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Some observations

• Many quantized algebras are iterated Ore

extensions k[x1][x2;σ2, δ2] · · · [xn;σn, δn]

• Prime ideals are of current interest in Quan-

tized Algebras (and in iterated differential op-

erators algebras).

• Algorithmic structures based on Gröbner

bases are available for noncommutative solv-

able polynomial rings [Kandri/Weispfenning:1990].

• How to exploit these computational skills

to decide whether a given ideal is completely

prime?

• There is a commutative primality test [Gianni/alt:],

as a guide.

[Kandri/Weispfenning:1990] Kandri-Rody, A., Weispfenning,

V., J. Symb. Comp. 9 (1990), 1-26

[Gianni/alt:1988] Gianni, P., Trager, B., Zacharias,

G., J. Symb. Comp. 6 (1988), 148-168.



Basic definitions

• T = A[x;σ, δ] an Ore extension of an alge-

bra A:

The powers xn n > 0 form a left A–

basis of T .

xr = σ(r)x + δ(r) (σ is an automor-

phism of A, δ is a σ–derivation).

• Let I C A[x;σ, δ] be a (twosided) ideal. If

I ∩ A is σ–stable (i.e. σ(I ∩ A) ⊆ I ∩ A) then

we have an algebra map

π : A[x;σ, δ] −→ A

I ∩A
[x;σ, δ]

axn 7−→ axn,

where a = a + I ∩A.

• The ideal I C T is completely prime if T/I

is a domain.



A characterization of complete primeness

Proposition. Let A be a noetherian domain

and let I be a two-sided ideal of A[x;σ, δ]

with the property that I ∩A is σ-stable. The

following assertions are equivalent:

(i) I is completely prime;

(ii) (1) I ∩A is completely prime in A;

(2) with S = A/(I ∩ A), Q the field of

fractions of S, and J = π(I) the

image of I in S[x;σ, δ],

(a) the generator p of Q[x;σ, δ]J is

irreducible in the euclidean do-

main Q[x;σ, δ];

(b) Q[x;σ, δ]J ∩ S[x;σ, δ] = J.



A primality test[Bueso/alt:1999,2001]

The INPUT is: generators f1, . . . , fs for an

ideal I of R = k[x1][x2;σ2, δ2] · · · [xn;σn, δn].

The OUTPUT is: TRUE (I is completely

prime); FALSE (I is not completely prime);

NOT APPLY (the procedure does not apply

to I).

1 Set i = 0, R0 = k, σ1 = id, δ1 = 0;

2 Set Ri+1 = Ri[xi+1;σi+1, δi+1], Ii = I∩Ri;

3 If σi+1(Ii) * Ii, then return NOT APPLY

and go to END;

4 Set Si = Ri/Ii, Qi = Qcl(Si),

Ii+1 = I ∩Ri+1 and Ji+1 = π(Ii+1);



5 Compute a generator pi+1 for
Qi[xi+1;σi+1, δi+1]Ji+1;

6 If pi+1 6= 0 and reducible in Qi[xi+1;σi+1, δi+1],
then return FALSE and go to END;

7 Compute J i+1 =
Qi[xi+1;σi+1, δi+1]Ji+1∩Si[xi+1;σi+1, δi+1];

8 If J i+1 6= Ji+1, then return FALSE and go
to END;

9 Set i = i + 1, if i = n, then return TRUE,
and go to END, else go to 2;

10 END.

[Bueso/alt:1999] Bueso, J. L., Castro, F. J.,

Gómez-Torrecillas, J., Lobillo, F. J. C. R. Acad. Sci.

Paris Ser. I 328 (1999), 459-462

[Bueso/alt:2001] Bueso, J. L., Castro, F. J.,

Gómez-Torrecillas, J., Lobillo, F. J. Commun. Algebra

29 (2001), 1357-1371



Required Gröbner Bases Toolkit

We look for algorithms founded on Non-

Commutative Gröbner Bases which allow the

effective implementation of our primality test.

The requirements of each step of the proce-

dure are the following

2 Set Ri+1 = Ri[xi+1;σi+1, δi+1], Ii = I ∩Ri;

Our non-commutative setting should include

iterated Ore extensions (or at least a large

class of them)

We should be able to do elimination of vari-

ables.

