Nota: Part of the results expounded have been obtained in collaboration with L. El Kaoutit y F.J. Lobillo.

Semisimple Corings

José Gómez Torrecillas
Universidad de Granada

Brussels, May 29th, 2002

Corings.(Following Sweedler, 1975) Let A be a ring. An A-coring is a three-tuple ($\mathfrak{C}, \Delta_{\mathfrak{C}}, \epsilon_{\mathfrak{C}}$) which consists of uan A-bimodule \mathfrak{C} and two homomorphism of A-bimodules

$$
\begin{equation*}
\Delta_{\mathfrak{C}}: \mathfrak{C} \longrightarrow \mathfrak{C} \otimes_{A} \mathfrak{C} \quad \epsilon_{\mathfrak{C}}: \mathfrak{C} \longrightarrow A \tag{1}
\end{equation*}
$$

such that the diagrams

and

commute.

Example. Sweedler's canonical coring. Consider $B \leq A$ a subring.

Bimodule:

$$
A \otimes_{B} A, \quad a\left(a^{\prime} \otimes a^{\prime \prime}\right) a^{\prime \prime \prime}=a a^{\prime} \otimes a^{\prime \prime} a^{\prime \prime \prime}
$$

Comultiplication:

$$
\begin{gathered}
\Delta: A \otimes_{B} A \longrightarrow A \otimes_{B} A \otimes_{A} A \otimes_{B} A \\
a \otimes a^{\prime} \longmapsto a \otimes 1 \otimes 1 \otimes a^{\prime}
\end{gathered}
$$

Counity:

$$
\epsilon: A \otimes_{B} A \longrightarrow A, \quad a \otimes a^{\prime} \longmapsto a a^{\prime}
$$

Example. Idempotent coring.
Bimodule: A twosided ideal I such that $I^{2}=I$ and ${ }_{A} A / I$ or A / I_{A} is flat.

Comultiplication: The canonical isomorphism $I \cong I \otimes_{A} I$.

Counity: The inclusion $I \subseteq A$.

Example. Coring stemming from an entwining structure (Brzeziñski-Takeuchi)
$(A, C)_{\varphi}$ an entwining structure over a commutative ring K, with A a K-algebra, C a K coalgebra and $\varphi: C \otimes_{K} A \rightarrow A \otimes_{K} C$ the entwining morphism.

Bimodule: $A \otimes_{K} C, a\left(a^{\prime} \otimes_{K} c\right) a^{\prime \prime}=a a^{\prime} \varphi\left(c \otimes a^{\prime \prime}\right)$.
Comultiplication: the composite

$$
A \underset{K}{\otimes} C \xrightarrow[K]{A \otimes \Delta_{C}} A \underset{K}{\otimes} C \underset{K}{\otimes} C \cong A \underset{K}{\otimes} C \underset{A}{\otimes} A \underset{K}{\otimes} C
$$

Counity: $A \otimes_{K} \epsilon_{C}: A \otimes_{K} C \rightarrow A \otimes_{K} K \cong A$.

Comodule categories. Given an A-coring \mathfrak{C}, the category $\mathcal{M}^{\mathfrak{C}}$ of all right \mathfrak{C}-comodules is defined as follows.

Objects: pairs $\left(M, \rho_{M}\right)$, with M_{A} a module, and $\rho_{M}: M \rightarrow M \otimes_{A} \mathfrak{C}$ a morphism of $A-$ modules such that the diagrams

commute.
Morphisms: a morphism $f:\left(M, \rho_{M}\right) \rightarrow\left(N, \rho_{N}\right)$ is a morphism of A-modules $f: M \rightarrow N$ such that the following diagram commutes

$\mathcal{M}^{\mathfrak{C}}$ is an additive category with inductive limits, but it is not abelian in general (kernels can fail).

Theorem. The following are equivalent.
(i) $\mathcal{M}^{\mathfrak{C}}$ is abelian and U is left exact;
(ii) $\mathcal{M}^{\mathfrak{C}}$ is a Grothendieck category and U is left exact;
(iii) ${ }_{A} \mathfrak{C}$ is flat.

Remark. $\mathcal{M}^{\mathfrak{C}}$ can be abelian without ${ }_{A} \mathfrak{C}$ flat.
Example. Let ${ }_{R} B_{S}$ a bimodule, $A=\left(\begin{array}{cc}R & B \\ 0 & S\end{array}\right)$, and $I=I^{2}=\left(\begin{array}{ll}R & B \\ 0 & 0\end{array}\right)$. Then $\mathcal{M}^{I} \sim \mathcal{M}_{R}$ but ${ }_{A} I$ is no flat unless ${ }_{R} B$ is.

