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Corings.(Following Sweedler, 1975) Let A be
a ring. An A—coring is a three-tuple (€, Ag, €g)
which consists of uan A—bimodule € and two
homomorphism of A—bimodules

AQIQ:HQ:@A@ E@IQ:HA (1)
such that the diagrams
¢ Ae C®R4€C
Ay ¢§>A¢
Ae®C
C®pC 4 CRpCER Y C
and
¢ “Ceg,c ¢ “Ceg,c
¢ ¢
= A o
C®Ryp A ARy €

commute.



Example. Coring stemming from an entwining
structure (Brzezinski- Takeuchi)

(A,C)y an entwining structure over a commu-
tative ring K, with A a K-algebra, C a K-
coalgebra and ¢ : C®rx A — AR C the en-
twining morphism.

Bimodule: | AQ i C, a(a’ @ c)a’ = ad’p(c®ad").

Comultiplication: | the composite

AQRC K AQCQC2AQCRARC
K K K K A K

Counity: A®K60A®KC—>A®KK%A




Comodule categories. Given an A—coring ¢,
the category ME of all right ¢—comodules is
defined as follows.

Objects: | pairs (M, pys), with M4 a module,
and ppy - M — M ®4 € a morphism of A-
modules such that the diagrams

P MK CE PM M & €
M A M A
PM M%A@ = MQE)EQ:
P T
MRC AMRSIERCE M A
A A A A
commute.

Morphisms: |a morphism f : (M, ppr) — (N, pn)
is @ morphism of A—modules f : M — N such
that the following diagram commutes

f

M N

PM PN
fRC
MRJICEC A NRQC

A A




We have always a pair of functors

U
¢ Mg
M 9 ,¢

with U left adjoint to —® 4 ¢€. Here, U denotes
the forgetful functor.

Proposition. The following are equivalent for
an A—coring €.

(i) AQ: is flat,

(ii) M€ is abelian and U is (left) exact;

(iii) MY is Grothendieck and U is (left) exact

Definition. An A—coring ¢ is said to be right
cosemisimple if MY s a semisimple category
(i.e., it is Grothendieck and every object is a
sum of simples).

What is the structure of cosemisimple corings?



It follows from the Proposition that if € is right
cosemisimple, then 4€ is flat and €4 is projec-
tive. In fact, by using rational modules over the
convolution rings €* = Homy4(¢, A4) and *¢ =
Hom 4(¢, 4A), the following can be proved (El
Kaoutit, GT, Lobillo, arXiv/0201070)

Theorem. Let € be an A—coring. The fol-
lowing statements are equivalent:

(i) € is left cosemisimple

(ii) € is right cosemisimple

(iii) € is semisimple as a left €&—comodule and
¢4 Is flat,

(iv) € is semisimple as a right €&—comodule and
A< is flat;

(v) € is semisimple as a right €*—module and
€4 is projective;

(vi) € is semisimple as a left *€—module and
A€ is projective.

Thus, from the categorical point of view, cosemisim-
ple corings behave as expected. But, what is
their structure?



Let € be an A—coring with a group-like g,
T ={a € Alag = ga}
the subring of g—coinvariants of A, and
can : ARQp A — €

the canonical map (a ®7 a’ — aga’). We have
the following definition and theorem due to T.
Brzezinski, Alg. Rep. Theory, 2002.

Definition. (¢, g) is Galois if can is a (coring)
isomorphism.

Theorem. The following are equivalent.
(i) 4€ is flat, and the functor

—@p A Mp — MC

IS an equivalence of categories;
(ii) € is Galois and 1A is faithfully flat.

Remarks: 1.- A Galois coring with T semi-
simple artinian is cosemisimple.



2.- For a Galois coring with A faithfully flat,
A becomes a finitely generated projective gen-
erator for the category ME.

3.- The functor —®1 A is always left adjoint to
the functor Homg(A, —), this last being isomo-
morphic to the *“coinvariants functor’ defined

by g.

T he last two remarks are reminiscent of Mitchell’'s
Theorem or even of Gabriel-Popescu’s Theo-
rem. Thus, a new question arises: for which
corings € has MY% a finitely generated projec-
tive generator?

Remark: If P ¢ M% is a small projective gen-
erator, then, by the adjunction U 4 — ®4 ¢,
P4 is small and projective, and, therefore, it is
finitely generated and projective as a module.

This is the idea: for P € M% consider T =
End(Py), and the pair of adjoint functors

Homg(P,—)

¢ M
M &P T




It turns out that the counit of this adjunction
evaluated at ¢

Xe . Homg(P, &) @ P — P
in conjunction with the isomorphism
P* Z Homg (P, €)
leads to an A—bimodule map

can : P* @ P —-¢€ (pQrpr @(p(o))pa))

This is already a canonical map (El Kaoutit,
GT, Math. Z., 2003), at least in some cases:
if P4 is finitely generated and projective with
dual basis {(e},,ea)} C P* x P, then define

A(p T D) =p®rea®p e, TP
ev(p @7 p) = @(p)

Proposition. (P*®pr P,A,ev) is an A—coring
and can . P*®p P — € js a homomorphism of
A—corings.