3 If σi+1(Ii) * Ii, then ...

We will need to solve the ideal member-

ship problem. A Multivariable Division Al-

gorithm is pertinent here for the computa-

tion of normal forms (or remainders) w.r.t.

Gröbner Bases



4 Set Si = Ri/Ii, Qi = Qcl(Si),

Ii+1 = I ∩Ri+1 and Ji+1 = π(Ii+1);

5 Compute a generator pi+1 for

Qi[xi+1;σi+1, δi+1]Ji+1

To handle effectively the projections π(Ii+1),

and to compute the generators pi+1, we need

elimination of variables. Concretely, if G is

a Gröbner basis for I, then G ∩ Ri should be

a Gröbner basis of Ii for every i.

In this way, pi+1 = π(gi+1), where gi+1 is

the element in Gi+1 \Gi with minimal degree

w.r.t. xi+1.



6 If pi+1 6= 0 and reducible in

Qi[xi+1;σi+1, δi+1], then return FALSE

and go to END;

This is the hardest step, as you need to check

wether an one-variable invariant polynomial

over a noncommutative skew polynomial ring

is irreducible. No general method is known.

Thus, our primality test reduces the prob-

lem of primality of ideals to the problem

of irreducibility of one-variable invariant

polynomials.

In any case, computing with left fractions in

Qi needs to handle effectively left Ore con-

dition on Si = Ri/Ii. This requires the com-

putation of Gröbner bases for left modules

of syzygies.



7 Compute J i+1 =

Qi[xi+1;σi+1, δi+1]Ji+1 ∩ Si[xi+1;σi+1, δi+1];

Here, one first computes

ri+1 = σ
−deg(gi+1)
i+1 (lc(gi+1)),

where deg(gi+1) (resp. lc(gi+1)) denotes the

degree (resp. the leading coefficient) of gi+1

with respect to xi+1.

The intersection is shown to be equal to

J i+1 = π(Li+1 ∩Ri+1), where

Li+1 = Ri+1[y]Ii+1 + Ri+1[y](1 − ri+1y),

for y a new commuting variable.



8 If J i+1 6= Ji+1, then return FALSE & go to END;

But this is just to check that

Ii+1 ( Li+1 ∩Ri+1,

which requires, again, elimination of vari-

ables, and to solve the membership prob-

lem.

In resume, we need to recognize our iterated

Ore extensions within a class of algebras with

a good notion of Gröbner basis, enjoying the

following algorithmic structures:

• A Multivariable Division Algorithm

• Buchberger’s Algorithm for computing

of left and twosided Gröbner bases

• Elimination of variables

• Modules of Syzygies and Gröbner bases

for modules



Basic algorithms for solvable polynomial rings

Solvable polynomial rings were first introduced by [ElFrom:1983],

and Gröbner bases over them by [Kandri/Weispfenning:1990].

The basic algorithms we need in our Primality Test

appeared for the first time as follows:

• A Multivariable Division Algorithm
[Kandri/Weispfenning:1990], explicitly [Bueso/alt:1996,1998]

• Buchberger’s Algorithms for one and
twosided ideals [Kandri/Weispfenning:1990]

• Elimination of variables [Kredel:1992]

• Modules of Syzygies and Gröbner bases
for modules [Kredel:1992]

[Bueso/alt:1996] Bueso, J. L., Castro, F. J.,

Gómez-Torrecillas, J., Lobillo, F. J. SAC Newsletters

1 (1996), 39-52

[Bueso/alt:1998] Bueso, J. L., Castro, F. J.,

Gómez-Torrecillas, J., Lobillo, F. J. Lect. Notes Pure

Appl. Math. 197 55-83, Marcel-Dekker, 1998

[Kredel:1992] Kredel, H. Ph. D. Thesis Univ. Passau,

1992



Our Primality Test works in the following set-

ting:

• R an iterated Ore extension

R0 ⊂ R1 ⊂ · · · ⊂ Rn = R,

where

R0 = k is a field (or R0 = k a division ring)

R1 = k[x1] is a polynomial algebra (or R1 =

k[x1;σ1, δ1], an Ore extension)

Ri+1 = Ri[xi+1;σi+1, δi+1].