Example worked out.

$$
A=\left(\begin{array}{cc}
R & B \\
0 & S
\end{array}\right), I=\left(\begin{array}{cc}
R & B \\
0 & 0
\end{array}\right)
$$

Objects of $\mathcal{M}_{A}: M=\left(M^{\prime}, M^{\prime \prime}, \mu\right), M^{\prime} \in \mathcal{M}_{R}, M^{\prime \prime} \in$ \mathcal{M}_{S} and $\mu: M^{\prime} \otimes_{R} B \rightarrow M^{\prime \prime}$ is S-linear. Morphisms of \mathcal{M}_{A} :

$$
\left(f^{\prime}, f^{\prime \prime}\right):\left(M_{R}^{\prime}, M_{S}^{\prime \prime}, \mu\right) \rightarrow\left(N_{R}^{\prime}, N_{S}^{\prime \prime}, \nu\right)
$$

making commute $M^{\prime} \otimes_{R} B \xrightarrow{\mu} M^{\prime \prime}$

$$
\stackrel{\mid f \otimes B}{ } \stackrel{\mid f^{\prime \prime}}{N^{\prime} \otimes_{R} N \xrightarrow{\nu} N^{\prime \prime}}
$$

$-\otimes_{A} I \cong F$, where $F: \mathcal{M}_{A} \rightarrow \mathcal{M}_{A}$ is given by

$$
F\left(M^{\prime}, M^{\prime \prime}, \mu\right)=\left(M^{\prime}, M^{\prime} \otimes_{R} B, 1\right)
$$

and
$F(M)=\left(M^{\prime}, M^{\prime} \otimes_{R} B, 1\right) \xrightarrow{(1, \mu)}\left(M^{\prime}, M^{\prime \prime}, \mu\right)=M$ is natural. Using this, we have \mathcal{M}^{I} consists of the modules $\left(M^{\prime}, M^{\prime \prime}, \mu\right)$ such that μ is isomorphism, and the functor $\mathcal{M}^{I} \rightarrow \mathcal{M}_{A}$ which sends ($M^{\prime}, M^{\prime \prime}, \mu$) onto M^{\prime} is an equivalence.

Two convolution rings

$$
\begin{array}{lc}
* \mathfrak{C}=\operatorname{Hom}\left({ }_{A} \mathfrak{C}, A\right) & \left(f *_{l} g=f \circ\left(\mathfrak{C} \otimes_{A}^{\otimes} g\right) \circ \Delta\right) \\
\mathfrak{C}^{*}=\operatorname{Hom}\left(\mathfrak{C}_{A}, A\right) & \left(f *_{r} g=g \circ\left(f{\underset{A}{\otimes} \mathfrak{C}) \circ \Delta)} \begin{array}{l}
\text { (}
\end{array}\right)\right.
\end{array}
$$

Two pairs of rings

Thus, we have a bimodule structure $*_{\mathfrak{C}} \mathfrak{C}_{\mathfrak{C}}$.

Rational modules.

We have a functor $\mathcal{M}^{\mathfrak{C}} \rightarrow{ }^{*} \mathfrak{C} \mathcal{M}$, which makes $M \in \mathcal{M}^{\mathfrak{C}}$ a module ${ }^{*} \mathbb{C}^{M}$ with the action $\varphi m=$ $\sum m_{0} \varphi\left(m_{1}\right)$.

Try to reverse the process: Let $M \in{ }_{* \mathbb{C}} \mathcal{M}$, an element $m \in M$ is said to be rational if $\varphi m=$ $\sum m_{i} \varphi\left(c_{i}\right)$ for every $\varphi \in^{*} \mathfrak{C}$ and some ($\left.m_{i}, c_{i}\right) \in$ $M \times \mathfrak{C}$.

Define the coaction $M \rightarrow M \otimes_{A} \mathfrak{C}$ which sends m onto $\sum_{i} m_{i} \otimes_{A} c_{i}$. This is mathematically sound whenever ${ }_{A} \mathfrak{C}$ is required to be projective.