We christened P* ®p P as comatrix coring be-
cause *(P* ®p P) = End(,P)°PP,



Definition. (¢, P) is a Galois coring or P is
a Galois €¢—comodule if can is an isomorphism
(of A—corings).

With some help from Mitchell’s Theorem, we
have (El Kaoutit, GT, Math. Z., 2003)

Theorem. Let € be an A—coring, and P a
right €—comodule. Consider the ring extension
T CS, whereT = End(Py) and S = End(Py).
T he following statements are equivalent.

(i) o€ is flat and P is a finitely generated and
projective generator for MC;

(ii) o€ is flat, P4 is finitely generated and pro-
jective, P is Galois, and — @7 P : My — M% is
an equivalence of categories;

(iii) Py is finitely generated and projective, P
is Galois, and P is faithfully flat;

(iv) A€ is flat, Py is finitely generated and pro-
Jective, P is Galois, and 7S is faithfully flat.

Precedents and/or related by Abuhlail, Brzezin-
ski, Caenepeel, De Groot, Vercruysse, Wis-
bauer.



As a consequence of the former theorem, it
follows that the cosemisimple corings with a
unique type of simple are a special case of co-
matrix corings. With some extra work, one
can get even a uniqueness statement for their
structure (El Kaoutit, GT, Math. Z. 2003)

Theorem. A coring & over aring A is cosemisim-
ple with a unique type of simple if and only if
there is P,y finitely generated and projective
and a division ring D C End(P4) such that

¢ = pP* XD P.

Moreover, for PA f.g. projective and a division
ring D' C End(P’4), we have that € £ P*Qp, P’
if and only if there is an isomorphism of right
A—modules g : P — P’ such that ¢Dg~ 1 = D'.

This theorem could be easily derived for the
case of cosemisimple corings with finitely many
simples. In the general case (infinite many
types of simples), more work was needed... Al-
ternatively, are there infinite comatrix corings?
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Assume M% to be abelian (which implies to
be Grothendieck), and that it has a generating
set of small projectives A. Then, by Freyd's
Theorem, we have an equivalence of categories

MY ~ Funct( AP, Ab),

where A denotes as well the full subcategory
of MY% whose objects are those in A, and

Funct(A°P, Ab)

is the category of contravariant additive func-
tors from A to the category of abelian groups
Ab.

This equivalence is given by the functor

F; = M% — Funct(A°P, Ab) (N — Homg(—, N)),

which makes sense for any small subcategory
A of M.

10



Let A any set of right ¢—comodules. Con-
sider the (in general not unitary) ring R =
®poeaHOMe(Q, P). Elementsin R can be thought
as matrices (rpg) with finitely many nonzero
entries rpg € Homg(Q, P) with the usual ma-
trix product.

We have then the functor

F5 : Funct(A%, Ab) - Mgr (G +— @pcaG(P)),

where Mp is the category of all unital (i.e.
MR = R) right R—modules.

It turns out (Gabriel) that F» is an equivalence
of categories. Now, we have the functor

F = F>F7 ./\/l€ — Mp (X — @QEAHOFT]Q(Q,X))

Thus, F(P) = 1pR, where 1p € R is the idem-
potent matrix corresponding to P. It is easy to
see that the set {1pR|P € A} is a generating
set of small projectives of Mp.

11



We have thus the following commutative dia-
gram of functors

F
MQ& F//WR,
Funct(A°P, Ab)

and F' maps the set of comodules A onto the
generating set of small projectives

{1PR|P S A}

Therefore, A is a generating set of small pro-
jectives for M if and only if F is an equiva-
lence of categories.

Nothing new yet!
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Recall that we have always a pair of functors

U
< M
M T A
with U left adjoint to —® 4 €. Here, U denotes

the forgetful functor.

Thus, if M% is abelian (e. g. 4€ is flat) and
P € MY is a small projective, then P, is a
small projective in M4, that is, P, is finitely
generated and projective as a right module.
This gives the chance of extract the structure
of € from a generating set of small projective
comodules.
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No assumptions made on MY,

Let A = {Ps} be a set of comodules such that
every P, is finitely generated and projective.
For each P € A, let {(ey,,eap)} © P* X P be
a dual basis (P* = Homy(P,A)). We have
comodules

S¢=®pecaP, X' = OpcyP*

Consider the (in general not unitary) ring

R = @P,QE.AHom(’I(Qa P)

The ring R acts on the left on > and on the
right =T, making them unital R—modules (that
is, R = ¥~ and TR = XT). It is useful to
think of the elements of X as row vectors
(resp. of X as column vectors).

