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Corings.(Following Sweedler, 1975) Let A be

a ring. An A–coring is a three-tuple (C,∆C, εC)

which consists of uan A–bimodule C and two

homomorphism of A–bimodules

∆C : C // C⊗A C εC : C // A (1)

such that the diagrams

C
∆C //

∆C

²²

C⊗A C

C⊗
A
∆C

²²

C⊗A C
∆C⊗

A
C

// C⊗A C⊗A C

and

C
∆C //

∼=
""FFFFFFFF

FFFFFFF
FFFFF C⊗A C

C⊗
A

εC

²²

C⊗A A

C
∆C //

∼=
""FFFF

FFFFFFF
FFFFFFF

FF C⊗A C

εC⊗
A

C

²²

A⊗A C

commute.
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Example. Coring stemming from an entwining

structure (Brzeziński-Takeuchi)

(A, C)ϕ an entwining structure over a commu-

tative ring K, with A a K–algebra, C a K–

coalgebra and ϕ : C ⊗K A → A ⊗K C the en-

twining morphism.

Bimodule: A⊗K C, a(a′⊗K c)a′′ = aa′ϕ(c⊗a′′).

Comultiplication: the composite

A⊗
K

C
A⊗

K
∆C

// A⊗
K

C ⊗
K

C ∼= A⊗
K

C ⊗
A

A⊗
K

C

Counity: A⊗K εC : A⊗K C → A⊗K K ∼= A.
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Comodule categories. Given an A–coring C,
the category MC of all right C–comodules is
defined as follows.

Objects: pairs (M, ρM), with MA a module,
and ρM : M → M ⊗A C a morphism of A–
modules such that the diagrams

M
ρM //

ρM

²²

M ⊗
A

C

M⊗
A
∆C

²²

M ⊗
A

C
ρM⊗

A
C
// M ⊗

A
C⊗

A
C

M
ρM //

∼=
!!CC

CC
CC

CC
CC

CC
CC

CC
CC

C
M ⊗

A
C

M⊗
A

εC

²²

M ⊗
A

A

commute.

Morphisms: a morphism f : (M, ρM) → (N, ρN)
is a morphism of A–modules f : M → N such
that the following diagram commutes

M
f

//

ρM
²²

N

ρN
²²

M ⊗
A

C
f⊗

A
C

// N ⊗
A

C
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We have always a pair of functors

MC
U //MA−⊗AC

oo

with U left adjoint to −⊗A C. Here, U denotes

the forgetful functor.

Proposition. The following are equivalent for

an A–coring C.

(i) AC is flat;

(ii) MC is abelian and U is (left) exact;

(iii) MC is Grothendieck and U is (left) exact

Definition. An A–coring C is said to be right

cosemisimple if MC is a semisimple category

(i.e., it is Grothendieck and every object is a

sum of simples).

What is the structure of cosemisimple corings?
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It follows from the Proposition that if C is right
cosemisimple, then AC is flat and CA is projec-
tive. In fact, by using rational modules over the
convolution rings C∗ = HomA(C, AA) and ∗C =
HomA(C, AA), the following can be proved (El
Kaoutit, GT, Lobillo, arXiv/0201070)

Theorem. Let C be an A–coring. The fol-
lowing statements are equivalent:
(i) C is left cosemisimple
(ii) C is right cosemisimple
(iii) C is semisimple as a left C–comodule and
CA is flat;
(iv) C is semisimple as a right C–comodule and

AC is flat;
(v) C is semisimple as a right C∗–module and
CA is projective;
(vi) C is semisimple as a left ∗C–module and

AC is projective.

Thus, from the categorical point of view, cosemisim-
ple corings behave as expected. But, what is
their structure?
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Let C be an A–coring with a group-like g,

T = {a ∈ A|ag = ga}
the subring of g–coinvariants of A, and

can : A⊗T A → C

the canonical map (a ⊗T a′ 7→ aga′). We have

the following definition and theorem due to T.

Brzezinski, Alg. Rep. Theory, 2002.

Definition. (C, g) is Galois if can is a (coring)

isomorphism.

Theorem. The following are equivalent.

(i) AC is flat, and the functor

−⊗T A : MT →MC

is an equivalence of categories;

(ii) C is Galois and TA is faithfully flat.

Remarks: 1.- A Galois coring with T semi-

simple artinian is cosemisimple.
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2.- For a Galois coring with TA faithfully flat,
A becomes a finitely generated projective gen-
erator for the category MC.
3.- The functor −⊗T A is always left adjoint to
the functor HomC(A,−), this last being isomo-
morphic to the “coinvariants functor” defined
by g.