All σi’s are assumed to be automorphisms.

Assume for every 1 ≤ i < j ≤ n there is 0 6=
qji ∈ k such that σj(xi) − qjixi = sji ∈ Ri−1.

This is just to say that R is a solvable polyno-

mial ring with respect to the lexicographical

order with x1 <lex · · · <lex xn.



Primality Test

Given generators f1, . . . , fm of a two-sided ideal

I of R, we proceed as follows.

1.- Compute a Gröbner basis G for I, then

Gi = G∩Ri is a Gröbner basis for Ii = I ∩Ri,

for i = 0, . . . , n.

2.- Set i = 0.

3.- If rem(σi+1(g), Gi) 6= 0 for some g ∈ Gi,

then the test does not apply for I.

4.- If Gi+1\Gi is not empty, then pick gi+1 ∈
Gi+1\Gi with minimal degree in xi+1. If gi+1
is reducible in Qi[xi+1;σi+1, δi+1], then I is

not completely prime.

5.- Compute ri+1 = σ−m
i+1(c),

where c = lcxi+1(gi+1), m = degxi+1
(gi+1).

6.- Compute a Gröbner Γi+1 basis in Ri+1[y]

for the left ideal Li+1 generated by Gi+1∪{1−
ri+1y}.
7.- If rem(g, Gi+1) 6= 0 for some g ∈ Γi+1 ∩
Ri+1, then I is not completely prime.

8.- If i + 1 = n, then I is completely prime.

9.- Set i = i + 1 and go to 3.



Two special cases When some of the con-

tractions Ii is not σi+1–stable, then the test

does not apply. There are two special cases

where this unpleasant contingency does not

appear.

Iterated differential operators algebras (in-

cluding enveloping algebras of solvable Lie

algebras), which are of the form

k[x1][x2; δ2] · · · [xn; δn].

Affine quantum spaces (i.e., coordinate rings

of affine quantum spaces), which are of the

form R = k[x1][x2;σ2] · · · [xn;σn], where σj(xi) =

qjixi.

For ideals I such that I ∩ {x1, . . . , xn} = ∅, if

Ii is not σi+1–stable for some i, then I is not

completely prime, so the test applies for I.

If I∩{x1, . . . , xn} 6= ∅, then, factoring out R by

the ideal generated by the variables contained

in I, we are in the former case.



An example

Let R be the algebra over k generated by

x, y, z, t with relations

yx = xy zy = yz + x
zx = xz ty = yt + y
tx = xt tz = zt− z

;

which is the iterated Ore extension

R = k[x, y][z; δ][t; θ],

with δ(x) = 0, δ(y) = x, θ(x) = 0, θ(y) =

y, θ(z) = −z.

Let I be the twosided ideal generated by x2+

y2 + z2 + t2 + 1. A Gröbner basis of I is

G = {x, y, z, t2 + 1}.

I2 = 〈x, y〉 is (completely) prime in k[x, y];

Q2 = S2 = k.

I3 = 〈x, y, z〉, g3 = z which is irreducible in

Q2[z; δ]. Moreover, Γ3 = {x, y, z,1−u}, where



u is a commuting variable. Thus, Γ3 ∩ R3 =

G3, and I3 is c.p.

S3 = Q3 = k and t2+1 is irreducible iff
√−1 /∈

k. Moreover Γ4 = {x, y, z,1 + t2,1 − u}, for

u commuting. Thus, Γ4 ∩ R4 = G4, and I is

completely prime if and only if
√−1 /∈ k.

Note: The computations of the Gröbner bases

has been done with the package [Greuel/alt:2003]

[Greuel/alt:2003] G.-M. Greuel, V. Levandovskyy, and

H. Schönemann. Singular::Plural 2.1. A Computer Algebra

System for Noncommutative Polynomial Algebras. Centre

for Computer Algebra, University of Kaiserslautern (2003).

http://www.singular.uni-kl.de/plural.



PBW rings and solvable polynomial rings

By Nn we will denote the free abelian monoid
with generators ε1, . . . , εn. The elements of
Nn will be n–tuples α = (α1, . . . , αn) of non-
negative integers, and the sum is defined com-
ponentwise.