Lemma. Theright €—comodule structure map
ps 2 — 2 4 ¢ is left R—linear, and the left
¢—comodule structure map Asy 1 X1 — €®4 =7
is right R—linear.
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We have a pair of functors

_®AZT
My Mp
_®RZ
where M 4 and Mg are categories of right uni-
tal modules. It is known that — ®p > is left
adjoint to —® 4 > . The counit of this adjunc-

tion is built from the evaluation map

ev | QR — A (pQRrx+— ZSOP(CEP))a

which is a homomorphism of A—bimodules. The
unit is constructed from the homomorphism of
rings

RC @®pgeaHom4(Q, P) = Z @4 =7

From this, ‘tensoring on the left by ZE and
on the right by p>", a coassociative comulti-
plication can be easily obtained

A Sl 5 Slgr il @ =

It turns out that (ZT ®@p X, A,ev) is an A-—
coring; the infinite comatrix coring.
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Proposition. The following diagram is con-
mutative. The resulting map can : ZTQp¥~ — €
is a homomorphism of A—corings.

STRREI®4C

ZT@}V ev® A€
¢

can

Definition. The comodule 3> (or the set of
comodules A) is said to be R—€-Galois if can

IS an isomorphism.
We will show that a Galois comodule > allows

to reconstruct some comodules from the cat-
egory Mp by using the functor — ®p 3.
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Recall that for N € M% the cotensor product
NOgXT is the equalizer

€y st PN®AZ]
=N > T N ¢ > T
®A N Ay ¥ACR4

NOgX T

This gives a functor —OeX : M% — Mp. Now,
in the adjunction isomorphism

Hom4(M ®p =, N) = Homp(M,N ® 4 =)
gives, by restriction, the isomorphism
Homg(M ®p =, N) & Homp(M, NOgxT)
which shows that in the pair of functors
ME < MR
QR

— ®p X is left adjoint to —Og=T. The counit
of this adjunction at N € M is given by




We have the following commutative diagram

eqN,ZT%Z

(NOeZH) ® = Nosiegs
R A R
> NRA >
eqN,ZT%) % ZT%
PN®ZT®Z
| NXTeX A R N®¢®ZT®Z}N®0an
ON' A R A A R A
N%ev N%@%ev /
N®C
N PN A

Define a natural transformation
v (—DQZT) RXp 2= — —DQ(ZT QR >)
making commute the diagrams (for N € M%)

(NOeXZH) @ =
R

I eqN,zT%Z
W

NOg(ZT® X NI TN Ii@x
R YUysigr A R A A A
R

18



We thus get the following diagram

NITex
A R

eqN,zT%Z
Instos
R NRcan
A

(NOeXN) @ = WN NDQ(ZT%Z)
R

S NUOgcan /N A ¢
N _ NOe€

which turns out to be commutative.

Proposition. Let > be a Galois €—comodule.
The following are equivalent for N € MC.
(i) 65 gives an isomorphism

(NOeZ) ®p = & N;
(ii) W gives an isomorphism
(NOeZ) @p & = NOe(ZT @5 X);
(iii) — ®p X preserves the equalizer €qp 5
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The Galois comodule structure Theorem, 1

With the collaboration of J. Vercruysse (work
in progress), or, alternatively, with the help of
a result by Abrams and Menini, J.P.A.A., 1996,
we have

Theorem. If Py is finitely generated and pro-
jective for every P € A, the following are equiv-
alent.

(i) X is Galois and rX is flat,;

(ii) 5€ is flat and A is a generating set of small
(or f.g.) objects for MY;

(iii) A€ is flat and 65 is an isomorphism for
every N ¢ MY,

With A a singleton, this has been formulated
in Brzezinski-Wisbauer's corings book, (2003).

Suggestions: Apply this to reconstruct a coal-
gebra from its finite dimensional comodules.
20



The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, and
some help from Freyd/Gabriel's Theorem, we
have (Int. Math. Res. Notices, 2004).

Theorem. Let A be asetofright€—comodules.
Consider the ring extension R C S, where R =
®poeaHOMe(Q, P) and S = &pgcaHOMA(Q, P).
T he following statements are equivalent.

(i) Py is f.g. projective for all P € A, ¥~ is Ga-
lois, and rp> is faithfully flat;

(i) € is flat and — @p ~ : Mp — M% is an
equivalence of categories;

(iii) 5€ is flat and A is a generating set of small
projectives for MY :

(iv) o€ is flat, Py is f.g. projective for all P € A,
> is Galois, and rS is faithfully flat.
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Now, this theorem can be applied to the easiest
case: cosemisimple corings, where A is a set of
representatives of all simple right comodules.
Then R has a very simple structure, and we
get (El Kaoutit, GT, Math. Z. 2003)

Theorem. Let A be any ring. An A—coring
¢ is cosemisimple if and there is a family \ of
finitely generated projective right A—modules,
and a division ring Dp C End(P4) for each P €
N\ such that

¢ = @ P*®DPP
PeN

Moreover, if N\ is another such a family, then
there is a bijective map ® : A — N, and a iso-
morphism of right A—modules gp : P — ®(P)
for every P € N\ such that Dg(py = ngpglgl.
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