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Corings.(Following Sweedler, 1975) Let A be

a ring. An A–coring is a three-tuple (C,∆C, εC)

which consists of uan A–bimodule C and two

homomorphism of A–bimodules

∆C : C // C⊗A C εC : C // A (1)

such that the diagrams

C
∆C //

∆C

��

C⊗A C

C⊗
A
∆C

��

C⊗A C
∆C⊗

A
C

// C⊗A C⊗A C

and

C
∆C //

∼=
""FFFFFFFFFFFFFFFFFFFF C⊗A C

C⊗
A

εC

��

C⊗A A

C
∆C //

∼=
""FFFFFFFFFFFFFFFFFFFF C⊗A C

εC⊗
A

C

��

A⊗A C

commute.
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Example. Sweedler’s canonical coring. Con-
sider B ≤ A a subring.

Bimodule:

A⊗B A, a(a′ ⊗ a′′)a′′′ = aa′ ⊗ a′′a′′′

Comultiplication:

∆ : A⊗B A // A⊗B A⊗A A⊗B A

a⊗ a′ � // a⊗ 1⊗ 1⊗ a′

Counity:

ε : A⊗B A // A, a⊗ a′ � // aa′

Example. Idempotent coring.

Bimodule: A twosided ideal I such that I2 = I
and AA/I or A/IA is flat.

Comultiplication: The canonical isomorphism
I ∼= I ⊗A I.

Counity: The inclusion I ⊆ A.
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Example. Coring stemming from an entwining

structure (Brzeziński-Takeuchi)

(A, C)ϕ an entwining structure over a commu-

tative ring K, with A a K–algebra, C a K–

coalgebra and ϕ : C ⊗K A → A ⊗K C the en-

twining morphism.

Bimodule: A⊗K C, a(a′⊗K c)a′′ = aa′ϕ(c⊗a′′).

Comultiplication: the composite

A⊗
K

C
A⊗

K
∆C

// A⊗
K

C ⊗
K

C ∼= A⊗
K

C ⊗
A

A⊗
K

C

Counity: A⊗K εC : A⊗K C → A⊗K K ∼= A.
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Comodule categories. Given an A–coring C,
the category MC of all right C–comodules is
defined as follows.

Objects: pairs (M, ρM), with MA a module,
and ρM : M → M ⊗A C a morphism of A–
modules such that the diagrams

M
ρM //

ρM

��

M ⊗
A

C

M⊗
A
∆C

��

M ⊗
A

C
ρM⊗

A
C
// M ⊗

A
C⊗

A
C

M
ρM //

∼=

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
C

M ⊗
A

C

M⊗
A

εC

��

M ⊗
A

A

commute.

Morphisms: a morphism f : (M, ρM) → (N, ρN)
is a morphism of A–modules f : M → N such
that the following diagram commutes

M
f

//

ρM
��

N

ρN
��

M ⊗
A

C
f⊗

A
C

// N ⊗
A

C
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MC is an additive category with inductive lim-

its, but it is not abelian in general (kernels can

fail).

MC

U

��

MA

−⊗
A

C

OO
the forgetful functor

U has a right adjoint

−⊗A C

Theorem. The following are equivalent.

(i) MC is abelian and U is left exact;

(ii) MC is a Grothendieck category and U is

left exact;

(iii) AC is flat.

Remark. MC can be abelian without AC flat.

Example. Let RBS a bimodule, A =

(
R B
0 S

)
,

and I = I2 =

(
R B
0 0

)
. Then MI ∼MR but AI

is no flat unless RB is.
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Example worked out.

A =

(
R B
0 S

)
, I =

(
R B
0 0

)

Objects ofMA: M = (M ′, M ′′, µ), M ′ ∈MR, M ′′ ∈
MS and µ : M ′ ⊗R B → M ′′ is S–linear.
Morphisms of MA:

(f ′, f ′′) : (M ′
R, M ′′

S, µ) → (N ′
R, N ′′

S, ν)

making commute M ′ ⊗R B
µ

//

f⊗B
��

M ′′

f ′′
��

N ′ ⊗R N ν // N ′′

−⊗A I ∼= F , where F : MA →MA is given by

F (M ′, M ′′, µ) = (M ′, M ′ ⊗R B,1)

and

F (M) = (M ′, M ′ ⊗R B,1)
(1,µ)

// (M ′, M ′′, µ) = M

is natural. Using this, we have MI consists of
the modules (M ′, M ′′, µ) such that µ is isomor-
phism, and the functor MI →MA which sends
(M ′, M ′′, µ) onto M ′ is an equivalence.
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Two convolution rings

∗C = Hom(AC, A) (f ∗l g = f ◦ (C⊗
A

g) ◦∆)

C∗ = Hom(CA, A) (f ∗r g = g ◦ (f ⊗
A

C) ◦∆)

Two pairs of rings

End(CC)

∼=
��

f
_

��

End(CC)
op

∼=
��∗C ε ◦ f C∗

Thus, we have a bimodule structure ∗CCC∗.
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Rational modules.

We have a functor MC → ∗CM, which makes

M ∈ MC a module ∗CM with the action ϕm =∑
m0ϕ(m1).

Try to reverse the process: Let M ∈ ∗CM, an

element m ∈ M is said to be rational if ϕm =∑
miϕ(ci) for every ϕ ∈ ∗C and some (mi, ci) ∈

M × C.