The last two remarks are reminiscent of Mitchell’s
Theorem or even of Gabriel-Popescu’s Theo-
rem. Thus, a new question arises: for which
corings C has MC a finitely generated projec-
tive generator?

Remark: If P ∈ MC is a small projective gen-
erator, then, by the adjunction U a − ⊗A C,
PA is small and projective, and, therefore, it is
finitely generated and projective as a module.

This is the idea: for P ∈ MC consider T =
End(PC), and the pair of adjoint functors

MC
HomC(P,−)

//MT−⊗T P
oo



It turns out that the counit of this adjunction
evaluated at C

χC : HomC(P, C)⊗T P → P

in conjunction with the isomorphism

P ∗ ∼= HomC(P, C)

leads to an A–bimodule map

can : P ∗ ⊗T P → C (ϕ⊗T p 7→ ϕ(p(0))p(1))

This is already a canonical map (El Kaoutit,
GT, Math. Z., 2003), at least in some cases:
if PA is finitely generated and projective with
dual basis {(e∗α, eα)} ⊆ P ∗ × P , then define

∆(ϕ⊗T p) = ϕ⊗T eα ⊗A e∗α ⊗T p

ev(ϕ⊗T p) = ϕ(p)

Proposition. (P ∗ ⊗T P,∆, ev) is an A–coring
and can : P ∗ ⊗T P → C is a homomorphism of
A–corings.

We christened P ∗⊗T P as comatrix coring be-
cause ∗(P ∗ ⊗T P ) ∼= End(TP )opp.
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Definition. (C, P ) is a Galois coring or P is
a Galois C–comodule if can is an isomorphism
(of A–corings).

With some help from Mitchell’s Theorem, we
have (El Kaoutit, GT, Math. Z., 2003)

Theorem. Let C be an A–coring, and P a
right C–comodule. Consider the ring extension
T ⊆ S, where T = End(PC) and S = End(PA).
The following statements are equivalent.
(i) AC is flat and P is a finitely generated and
projective generator for MC;
(ii) AC is flat, PA is finitely generated and pro-
jective, P is Galois, and −⊗T P : MT →MC is
an equivalence of categories;
(iii) PA is finitely generated and projective, P
is Galois, and TP is faithfully flat;
(iv) AC is flat, PA is finitely generated and pro-
jective, P is Galois, and TS is faithfully flat.

Precedents and/or related by Abuhlail, Brzezin-
ski, Caenepeel, De Groot, Vercruysse, Wis-
bauer.
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As a consequence of the former theorem, it
follows that the cosemisimple corings with a
unique type of simple are a special case of co-
matrix corings. With some extra work, one
can get even a uniqueness statement for their
structure (El Kaoutit, GT, Math. Z. 2003)

Theorem. A coring C over a ring A is cosemisim-
ple with a unique type of simple if and only if
there is PA finitely generated and projective
and a division ring D ⊆ End(PA) such that
C ∼= P ∗ ⊗D P .

Moreover, for P ′A f.g. projective and a division
ring D′ ⊆ End(P ′A), we have that C ∼= P ′∗⊗D′P ′
if and only if there is an isomorphism of right
A–modules g : P → P ′ such that gDg−1 = D′.

This theorem could be easily derived for the
case of cosemisimple corings with finitely many
simples. In the general case (infinite many
types of simples), more work was needed... Al-
ternatively, are there infinite comatrix corings?
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Assume MC to be abelian (which implies to

be Grothendieck), and that it has a generating

set of small projectives A. Then, by Freyd’s

Theorem, we have an equivalence of categories

MC ∼ Funct(Aop, Ab),

where A denotes as well the full subcategory

of MC whose objects are those in A, and

Funct(Aop, Ab)

is the category of contravariant additive func-

tors from A to the category of abelian groups

Ab.

This equivalence is given by the functor

F1 = MC → Funct(Aop, Ab) (N 7→ HomC(−, N)),

which makes sense for any small subcategory

A of MC.
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Let A any set of right C–comodules. Con-

sider the (in general not unitary) ring R =

⊕P,Q∈AHomC(Q, P ). Elements in R can be thought

as matrices (rPQ) with finitely many nonzero

entries rPQ ∈ HomC(Q, P ) with the usual ma-

trix product.

We have then the functor

F2 : Funct(Aop, Ab) →MR (G 7→ ⊕P∈AG(P )),

where MR is the category of all unital (i.e.

MR = R) right R–modules.