This defines a functor $\operatorname{Rat}^{l}:{ }^{*} \mathcal{C} \mathcal{M} \rightarrow \mathcal{M}^{\mathfrak{C}}$ defined as

$$
\operatorname{Rat}^{l}(M)=\{m \in M \mid m \text { is rational }\}
$$

which allows to recognize $\mathcal{M}^{\mathfrak{C}}$ as isomorphic to a full subcategory of ${ }^{c} \mathcal{C} \mathcal{M}$.

Theorem. Let \mathfrak{C} be an A-coring. The following statements are equivalent:
(i) every left \mathfrak{C}-comodule is semisimple and ${ }^{\mathfrak{C}} \mathcal{M}$ is abelian;
(ii) every right \mathfrak{C}-comodule is semisimple and $\mathcal{M}^{\mathfrak{C}}$ is is abelian;
(iii) \mathfrak{C} is semisimple as a left \mathfrak{C}-comodule and \mathfrak{C}_{A} is flat;
(iv) \mathfrak{C} is semisimple as a right \mathfrak{C}-comodule and ${ }_{A} \mathfrak{C}$ is flat;
(v) \mathfrak{C} is semisimple as a right \mathfrak{C}^{*}-module and \mathfrak{C}_{A} is projective;
(vi) \mathfrak{C} is semisimple as a left * \mathfrak{C}-module and ${ }_{A} \mathfrak{C}$ is projective.

Proof: $(i) \Rightarrow$ (iii) Every monomorphism splits in the semisimple category $\mathfrak{C}_{\mathcal{M}}$. Thus U : $\mathfrak{C}_{\mathcal{M}} \rightarrow{ }_{A} \mathcal{M}$ preserves monomorphisms, whence it is exact. Therefore, \mathfrak{C}_{A} is flat.
(iii) \Rightarrow (iv) \mathfrak{C}_{A} flat $\Rightarrow \mathfrak{C}_{\mathcal{M}}$ Grothendieck and $\mathfrak{C} \otimes_{A}-:{ }_{A} \mathcal{M} \rightarrow{ }^{\mathfrak{C}} \mathcal{M}$ is exact.
Thus, $U \dashv \mathfrak{C} \otimes_{A}-\Rightarrow U:{ }^{\mathfrak{C}} \mathcal{M} \rightarrow{ }_{A} \mathcal{M}$ preserves projectives.
If $M \in \mathfrak{C}_{\mathcal{M}}$, then

and M is semisimple.
Thus, every object in ${ }^{\mathfrak{C}} \mathcal{M}$ is projective, in particular $\mathfrak{C}^{\mathfrak{C}}$ is projective. Hence, A 兵 is projective. Finally, $\mathfrak{C} \in \mathfrak{C}^{\mathcal{M}}$ semisimple $\Rightarrow \operatorname{End}\left(\mathfrak{C}^{\mathfrak{C}}\right) \mathfrak{C}$ is a semisimple module. Since ${ }^{*} \mathfrak{C} \cong \operatorname{End}\left(\mathfrak{C}^{\mathfrak{C}}\right)$, we get that $* \mathfrak{C}^{\mathfrak{C}}$ is semisimple.
(vi) \Rightarrow (ii) If ${ }_{A} \mathfrak{C}$ is projective, then $\mathcal{M}^{\mathfrak{C}} \sim \operatorname{Rat}\left({ }^{*}{ }^{\mathfrak{C}} \mathcal{M}\right)$.

Thus, $\mathcal{M}^{\mathfrak{C}}$ is abelian. Moreover, $* \mathfrak{C} \mathfrak{C}$ subgenerates $\operatorname{Rat}\left({ }^{*} \mathbb{C}_{\mathcal{M}}\right)$ and, thus, this category is semisimple.
$\mathfrak{I} \subseteq \mathfrak{C}$ subbicomodule \equiv
$\Delta(\mathfrak{I}) \subseteq \operatorname{Ker}\left(\mathfrak{C} \otimes_{A} \mathfrak{C} \rightarrow \mathfrak{C} / I \otimes_{A} \mathfrak{C} / I\right)$
\mathfrak{C} simple \equiv every subbicomodule is trivial

Theorem. The A-coring \mathfrak{C} is semisimple if and only if $\mathfrak{C}=\oplus_{\lambda \in \Lambda} \mathfrak{C}_{\lambda}$ for \mathfrak{C}_{λ} simple semiartinian A-corings with ${ }_{A} \mathfrak{C}_{\lambda}, \mathfrak{C}_{\lambda A}$ proyective for every λ. This decomposition is unique.
semiartinian object \equiv every proper factor contains a simple subobject.

