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Corings.(Following Sweedler, 1975) Let A be
a ring. An A—coring is a three-tuple (€, Ay, €¢)
which consists of uan A—bimodule € and two
homomorphism of A—bimodules

A@Z@H@@A@ EQ::Q:HA (1)
such that the diagrams
¢ B¢ _gg,e
AQ Q:E%AQ:
AeRC
CRyC A CRACR4C
and
¢ “teg,e ¢ Ceg,e
¢ ¢
o 1 =Y
C®Rq A ARpC

commute.



Example. Sweedler’'s canonical coring. Con-
sider B < A a subring.

Bimodule:

n_1n

ARp A, ald ®dNd" =ad ®d’a
Comultiplication:

AA@BAHA(X)BA@AA@BA

a®a aR1®1Qdad

Counity:

c.: AQpA—A, a®d—ad

Example. Idempotent coring.

Bimodule: | A twosided ideal I such that I2 =T
and 4A/I or A/I, is flat.

Comultiplication: | The canonical isomorphism
I=1T®41.

Counity: | The inclusion I C A.




Example. Coring stemming from an entwining
structure (Brzezinski- Takeuchi)

(A,C), an entwining structure over a commu-
tative ring K, with A a K-algebra, C a K-
coalgebra and ¢ : C ®r A — ARk C the en-
twining morphism.

Bimodule: | AQ i C, a(a’ @k c)a’ = aa’p(c®ad").

Comultiplication: | the composite

ARA
K

A®C N CROC2ARCRARC
K K K K A K

Counity: A®K60A®KC—>A®KK%A




Comodule categories. Given an A—coring €,
the category MY of all right €—comodules is
defined as follows.

Objects: | pairs (M, pys), with M4 a module,
and ppf - M — M ®4 € a morphism of A—
modules such that the diagrams

P MRQICE PM M & €
M A M A
pM M®Ae R M&eg
P&
M®C AMRSQPCER € MR A
A A A A
commute.

Morphisms: |a morphism f : (M, pps) — (N, pn)
is @ morphism of A—modules f : M — N such
that the following diagram commutes

f

M N

PM PN
e
MRIE A N%)Q

A




MY is an additive category with inductive lim-
its, but it is not abelian in general (kernels can
fail).

MC the forgetful functor

gl |—ee U has a right adjoint
A @4

M4

Theorem. The following are equivalent.

(i) M% is abelian and U is left exact;

(ii) MY is a Grothendieck category and U is
left exact,

(iii) 5€ is flat.

Remark. M?Y can be abelian without 4¢ flat.

Example. Let pBg a bimodule, A = (g l;)

g g). Then M! ~ Mp but 4TI

is no flat unless pB is.

and I = J2 =



Example worked out.
R B R B
1= (6 5= (6 7)
Objectsof My: M = (M, M", ), M' €¢ Mg, M" ¢
Mg and p: M'®p B — M" is S—linear.
Morphisms of M 4:
(' ")+ (Mg, Mg, 1) — (Ng, Ng, v)
making commute M’ @p B M7
JeB
N/ ®RNLN”
—®41=F, where F: M4 — M, is given by
F(M',\M", p) =M M ®pB,1)
and
F(M) = (M', M' © B, 1) (M!, M7, ) = M

IS natural. Using this, we have MY consists of
the modules (M', M 1) such that p is isomor-
phism, and the functor M{ — M 4 which sends
(M, M" 1) onto M’ is an equivalence.



Two convolution rings

"¢ = Hom(4¢, A) (f*zg=f0(€§>g)OA)

" = Hom(<&y, A) (f*rg=90(f§>€)oA)

Two pairs of rings

End(s¢) f End(Cq)°P

ST

@ eo f g

Thus, we have a bimodule structure «gCegs.



Rational modules.

We have a functor M% — .M, which makes
M € M% a module «zM with the action ¢m =

>-mop(my).

Try to reverse the process: Let M € « M, an
element m € M is said to be rational if pm =
>-m;p(c;) for every ¢ € *€ and some (m;,c;) €
M x €.

Define the coaction M — M ® 4 € which sends
m onto >, m; ®4 c;. This is mathematically
sound whenever 4¢ is required to be projective.

This defines a functor Rat! : «\gM — MY de-
fined as

Rat!(M) = {m € M | m is rational}

which allows to recognize M as iIsomorphic to
a full subcategory of «g M.