It turns out (Gabriel) that F2 is an equivalence

of categories. Now, we have the functor

F = F2F1 : MC →MR (X 7→ ⊕Q∈AHomC(Q, X))

Thus, F (P ) ∼= 1PR, where 1P ∈ R is the idem-

potent matrix corresponding to P . It is easy to

see that the set {1PR|P ∈ A} is a generating

set of small projectives of MR.
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We have thus the following commutative dia-

gram of functors

MC F //

F1
))RRRRRRRRRRRRRRR MR

Funct(Aop, Ab)

F2
∼

55lllllllllllllll

,

and F maps the set of comodules A onto the

generating set of small projectives

{1PR|P ∈ A}

Therefore, A is a generating set of small pro-

jectives for MC if and only if F is an equiva-

lence of categories.

Nothing new yet!
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Recall that we have always a pair of functors

MC
U //MA−⊗AC

oo

with U left adjoint to −⊗A C. Here, U denotes

the forgetful functor.

Thus, if MC is abelian (e. g. AC is flat) and

P ∈ MC is a small projective, then PA is a

small projective in MA, that is, PA is finitely

generated and projective as a right module.

This gives the chance of extract the structure

of C from a generating set of small projective

comodules.
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No assumptions made on MC.

Let A = {PC} be a set of comodules such that

every PA is finitely generated and projective.

For each P ∈ A, let {(e∗αP
, eαP )} ⊆ P ∗ × P be

a dual basis (P ∗ = HomA(P, A)). We have

comodules

ΣC = ⊕P∈AP, CΣ
† = ⊕P∈AP ∗

Consider the (in general not unitary) ring

R = ⊕P,Q∈AHomC(Q, P )

The ring R acts on the left on Σ and on the

right Σ†, making them unital R–modules (that

is, RΣ = Σ and Σ†R = Σ†). It is useful to

think of the elements of Σ† as row vectors

(resp. of Σ as column vectors).

Lemma. The right C–comodule structure map

ρΣ : Σ → Σ ⊗A C is left R–linear, and the left

C–comodule structure map λΣ† : Σ† → C⊗A Σ†
is right R–linear.
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We have a pair of functors

MA

−⊗AΣ†
//MR−⊗RΣ

oo

where MA and MR are categories of right uni-

tal modules. It is known that − ⊗R Σ is left

adjoint to −⊗A Σ†. The counit of this adjunc-

tion is built from the evaluation map

ev : Σ† ⊗R Σ → A (ϕ⊗R x 7→
∑

ϕP (xP )),

which is a homomorphism of A–bimodules. The

unit is constructed from the homomorphism of

rings

R ⊆ ⊕P,Q∈AHomA(Q, P ) ∼= Σ⊗A Σ†

From this, “tensoring on the left by Σ†
R and

on the right by RΣ”, a coassociative comulti-

plication can be easily obtained

∆ : Σ† ⊗R Σ → Σ† ⊗R Σ⊗A Σ† ⊗R Σ

It turns out that (Σ† ⊗R Σ,∆, ev) is an A–

coring; the infinite comatrix coring.
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Proposition. The following diagram is con-

mutative. The resulting map can : Σ†⊗RΣ → C

is a homomorphism of A–corings.

Σ† ⊗R Σ⊗A C
ev⊗AC

))RRRRRRRRRRRRRRRRRRRR

Σ† ⊗R Σ

Σ†⊗RρΣ
44iiiiiiiiiiiiiiiii

λ
Σ†⊗RΣ **UUUUUUUUUUUUUUUUU

can //__________________________ C

C⊗A Σ† ⊗R Σ
C⊗Aev

55llllllllllllllllllll

Definition. The comodule Σ (or the set of

comodules A) is said to be R–C-Galois if can

is an isomorphism.

We will show that a Galois comodule Σ allows

to reconstruct some comodules from the cat-

egory MR by using the functor −⊗R Σ.
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Recall that for N ∈ MC the cotensor product
N¤CΣ

† is the equalizer

N¤CΣ
† eq

N,Σ†
// N ⊗A Σ† ρN⊗AΣ†

//

N⊗Aλ
Σ†

// N ⊗A C⊗A Σ†

This gives a functor −¤CΣ
† : MC →MR. Now,

in the adjunction isomorphism

HomA(M ⊗R Σ, N) ∼= HomR(M, N ⊗A Σ†)

gives, by restriction, the isomorphism

HomC(M ⊗R Σ, N) ∼= HomR(M, N¤CΣ
†)

which shows that in the pair of functors

MC
−¤CΣ

†
//MR−⊗RΣ

oo

− ⊗R Σ is left adjoint to −¤CΣ
†. The counit

of this adjunction at N ∈MC is given by

N ⊗A Σ† ⊗R Σ
N⊗Aev

))SSSSSSSSSSSSSSSSSSSS

(N¤CΣ
†)⊗R Σ

δN //

eq
N,Σ†⊗RΣ 33gggggggggggggggggggg

N
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We have the following commutative diagram