Let x1, . . . , xn be elements of a ring R which
contains a division ring k. The elements of
the form xα = x

α1
1 . . . xαn

n for α = (α1, . . . , αn) ∈
Nn are called standard terms.

Definition. The ring R is said to be left
polynomial (over k in x1, . . . , xn) if the set
{xα; α ∈ Nn} is a basis of R as a left k–
vectorspace.

This means that every element f of R has a
unique standard representation

f =
∑

α∈Nn

cαxα.

For 0 6= f ∈ R, define the Newton diagram
of f as

N (f) = {α ∈ Nn; cα 6= 0}.



Let ¹ be an admissible order on Nn, namely,

a total monoid order with 0 ≺ α for every

α ∈ Nn.

The exponent of f is defined by

exp(f) = max¹ N (f).

The standard representation of any f ∈ R

thus becomes

f = cexp(f)x
exp(f) +

∑

α≺exp(f)

cαxα.

Observation: The well-known algorithmic

structures based on Gröbner bases over com-

mutative polynomial ring would be adapted

whenever exp(fg) = exp(f)+exp(g) for f, g ∈
R. This is what happens for solvable polyno-

mial rings.



Left PBW rings

Theorem. [Bueso/alt:2001b] Let R be a left
polynomial ring over k in x1, . . . , xn. The fol-
lowing statements are equivalent for an ad-
missible order ¹ on Nn:

(i) exp(fg) = exp(f)+exp(g) for every f, g ∈
R;

(ii) (a) for every 1 6 i < j 6 n there exist 0 6=
qji ∈ k and pji ∈ R with exp(pji) ≺ exp(xixj)
such that xjxi = qjixixj + pji;

(b) for every 1 6 i 6 n and every 0 6= a ∈ k
there exists 0 6= qai ∈ k and pai ∈ R with
exp(pai) ≺ exp(xi) such that xia = qiaxi+pai.

We then say that R is a left PWB ring. All
basic algorithms work over them [Bueso/alt:2001b,

Bueso/alt:2003].

[Bueso/alt:2001b] Bueso, J.L., Gómez-Torrecillas, J.,

Lobillo, F.J. Algebras Repr. Theory 4 (2001), 201-218

[Bueso/alt:2003] Bueso, J.L., Gómez-Torrecillas,

Verschoren, A. Algorithmic Methods in Non-Commutative

Algebra, Kluwer Academic Publishers, 2003.



Solvable polynomial rings are left PWB

The “relations” in a left PBW ring are of the
type

(PWB1) xjxi = qjixixj + pji with 0 6= qji ∈ k,
exp(pji) ≺ exp(xixj);

(PBW2) xia = qaixi + pai (0 6= a ∈ k) with
0 6= qai ∈ k, exp(pai) ≺ exp(xi).

When pai ∈ k we obtain Solvable Polynomial
Rings [Kredel:1992].

When k is commutative and it is contained
in the center of R (and, so, qai = a, pai = 0)
we obtain Solvable Polynomial Algebras
([Kandri/Weispfenning:1990]).

Example Let R = k[t][x; δ], where k = C(u), δ(u) =
tu, δ(t) = 1.

xt = tx + 1
tr(u) = r(u)t (r(u) ∈ C(u))
xr(u) = r(u)x + ur′(u)t (r(u) ∈ C(u))

For any ordering with (1,0) ≺ (0,1), we have exp(ur′(u)t) =
(1,0) ≺ (0,1) = exp(x) or, shortly, if t ≺ x then
ur′(u)t ≺ x, R is a left PBW ring but not a solvable
polynomial ring, as ur′(u)t /∈ k.



Solvable polynomial algebras and filtrations.

The following result locates solvable polyno-

mial algebras within the class of (positively)

filtered algebras.

Theorem. [Bueso/alt:2001c] The following con-

ditions are equivalent for an associative and

unitary algebra R over a field k.

(i) R is a filtered algebra whose associated

graded algebra is an n–dimensional (graded)

quantum affine space;

(ii) R is a solvable polynomial algebra with

respect to some admissible ordering on Nn;

(iii) R is a filtered algebra with a finite-dimensional

filtration whose associated graded algebra is

an n–dimensional (graded) quantum affine

space.

