

Suggestions: Apply this to reconstruct a coalgebra from its finite dimensional comodules.

The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, we have (Int. Math. Res. Notices, 2004; Math. Z., 2003 for "the singleton" case).

Theorem. For a set \mathcal{A} of right \mathfrak{C}-comodules, the following statements are equivalent.
(i) P_{A} is f.g. projective for all $P \in \mathcal{A}, \Sigma$ is Galois, and ${ }_{R} \Sigma$ is faithfully flat;
(ii) ${ }_{A} \mathfrak{C}$ is flat and \mathcal{A} is a generating set of small projectives for $\mathcal{M}^{\mathfrak{C}}$;
(iii) A_{A} C is flat and $-\otimes_{R} \Sigma: \mathcal{M}_{R} \rightarrow \mathcal{M}^{\mathfrak{C}}$ is an equivalence of categories.

Suggestions: Apply to a coring with a set of group-like elements (e.g. the coring stemming from a group-graded ring). Apply to reconstruct semiperfect coalgebras (e.g., co-Frobenius or, more generally, with C projective) from its indecomposable projectives. Apply to get the structure of cosemisimple corings and of semiperfect corings.