(N¤CΣ
†)⊗

R
Σ

eq
N,Σ†⊗RΣ

//

eq
N,Σ†⊗RΣ

²²

δN

%%

N ⊗
A

Σ† ⊗
R

Σ

N⊗
A

λ
Σ†⊗RΣ

²²

N⊗
A

can

zz

N ⊗
A

Σ† ⊗
R

Σ
ρN⊗

A
Σ†⊗

R
Σ

//

N⊗
A

ev

²²

N ⊗
A

C⊗
A

Σ† ⊗
R

Σ

N⊗
A

C⊗
A

ev

²²

N ρN
// N ⊗

A
C

Define a natural transformation

Ψ : (−¤CΣ
†)⊗R Σ → −¤C(Σ

† ⊗R Σ)

making commute the diagrams (for N ∈MC)

(N¤CΣ
†)⊗

R
Σ

eq
N,Σ†⊗RΣ

''NNNNNNNNNNNNNNNNNNNNNNNN

ΨN

²²Â
Â
Â
Â
Â
Â

N¤C(Σ
† ⊗

R
Σ)

eq
N,Σ†⊗

R
Σ

// N ⊗
A

Σ† ⊗
R

Σ //
//
N ⊗

A
C⊗

A
Σ† ⊗

A
Σ
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We thus get the following diagram

N ⊗
A

Σ† ⊗
R

Σ

N⊗
A

can

²²

(N¤CΣ
†)⊗

R
Σ ΨN //

eq
N,Σ†⊗RΣ

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

δN

²²

N¤C(Σ
† ⊗

R
Σ)

eq
N,Σ†⊗

R
Σ

99sssssssssssssssssssss

N¤Ccan

²²

N ⊗A C

N ∼ //

ρN
fffffffffffffffffffffffffffffffffffff

33gggggggggggggggggggggggg

N¤CC

eqN,C

77oooooooooooooooooooooooo

which turns out to be commutative.

Proposition. Let Σ be a Galois C–comodule.
The following are equivalent for N ∈MC.
(i) δN gives an isomorphism

(N¤CΣ
†)⊗R Σ ∼= N ;

(ii) ΨN gives an isomorphism

(N¤CΣ
†)⊗R Σ ∼= N¤C(Σ

† ⊗R Σ);

(iii) −⊗R Σ preserves the equalizer eqN,Σ†.
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The Galois comodule structure Theorem, I

With the collaboration of J. Vercruysse (work

in progress), or, alternatively, with the help of

a result by Abrams and Menini, J.P.A.A., 1996,

we have

Theorem. If PA is finitely generated and pro-

jective for every P ∈ A, the following are equiv-

alent.

(i) Σ is Galois and RΣ is flat;

(ii) AC is flat and A is a generating set of small

(or f.g.) objects for MC;

(iii) AC is flat and δN is an isomorphism for

every N ∈MC.

With A a singleton, this has been formulated

in Brzezinski-Wisbauer’s corings book, (2003).

Suggestions: Apply this to reconstruct a coal-

gebra from its finite dimensional comodules.
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The Galois Comodule Structure, II

With the collaboration of L. El Kaoutit, and

some help from Freyd/Gabriel’s Theorem, we

have (Int. Math. Res. Notices, 2004).

Theorem. Let A be a set of right C–comodules.

Consider the ring extension R ⊆ S, where R =

⊕P,Q∈AHomC(Q, P ) and S = ⊕P,Q∈AHomA(Q, P ).

The following statements are equivalent.

(i) PA is f.g. projective for all P ∈ A, Σ is Ga-

lois, and RΣ is faithfully flat;

(ii) AC is flat and − ⊗R Σ : MR → MC is an

equivalence of categories;

(iii) AC is flat and A is a generating set of small

projectives for MC;

(iv) AC is flat, PA is f.g. projective for all P ∈ A,

Σ is Galois, and RS is faithfully flat.
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Now, this theorem can be applied to the easiest

case: cosemisimple corings, where A is a set of

representatives of all simple right comodules.

Then R has a very simple structure, and we

get (El Kaoutit, GT, Math. Z. 2003)

Theorem. Let A be any ring. An A–coring

C is cosemisimple if and there is a family Λ of

finitely generated projective right A–modules,

and a division ring DP ⊆ End(PA) for each P ∈
Λ such that

C ∼=
⊕

P∈Λ

P ∗ ⊗DP
P

Moreover, if Λ′ is another such a family, then

there is a bijective map Φ : Λ → Λ′, and a iso-

morphism of right A–modules gP : P → Φ(P )

for every P ∈ Λ such that DΦ(P ) = gPDPg−1
P .
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