[Bueso/alt:2001c] Bueso, J.L., Gómez-Torrecillas, J.,

Lobillo, F. J., Lect. Notes Pure Appl. Math. 221,

33-57, Marcel-Dekker, 2001



From filtrations to solvable polynomial algebras

Let R be a filtered k–algebra with a quan-

tum affine space as associated graded alge-

bra gr(R). Thus R is endowed with an as-

cending chain FR = {FnR | n > 0} of vector

subspaces, the filtration of R, satisfying for

all n, m > 0

1. 1 ∈ F0R,

2. (FnR)(FmR) ⊆ Fn+mR,

3. R =
⋃

n>0 FnR,

in such a way that

gr(R) =
⊕

n>0

FnR/Fn−1R,

is generated by homogeneous elements y1, . . . , yn

subject to the relations yjyi = qjiyiyj, where

0 6= qji ∈ k for 1 6 i < j 6 n.



Let ui = deg yi and chose x1, . . . , xn ∈ R are

such that xi = yi + Fui−1R for 1 6 i 6 n then

FsR =
∑

|α|u6s

kxα,

where u = (u1, . . . , un) and |α|u = u1α1 +

· · ·unαn.

Thus, the algebra R is a solvable polynomial

algebra with relations

Q ≡ xjxi = qjixixj+pji with exp(pji) ≺u εi+εj

Then admissible ordering ¹u is given by

α ¹u β ⇐⇒




|α|u < |β|u
or
|α|u = |β|u and α ¹lex β

where ¹lex denotes the lexicographical order

with ε1 ≺lex · · · ≺lex εn.



A criterion of solvability. Let us now con-

sider an algebra R with generators x1, . . . , xn

and relations

Q = {xjxi = qjixixj + pji, 1 6 i < j 6 n},
for some standard polynomials pji. Define

Cji = N (pji)− εi − εj,

and the finite subset CQ of Zn

CQ =
⋃

16i<j6n

Cji ∪ {−ε1, . . . ,−εn}

Let us also define the (open) polyhedron

ΦQ = {w ∈ Rn
+ : 〈w, γ〉 < 0 ∀ γ ∈ CQ}

Theorem. There is an admissible order ≺
on Nn such that exp(pji) ≺ exp(xixj) for ev-

ery 1 6 i < j 6 if and only if ΦQ is not

empty. In such a case, ΦQ contains vectors

with strictly positive integer components.



Filtering solvable polynomial algebras. The

following result shows how to find a finite-

dimensional filtration with a quantum affine

space as associated graded algebra on any

solvable polynomial algebra

Theorem. Let R be a solvable polynomial

algebra with relations

Q = {xjxi = qjixixj + pji, 1 6 i < j 6 n},
such that exp(pji) ≺ exp(xixj) for some ad-

missible ordering ¹. Let w = (w1, . . . , wn) ∈
ΦQ with strictly positive components. Then

R is filtered by finite dimensional vector sub-

spaces Fn(R) =
∑
|α|w6n kxα, and the associ-

ated graded algebra gr(R) is an n–dimensional

quantum space.



Ring theoretical properties of solvable
polynomial algebras So, the class of solvable

polynomial algebras coincides with the class of pos-

itively filtered algebras (by finite-dimensional vector

spaces, if desired) with quantum affine spaces as as-

sociated graded algebras. Combining results by J. E.

Björk, E. K. Ekström, A. K. Fields, JGT, T.H.

Lenagan, T. Levasseur, J. McConnell, J.C. Rob-

son, A. Roy, P. Tauvel (other combinations could

also work) we have:

Theorem. Let R be a solvable polynomial
algebra. Then
1. R is a noetherian domain.
2. The Gelfand-Kirillov dimension is exact
on short exact sequences of f.g. R–modules.
3. R is left and right partitive w.r.t. the GK
dimension.
4. The Krull dimension of a f.g. module is
bounded by the G.K. dimension.
5. R satisfies the Nullstellensatz.
6. R has finite global dimension.
7. R is Auslander-Regular.
8. R is Cohen-Macaulay w.r.t. GK dimen-
sion.