Theorem. Assume $A_{A} \mathfrak{C}$ y \mathfrak{C}_{A} projective. The following are equivalent
(i) \mathfrak{C} is a simple semiartinian A-coring;
(ii) \mathfrak{C} is simple with nonzero left socle;
(iii) \mathfrak{C} is semisimple with a unique type of simple left comodule;
(iv) \mathfrak{C} is simple with nonzero right socle;
(v) \mathfrak{C} is semisimple with a unique type of simple right comodule;
(vi) $\mathfrak{C} \cong \Sigma^{*} \otimes_{D} \Sigma$, where ${ }_{D} \Sigma_{A}$ is a bimodule with Σ_{A} finitely generated and projective, and D a division ring.

Corollary. (Wedderburn's Theorem) Let C be a coalgebra over a field K. Then C is simple if and only if $C \cong \Sigma^{*} \otimes_{D} \Sigma$ for a finitedimensional vector space Σ_{K} and a division ring $D \subseteq \operatorname{End}\left(\Sigma_{K}\right)$. Moreover, ${ }^{*} C \cong \operatorname{End}\left({ }_{D} \Sigma\right)$.

Comatrix Corings

Let ${ }_{B} \Sigma_{A}$ be a $B-A$-bimodule; assume Σ_{A} is finitely generated and projective. Consider $\Sigma^{*}=\operatorname{Hom}_{A}\left(\Sigma, A_{A}\right)$ canonically as an $A-B-$ bimodule.

Pick $\left\{e_{i}^{*}, e_{i}\right\} \subseteq \Sigma^{*} \times \Sigma$ a dual basis.
Bimodule: $\Sigma^{*} \otimes_{B} \Sigma, a(\varphi \otimes u) a^{\prime}=a \varphi \otimes u a^{\prime}$.
Comultiplication:

$$
\Sigma^{*} \otimes_{B} \Sigma \xrightarrow{\Delta} \Sigma^{*} \otimes_{B} \Sigma \otimes_{A} \Sigma^{*} \otimes_{B} \Sigma
$$

$$
\varphi \otimes_{B} u \longmapsto \sum_{i} \varphi \otimes_{B} e_{i} \otimes_{A} e_{i}^{*} \otimes_{B} u
$$

Counity:

$$
\Sigma^{*} \otimes_{B} \Sigma \xrightarrow{\epsilon} A, \quad \varphi \otimes_{B} u \longmapsto \varphi(u)
$$

The name of "comatrix" comes from

$$
{ }^{*}\left(\Sigma^{*} \otimes_{B} \Sigma\right) \cong \operatorname{End}\left({ }_{B} \Sigma\right)
$$

as rings.

Examples of comatrix corings

Sweedler's canonical coring. Let $B \subseteq A$ a ring extension. Put $\Sigma={ }_{B} A_{A}$. Then $\Sigma^{*} \otimes_{B}$ $\Sigma \cong A \otimes_{B} A$ is the usual Sweedler's canonical A-coring.

Dual coring. Let $A \subseteq B$ a ring extension. Assume B_{A} finitely generated and projective. Take $\Sigma={ }_{B} B_{A}$; then $\Sigma^{*} \otimes_{B} \Sigma=B^{*} \otimes_{B} B \cong B^{*}$, and the A-coring structure is dual to the multiplication of B.

Comatrix coalgebras. Let $A=B=K$ be a commutative field, Σ a finite dimensional vector space. Then $\Sigma^{*} \otimes_{K} \Sigma$ is the usual comatrix coalgebra.

The structure theorem.

Theorem. Let A be any ring. An A-coring \mathfrak{C} is semisimple if and there is a family \wedge of finitely generated projective right A-modules, and a division ring $D_{\Sigma} \subseteq$ End $\left(\Sigma_{A}\right)$ for each $\Sigma \in \Lambda$ such that

$$
\mathfrak{C} \cong \bigoplus_{\Sigma \in \Lambda} \Sigma^{*} \otimes_{D_{\Sigma}} \Sigma
$$

Moreover, if Λ^{\prime} is another such a family, then there is a bijective $\operatorname{map} \Phi: \wedge \rightarrow \Lambda^{\prime}$, and a isomorphism of right A-modules $g_{\Sigma}: \Sigma \rightarrow \Phi(\Sigma)$ for every $\Sigma \in \wedge$ such that $D_{\Phi(\Sigma)}=g_{\Sigma} D_{\Sigma} g_{\Sigma}{ }^{-1}$.