Define the coaction M → M ⊗A C which sends

m onto
∑

i mi ⊗A ci. This is mathematically

sound whenever AC is required to be projective.

This defines a functor Ratl : ∗CM → MC de-

fined as

Ratl(M) = {m ∈ M | m is rational}

which allows to recognize MC as isomorphic to

a full subcategory of ∗CM.
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Theorem. Let C be an A–coring. The fol-

lowing statements are equivalent:

(i) every left C–comodule is semisimple and CM
is abelian;

(ii) every right C–comodule is semisimple and

MC is is abelian;

(iii) C is semisimple as a left C–comodule and

CA is flat;

(iv) C is semisimple as a right C–comodule and

AC is flat;

(v) C is semisimple as a right C∗–module and

CA is projective;

(vi) C is semisimple as a left ∗C–module and

AC is projective.
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Proof: (i) ⇒ (iii) Every monomorphism splits
in the semisimple category CM. Thus U :
CM→ AM preserves monomorphisms, whence
it is exact. Therefore, CA is flat.
(iii) ⇒ (iv) CA flat ⇒ CM Grothendieck and
C⊗A − : AM→ CM is exact.
Thus, U a C ⊗A − ⇒ U : CM → AM preserves
projectives.
If M ∈ CM, then 0

0 // M // C⊗A M

OO

A(I) ⊗A C ∼= C(I)

OO

,

and M is semisimple.
Thus, every object in CM is projective, in par-
ticular CC is projective. Hence, AC is projective.
Finally, C ∈ CM semisimple ⇒ End(CC)C is a
semisimple module. Since ∗C ∼= End(CC), we
get that ∗CC is semisimple.
(vi)⇒ (ii) If AC is projective, thenMC ∼ Rat(

∗CM).
Thus, MC is abelian. Moreover, ∗CC subgen-
erates Rat(

∗CM) and, thus, this category is
semisimple.

10



I ⊆ C subbicomodule ≡
∆(I) ⊆ Ker(C⊗A C → C/I ⊗A C/I)

C simple ≡ every subbico-

module is trivial

Theorem. The A–coring C is semisimple if

and only if C = ⊕λ∈ΛCλ for Cλ simple semiar-

tinian A–corings with ACλ, CλA proyective for

every λ. This decomposition is unique.

semiartinian object ≡
every proper factor

contains a simple sub-

object.
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Theorem. Assume AC y CA projective. The
following are equivalent

(i) C is a simple semiartinian A–coring;

(ii) C is simple with nonzero left socle;

(iii) C is semisimple with a unique type of sim-
ple left comodule;

(iv) C is simple with nonzero right socle;

(v) C is semisimple with a unique type of simple
right comodule;

(vi) C ∼= Σ∗ ⊗D Σ, where DΣA is a bimodule
with ΣA finitely generated and projective, and
D a division ring.

Corollary. (Wedderburn’s Theorem) Let C
be a coalgebra over a field K. Then C is sim-
ple if and only if C ∼= Σ∗ ⊗D Σ for a finite-
dimensional vector space ΣK and a division
ring D ⊆ End(ΣK). Moreover, ∗C ∼= End(DΣ).
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Comatrix Corings

Let BΣA be a B − A–bimodule; assume ΣA
is finitely generated and projective. Consider
Σ∗ = HomA(Σ, AA) canonically as an A − B–
bimodule.

Pick {e∗i , ei} ⊆ Σ∗ ×Σ a dual basis.

Bimodule: Σ∗ ⊗B Σ, a(ϕ⊗ u)a′ = aϕ⊗ ua′.

Comultiplication:

Σ∗ ⊗B Σ ∆ // Σ∗ ⊗B Σ⊗A Σ∗ ⊗B Σ

ϕ⊗B u � //
∑

i ϕ⊗B ei ⊗A e∗i ⊗B u

Counity:

Σ∗ ⊗B Σ ε // A, ϕ⊗B u � // ϕ(u)

The name of “comatrix” comes from

∗(Σ∗ ⊗B Σ) ∼= End(BΣ),

as rings.
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Examples of comatrix corings

Sweedler’s canonical coring. Let B ⊆ A a

ring extension. Put Σ = BAA. Then Σ∗ ⊗B

Σ ∼= A ⊗B A is the usual Sweedler’s canonical

A–coring.

Dual coring. Let A ⊆ B a ring extension.

Assume BA finitely generated and projective.

Take Σ = BBA; then Σ∗⊗BΣ = B∗⊗B B ∼= B∗,
and the A–coring structure is dual to the mul-

tiplication of B.

Comatrix coalgebras. Let A = B = K be a

commutative field, Σ a finite dimensional vec-

tor space. Then Σ∗⊗K Σ is the usual comatrix

coalgebra.
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The structure theorem.

Theorem. Let A be any ring. An A–coring

C is semisimple if and there is a family Λ of

finitely generated projective right A–modules,

and a division ring DΣ ⊆ End(ΣA) for each

Σ ∈ Λ such that

C ∼=
⊕
Σ∈Λ

Σ∗ ⊗DΣ
Σ

Moreover, if Λ′ is another such a family, then

there is a bijective map Φ : Λ → Λ′, and a iso-

morphism of right A–modules gΣ : Σ → Φ(Σ)

for every Σ ∈ Λ such that DΦ(Σ) = gΣDΣg−1
Σ .
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