Theorem. Let € be an A—coring. The fol-
lowing statements are equivalent:

(i) every left €—comodule is semisimple and ¢ M
is abelian;

(ii) every right €—comodule is semisimple and
MY is is abelian;

(iii) € is semisimple as a left €&—comodule and
¢4 is flat;

(iv) € is semisimple as a right €&—comodule and
¢ is flat,

(v) € is semisimple as a right ¢*—module and
€4 is projective;

(vi) € is semisimple as a left *¢€—module and
A€ is projective.



Proof: (i) = (ii1) Every monomorphism splits
in the semisimple category ¢M. Thus U :
EM — 4 M preserves monomorphisms, whence
it is exact. Therefore, €4 is flat.

(#ii) = () €4 flat = YM Grothendieck and
C4— 1 aM — ETM is exact.

Thus, U4€®4— = U : TM — 4M preserves
projectives.

If M € M, then 0 ,

O—M CRqa M

A) R4 C = o (1)
and M is semisimple.
Thus, every object in ¢ M is projective, in par-
ticular ¢C is projective. Hence, 4C is projective.
Finally, ¢ € ®M semisimple = gnq(,¢)€ IS a
semisimple module. Since *¢ = End(g¢), we
get that «¢C is semisimple.

(vi) = (ii) If 4€ is projective, then M% ~ Rat("¢M).

Thus, M is abelian. Moreover, ¢ subgen-
erates Rat('®M) and, thus, this category is
semisimple.
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J C ¢ subbicomodule =
A(J)CKer(€Eu€—C/T®R4C/1)

¢ simple = every subbico-
module is trivial

Theorem. The A—coring € is semisimple if
and only if € = ®©)cpC€) for €, simple semiar-
tinian A—corings with 4C€,, €y 4 proyective for
every X. This decomposition is unique.

semiartinian object =
every proper factor
contains a simple sub-
object.

11



Theorem. Assume 4,& y €4 projective. The
following are equivalent

(i) € is a simple semiartinian A—coring;
(ii) € is simple with nonzero left socle;

(iii) € is semisimple with a unique type of sim-
ple left comodule,

(iv) € is simple with nonzero right socle,

(v) € is semisimple with a unique type of simple
right comodule;

(vi) € = X*®p 2, where p> 4 is a bimodule
with > 4 finitely generated and projective, and
D a division ring.

Corollary. (Wedderburn’s Theorem) LetC
be a coalgebra over a field K. Then C is sim-
ple if and only if C = X* ®p X for a finite-
dimensional vector space 2 and a division
ring D C End(X ). Moreover, *C = End(pX).
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Comatrix Corings

Let g> 4 be a B — A—bimodule; assume 2> 4
is finitely generated and projective. Consider
>* = Homy(X,A4) canonically as an A — B—
bimodule.

Pick {e,e;} C 3X* x ¥ a dual basis.

Bimodule: | Z*®p X, alp® u)a’ = ap ® ua’.

Comultiplication:

SHrRRpY L TFRpYAitepE

Y QB U i Rpe; Qe Qpu
Counity:
SrRp Xt A, p @p u—p(u)

The name of “comatrix’ comes from
(¥ ®p X) = End(pX),

as rings.
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Examples of comatrix corings

Sweedler’s canonical coring. Let B C A a
ring extension. Put X = gpA,4. Then X* ®p
> = A®p A is the usual Sweedler’'s canonical
A—coring.

Dual coring. Let A C B a ring extension.
Assume B, finitely generated and projective.
Take > = By, then 2*®p3> = B*®p B = B*,
and the A—coring structure is dual to the mul-
tiplication of B.

Comatrix coalgebras. Let A= B = K be a
commutative field, > a finite dimensional vec-
tor space. Then X*® g > is the usual comatrix
coalgebra.
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The structure theorem.

Theorem. Let A be any ring. An A—coring
¢ is semisimple if and there is a family N\ of
finitely generated projective right A—modules,
and a division ring Dy C End(X 4) for each
2 € N\ such that

¢ = @ > * ®DZ 2
> e
Moreover, if N\ is another such a family, then
there is a bijective map ® : A — N, and a iso-
morphism of right A—modules gy : ~ — P(X)
for every > € N\ such that Dg(sy = gZDZgil.
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